

Osc4py3 documentation

	Module documentation [http://osc4py3.readthedocs.org/]
(on Read The Docs)

	Subversion repository & bug tracking [https://sourcesup.renater.fr/scm/viewvc.php?root=osc4py3]
(on french academic SourceSup site).

	Developer page [https://perso.limsi.fr/pointal/dev:osc4py3]

Osc4py3 is an implementation of Open Sound Control (OSC) [http://opensoundcontrol.org/] message
transport protocol within a Python3 package.

It manages different sides of OSC in possibly different contexts:

	encoding/decoding of OSC message packets (including bundles)

	routing of incoming messages based on selector regexps or globbing

	timed messages with possible delay period

	named client/server for sending/subscribing (light coupling)

	different scheduling models (single process, totally multithread, only multithread for communications)

	extra processing of packets (hack points to encrypt/decrypt, sign/verify…)

Note: routing, timed messages, named client/server, scheduling models make a complex system
(see the “big picture” in doc). The oscbuildparse module of osc4py3 package can
be used as is and provides nice OSC packets encoding/decoding functions usable in your own message
transmission scheme.

The documentation is splitted in two main parts, a user guide for simple package
use, and a developer guide explaining how things are organized and work together.

Contents

	1. Usage
	1.1. Introduction
	1.1.1. What is osc4py3?

	1.1.2. What Python?

	1.1.3. Why?

	1.1.4. What’s new?

	1.1.5. Complicated to use?

	1.2. Quick OSC
	1.2.1. Messages

	1.3. Simple use
	1.3.1. Examples

	1.3.2. Sending messages

	1.3.3. Message handlers

	1.3.4. Threading model

	1.3.5. Servers channels

	1.3.6. Client channels

	1.3.7. Light coupling

	1.3.8. Logging OSC operations

	1.3.9. Advanced pattern/handler

	1.4. User main functions

	2. Messages and Bundles
	2.1. Programming interface
	2.1.1. OSC Messages

	2.1.2. OSC Bundles

	2.1.3. Supported atomic data types

	2.1.4. Automatic type tagging

	2.2. Errors
	2.2.1. OSCError

	2.2.2. OSCInvalidDataError

	2.2.3. OSCInvalidRawError

	2.2.4. OSCInternalBugError

	2.2.5. OSCUnknownTypetagError

	2.2.6. OSCInvalidSignatureError

	2.2.7. OSCCorruptedRawError

	2.3. Out of band options
	2.3.1. Supported data types

	2.3.2. Strings encoding

	2.3.3. Compression of addresses

	2.3.4. Basic messages controls

	2.3.5. Dump of packets

	2.3.6. Advanced control

	2.4. Code documentation

	3. Development
	3.1. Implementation Modules
	3.1.1. oscbuildparse

	3.1.2. oscmethod

	3.2. Core Modules
	3.2.1. oscchannel

	3.2.2. oscscheduling

	3.2.3. oscdistributing

	3.2.4. oscdispatching

	3.3. Specialized Tools
	3.3.1. oscpacketoptions

	3.3.2. osctoolspools

	3.3.3. oscnettools

	3.4. Transport Protocol
	3.4.1. Base transport class

	3.4.2. Datagram transport class

	3.4.3. Stream transport class

	3.5. User Helpers
	3.5.1. as_eventloop

	3.5.2. as_allthreads

	3.5.3. as_comthreads

	3.6. Action Handlers
	3.6.1. Generic

	3.6.2. UDP

	3.6.3. TCP

1. Usage

1.1. Introduction

1.1.1. What is osc4py3?

It is a fresh implementation of the Open Sound Control (OSC) protocol 1 for Python3.
It tries to have a “pythonic” programming interface at top layers, and to support
different scheduling schemes in lower layers to have efficient processing.

	1

	See http://opensoundcontrol.org/ for complete OSC documentation.

1.1.2. What Python?

The package targets Python3.2 or greater, see other OSC implementations for older Python versions
(OSC.py, simpleosc, TxOSC).

1.1.3. Why?

It was initially developed for use in a larger software as a background system communicating
via OSC in separate threads, spending less possible time in main thread:
sending OSC is just building messages/bundles objects and identifying targets, receiving OSC
is just calling identified functions with OSC messages.
All other operations, encoding and decoding, writing and reading, monitoring for communication
channels availability, pattern matching messages addresses, etc, can be realized in other
threads.
On a multi-core CPU with multi-threading, these optimizations allow C code to run in
parallel with communication operations, we gain milliseconds which are welcome in
the project context.

1.1.4. What’s new?

The whole package is really bigger and the underlying system is complex to understand.
But, two base modules, oscbuildparse and oscmethod (see the modules
documentation), are autonomous and can be used as is to provide: encoding and decoding of
OSC messages and bundles, pattern matching and functions calling.

As we start from scratch, we use latest information about OSC with support for advanced
data types (adding new types is easy), and insert support for OSC extensions like address
pattern compression or messages control.

1.1.5. Complicated to use?

No. See the “Simple use” chapter below.
It may be even easier to use than other Python OSC implementations.
Don’t mistake, the underlying processing is complex, but the high level API hide it.

1.2. Quick OSC

Open Sound Control [http://opensoundcontrol.org/]
is a simple way to do remote procedure calls between applications, triggered on string
pattern matching, transported by any way inside binary packets.
It mainly defines packets encoding format to transmit data and pattern matching to select
functions to call.
Using network broadcast or multicast, it allows to send data in one shot to several
systems at same time.

1.2.1. Messages

Messages structure only contains: an address string (to be matched by patterns for routing
to processing functions), description of data content (using type codes as defined in
Supported atomic data types), and data itself (as packed binary).

For basic OSC address pattern, see Address patterns.

Data in OSC messages are generally simple, like can be function parameters, some
int or float numbers, string, boolean, an “impulse” or “bang” (OSC come from
MIDI 2 musical world where
a kind of “start” event is necessary). It could be used to transmit complex structures,
but it’s not its main purpose.
See Supported atomic data types to see types allowed by osc4py3.

	2

	See https://en.wikipedia.org/wiki/MIDI

1.3. Simple use

1.3.1. Examples

We will first start by small commented examples, then give some explanations and precisions.

Note

Even if examples have been splitted in two parts, sending and receiving OSC messages
can be realized in same program ; osc_startup(), osc_process() and
osc_terminate() are client & server ready.

1.3.1.1. Receiving OSC messages

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	# Import needed modules from osc4py3
from osc4py3.as_eventloop import *
from osc4py3 import oscmethod as osm

def handlerfunction(s, x, y):
 # Will receive message data unpacked in s, x, y
 pass

def handlerfunction2(address, s, x, y):
 # Will receive message address, and message data flattened in s, x, y
 pass

Start the system.
osc_startup()

Make server channels to receive packets.
osc_udp_server("192.168.0.0", 3721, "aservername")
osc_udp_server("0.0.0.0", 3724, "anotherserver")

Associate Python functions with message address patterns, using default
argument scheme OSCARG_DATAUNPACK.
osc_method("/test/*", handlerfunction)
Too, but request the message address pattern before in argscheme
osc_method("/test/*", handlerfunction2, argscheme=osm.OSCARG_ADDRESS + osm.OSCARG_DATAUNPACK)

Periodically call osc4py3 processing method in your event loop.
finished = False
while not finished:
 # …
 osc_process()
 # …

Properly close the system.
osc_terminate()

1.3.1.2. Sending OSC messages

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# Import needed modules from osc4py3
from osc4py3.as_eventloop import *
from osc4py3 import oscbuildparse

Start the system.
osc_startup()

Make client channels to send packets.
osc_udp_client("192.168.0.4", 2781, "aclientname")

Build a simple message and send it.
msg = oscbuildparse.OSCMessage("/test/me", ",sif", ["text", 672, 8.871])
osc_send(msg, "aclientname")

Build a message with autodetection of data types, and send it.
msg = oscbuildparse.OSCMessage("/test/me", None, ["text", 672, 8.871])
osc_send(msg, "aclientname")

Buils a complete bundle, and postpone its executions by 10 sec.
exectime = time.time() + 10 # execute in 10 seconds
msg1 = oscbuildparse.OSCMessage("/sound/levels", None, [1, 5, 3])
msg2 = oscbuildparse.OSCMessage("/sound/bits", None, [32])
msg3 = oscbuildparse.OSCMessage("/sound/freq", None, [42000])
bun = oscbuildparse.OSCBundle(oscbuildparse.unixtime2timetag(exectime),
 [msg1, msg2, msg3])
osc_send(bun, "aclientname")

Periodically call osc4py3 processing method in your event loop.
finished = False
while not finished:
 # You can send OSC messages from your event loop too…
 # …
 osc_process()
 # …

Properly close the system.
osc_terminate()

You can take a look at the rundemo.py script in demos/ directory.
It is a common demo for the different scheduling options, where main osc4py3 functions
are highlighted by surrounding comments.
You can also look at speedudpsrv.py and speedudpcli.py in the demos/ directory.

1.3.1.3. General layout

So, the general layout for using osc4py3 is

	Import osc4py3.as_xxx module upon desired threading model.

	Import osc4py3.oscbuildparse if you plan to send messages.

	Call osc_startup function to start the system.

	Create a set of client/server identified via channels names.

	Register some handler functions with address matching.

	Enter the processing loop.

	Send created messages via client channels.

	Call osc_process function to run the system.

	Received messages from server channels, have their address matching handlers
called for you.

	Call osc_terminate to properly release resources (communications, threads…).

1.3.2. Sending messages

As seen in Examples, you need to import oscbuildparse module
(or directly some of its content) to build a new OSCMessage object.
Then, simply and send it via osc_send() specifying target client channel
names (see Client channels).

msg = oscbuildparse.OSCMessage("/test/me", ",sif", ["text", 672, 8.871])
osc_send(msg, "aclientname")

You can see supported message data types in Supported atomic data types.

It is also possible to send multiple OSC messages, or to request an immediate or
on the contrary differed execution time using OSCBundle (see OSC Bundles).

bun = oscbuildparse.OSCBundle(unixtime2timetag(time.time()+30),
 [oscbuildparse.OSCMessage("/test/me", ",sif", ["none", -45, 11.34]),
 oscbuildparse.OSCMessage("/test/him", ",sif", ["two", 15, 11.856])])
osc_send(bun, "aclientname")
bun = oscbuildparse.OSCBundle(.oscbuildparse.OSC_IMMEDIATELY,
 [oscbuildparse.OSCMessage("/test/me", ",sif", ["three", 92, 454]),
 oscbuildparse.OSCMessage("/test/him", ",sif", ["four", 107, -3e2])])
osc_send(bun, "aclientname")

Warning

Note that when running the system with osc4py3.as_eventloop, several calls to
osc_process() may be necessary to achieve complete processing of message sending
(the message itself is generally sent / received in one osc_process() call if possible,
but some monitoring status on sockets may need other calls to be stopped, and several
sent messages may take time to be processed on sockets).

1.3.3. Message handlers

A message handler is a Python callable (function or bound method, or
Python partial [https://docs.python.org/3.2/library/functools.html#functools.partial]),
which will be called when an OSCMessage’s addresspattern is matched by
a specified addrpattern filter.
By default it is called with the (unpacked) OSC message data as parameters.

You can build message handlers with an interface specifying each independent argument, like:

def handler_set_location(x, y, z):
 # Wait for x,y,z of new location.

Or use of *args variable arguments count.

def handler_set_location(*args):
 # Wait for x,y,z of new location.

Hint

If you want your method to be called even if sender gives an invalid parameters count,
you may prefer the variable arguments count solution or the OSCARG_DATA argscheme
see below), else with an invalid argument count message, your handler call will
fail immediately with a ValueError exception.

1.3.3.1. Installing message handlers

The normal way is to use osc_method() function, where you associate your handler function
with an OSC address pattern filter string expression (see Address patterns).

def osc_method(addrpattern, function [,argscheme[,extra]])

There is by default a simple mapping of the OSC message data to your function parameters,
but you can change this using the argscheme parameter (see Arguments schemes).

You can provide an extra parameter(s) for your handler function, given as extra
(you must require this parameter in your argscheme too).

1.3.3.2. Address patterns

When calling osc_method function you specify the message address pattern filter
as first parameter.

def osc_method(addrpattern, function [,argscheme[,extra=None]])

By default the addrpattern follows OSC pattern model 3 , which looks like
unix/dos globbing for filenames:

	use / separators between “levels”

	* match anything, operator stop at / boundary

	// at beginning allow any level deep from start

	? match any single char

	[abcdef] match any any char in abcdef

	[a-z] match any char from a to z

	[!a-z] match any char non from a to z

	{truc,machin,chose} match truc or machin or chose

Note

There is no unbind function at this level of osc4py3 use.

	3

	It is internally rewritten as Python re pattern
to directly use Python regular expressions engine for matching.

1.3.3.3. Arguments schemes

By default message data are unpacked as handler parameters.

You can change what and how parameters are passed to handler’s arguments
with the argscheme parameter of osc_method function.
This parameter uses some tuple constant from oscmethod module,
which can be added to build your handler function required arguments list.

	OSCARG_DATA — OSC message data tuple as one parameter.

	OSCARG_DATAUNPACK — OSC message data tuple as N parameters (default).

	OSCARG_MESSAGE — OSC message as one parameter.

	OSCARG_MESSAGEUNPACK — OSC message as three parameters (addrpattern, typetags, arguments).

	OSCARG_ADDRESS — OSC message address as one parameter.

	OSCARG_TYPETAGS — OSC message typetags as one parameter.

	OSCARG_EXTRA — Extra parameter you provide as one parameter - may be None.

	OSCARG_EXTRAUNPACK — Extra parameter you provide (unpackable) as N parameters.

	OSCARG_METHODFILTER — Method filter object as one parameter.
This argument is a MethodFilter internal structure containing
informations about the message filter and your handler (argument scheme, filter expression…).

	OSCARG_PACKOPT — Packet options object as one parameter - may be None.
This argument is a PacketOption internal structure containing
information about packet processing (source, time, etc).

	OSCARG_READERNAME — Name of transport channel which receive the OSC packet - may be None.

	OSCARG_SRCIDENT — Indentification information about packet source (ex. (ip,port)) - may be None.

	OSCARG_READTIME — Time when the packet was read - may be None.

By combining these constants with addition operator, you can change what arguments your handler
function will receive, and in what order.
You can then adapt your handler function and/or the arguments scheme to fit.
Examples:

Import one of osc4py3 top level functions, and argument schemes definitions
from osc4py3.as_allthreads import * # does osc_method
from osc4py3.oscmethod import * # does OSCARG_XXX

Request the unpacked data (default).
def fct(arg0, arg1, arg2, argn): pass
def fct(*args): pass
osc_method("/test/*", fct)

Request the message address pattern and the unpacked data.
def fct(address, arg0, arg1, arg2, argn): pass
def fct(address, *args): pass
osc_method("/test/*", fct, argscheme=OSCARG_ADDRESS + OSCARG_DATAUNPACK)

Request the message address pattern and the packed data.
def fct(address, args): pass
osc_method("/test/*", fct, argscheme=OSCARG_ADDRESS + OSCARG_DATA)

Request the message address pattern, its type tag and the unppacked data.
def fct(address, typetag, arg0, arg1, arg2, argn): pass
def fct(address, typetag, *args): pass
osc_method("/test/*", fct, argscheme=OSCARG_ADDRESS + OSCARG_TYPETAGS + OSCARG_DATAUNPACK)

Request the message address pattern, its type tag and the packed data… the OSCMessage parts.
def fct(address, typetag, args): pass
osc_method("/test/*", fct, argscheme=OSCARG_MESSAGEUNPACK)

Request the OSCMessage as a whole.
def fct(msg): pass
osc_method("/test/*", fct, argscheme=OSCARG_MESSAGE)

Request the message source identification, the whole message, and some extra data.
def fct(srcident, msg, extra): pass
osc_method("/test/*", fct, argscheme=OSCARG_SRCIDENT + OSCARG_MESSAGE + OSCARG_EXTRA,
 extra=dict(myoption1=4, myoption2="good"))

Hint

Informations made available via argument scheme constants should be enough for
large common usage.
But, if some handler function need even more information from received messages, other
members of internal objects coming with OSCARG_METHODFILTER and OSCARG_PACKOPT
argscheme can be of interest.

1.3.4. Threading model

From osc4py3 package, you must import functions from one of the as_eventloop,
as_comthreads or as_allthreads modules (line 2 in examples).
Each of these modules publish the same set of osc_… functions for different threading models
(star import is safe with as_xxx modules, importing only the osc_fctxxx functions).

1.3.4.1. All threads

Using as_allthreads module, threads are used in several places, including message handlers calls
- by default a pool of ten working threads are allocated for message handlers calls.

To control the final execution of methods, you can add an execthreadscount named parameter to
osc_startup().
Setting it to 0 disable executions of methods in working threads, and all methods are called in the context
of the raw packets processing thread, or if necessary in the context of the delayed bundle processing thread.
Setting it to 1 build only one working thread to process methods calls, which are then all called in
sequence in the context of that thread.

If you want to protect your code against race conditions between
your main thread and message handlers calls, you should better use as_comthreads.

1.3.4.2. Communication threads

Using as_comthreads module, threads are used for communication operations (sending and receiving,
intermediate processing), and messages are stored in queues between threads.

Message handler methods are called only when you call yourself osc_process().
This is optimal if you want to achieve maximum background processing of messages transmissions,
but final messages processing must occur within an event loop.

1.3.4.3. No thread

Using as_eventloop module, there is no multi-threading, no background processing.
All operations (communications and message handling) take place only when you call osc_process().

Warning

Multi-threading add some overhead in the whole processing (due to synchronization between threads).
By example, on my computer, transmitting 1000 messages each executing a simple method call,
speedudpsrv.py goes from 0.2 sec with eventloop scheduling to 0.245 sec with comthreads scheduling and
0.334 sec with allthreads scheduling.

But multi-threading can remain interesting if your main thread does C computing while osc4py3 process
messages in background (which is the first use case of this development).

Important

If you choose to run the system with as_eventloop or with as_comthreads, you must
periodically call the function osc_process() sometime in your event loop.

This call all code needed in the context of the event loop (all transmissions and dispatching
code for as_eventloop, and only dispatching for as_comthreads).

If you choose to run the system with as_allthreads, you don’t need to call osc_process()
(this function is defined in this module too, but does nothing).
But you should have checked that your code will not have problems with concurrent access to
resources (if needed there is a way to simply install a message handler to be called with
an automatic Lock).

1.3.5. Servers channels

Server channel are identified by names, but you should not have to use these names
once the server channel has been created (unless you do advanced internal processing
on incoming OSC packets).

In the example server channels are simple UDP ports which will be listened to read
some incoming datagram,
first server listen for data from a specific IPV4 network,
second server listen on all IPV4 networks.

You can also create servers via osc_broadcast_server() or osc_multicast_server().

1.3.6. Client channels

Client channels are identified by names, allowing light coupling in your code
when sending OSC messages.

In the example client channels is a simple UDP transport.
It will transmit data to server channels listening on the other side.

You can also create clients via osc_broadcast_client() or osc_multicast_client()
(providing ad-hoc broadcast/multicast addresses).

1.3.7. Light coupling

Client and server channels being identified via names,
where name resolution is only done when communication activity is required,
creation order of the different parts is not important.

In this way, in your code you send a message to a named channel, without knowing how and
where this channel connection has been established.
You can change transport protocol with no impact on your communication code.
If you target multiple channels via a list or tuple or set, eventually nested —
this allow to easily define groups of channels as target for sending.

If you use the special reserved "_local" name target, you send a message to be processed
directly by your own program without network communication (no need to create a channel,
it’s a bypass name).

1.3.8. Logging OSC operations

Once imported, use of the package begin by initializing the system with a call
to osc_startup() function.

This function allows an optional logger named parameter, accepting a logging.logger
object 4 . Example:

import logging
logging.basicConfig(format='%(asctime)s - %(threadName)s ø %(name)s - '
 '%(levelname)s - %(message)s')
logger = logging.getLogger("osc")
logger.setLevel(logging.DEBUG)
osc_startup(logger=logger)

	4

	This is highly recommended in case of problems with multi-threads usage.

1.3.9. Advanced pattern/handler

You may setup your pattern / handler binding using low level functions, giving
access to some more advanced options.

from osc4py3 import oscmethod, oscdispatching
mf = oscmethod.MethodFilter(...)
oscdispatching.register_method(mf)

By creating the osc4py3.oscmethod.MethodFilter object directly, you can provide some
extra construction parameters which are not available using high level osc_method()
function (we don’t list parameters which can be specified using argscheme):

	patternkind default to "osc", indicates to use OSC syntax for pattern.
You can use here "re" to specify that you provide in addrpattern a Python
regular expression.

	workqueue allows you to specify a processing WorkQueue associated to threads to
call the handler with matched incoming messages — by default it’s None
and indicate to use the common work queue.

	lock can be used to specify a thread.Lock (or thread.RLock) object
to acquire before processing matched messages with this handler function —
by default it’s None.

	logger is a specific logger to use to specifically trace that handler calling
on matched messages reception. By default top level osc_method() functions
use the logger given as osc_startup() logger parameter.

1.4. User main functions

See OSCMessage or OSCBundle for their respective documentation.

We document using the common as_xxx module

Note

Startup and termination functions (osc_startup() and osc_terminate()) are
intended to be called once only, at begining of program and at end of program.
They install/uninstall a set of communication and filtering tools which
normally stay active during program execution.

Terminating then restarting osc4py3 may work… but has not been extensively tested.

Each as_eventloop, as_allthreads and as_comthreads
module define the same set of functions documented here.

	
osc4py3.as__common.osc_startup(**kwargs)

	Once call startup function for all osc processing in the event loop.

Create the global dispatcher and register it for all packets and messages.
Create threads for background processing when used with as_allthreads or
as_comthreads scheduling.

	Parameters

	
	logger (logging.Logger) – Python logger to trace activity.
Default to None

	execthreadscount (int) – number of execution threads for methods to
create. Only used with as_allthreads scheduling.
Default to 10.

	writethreadscount (int) – number of write threads for packet sending to
create. Only used with as_allthreads scheduling.
Default to 10.

	
osc4py3.as__common.osc_terminate()

	Once call termination function to clean internal structures before exiting process.

	
osc4py3.as__common.osc_process()

	Function to call from your event loop to receive/process OSC messages.

	
osc4py3.as__common.osc_method(addrpattern, function, argscheme=('data_unpack',), extra=None)

	Add a method filter handler to automatically call a function.

Note

There is no unregister function at this level of osc4py use, but module
oscdispatching provides MethodFilter object and functions
to register and unregister them.

	Parameters

	
	addrpattern (str) – OSC pattern to match

	function (callable) – code to call with the message arguments

	argscheme (tuple) – scheme for handler function arguments.
By default message data are transmitted, flattened as N parameters.

	extra (anything) – extra parameters for the function (must be specified in argscheme too).

	
osc4py3.as__common.osc_send(packet, names)

	Send the packet using channels via names.

	Parameters

	
	packet (OSCMessage or OSCBundle) – the message or bundle to send.

	names (str or list or set) – name of target channels (can be a string, list or set).

	
osc4py3.as__common.osc_udp_server(name, address, port)

	Create an UDP server channel to receive OSC packets.

	Parameters

	
	name (str) – internal identification of the channel server.

	address (str) – network address for binding UDP socket

	port (int) – port number for binding UDP port

	
osc4py3.as__common.osc_udp_client(name, address, port)

	Create an UDP client channel to send OSC packets.

	Parameters

	
	name (str) – internal identification of the channel client.

	address (str) – network address for binding UDP socket

	port (int) – port number for binding UDP port

	
osc4py3.as__common.osc_multicast_server(name, address, port)

	Create a multicast server to receive OSC packets.

	Parameters

	
	name (str) – internal identification of the channel server.

	address (str) – network address for binding socket

	port (int) – port number for binding port

	
osc4py3.as__common.osc_multicast_client(name, address, port, ttl)

	Create a multicast client channel to send OSC packets.

	Parameters

	
	name (str) – internal identification of the channel client.

	address (str) – multicast network address for binding socket

	port (int) – port number for binding port

	ttl (int) – time to leave for multicast packets.
Default to 1 (one hop max).

	
osc4py3.as__common.osc_broadcast_server(name, address, port)

	Create a broadcast server channel to receive OSC packets.

	Parameters

	
	name (str) – internal identification of the UDP server.

	address (str) – network address for binding UDP socket

	port (int) – port number for binding UDP port

	
osc4py3.as__common.osc_broadcast_client(name, address, port, ttl)

	Create a broadcast client channel to send OSC packets.

	Parameters

	
	name (str) – internal identification of the channel client.

	address (str) – broadcast network address for binding socket

	port (int) – port number for binding port

	ttl (int) – time to leave for broadcast packets.
Default to 1 (one hop max).

2. Messages and Bundles

Note

OSC structures are defined in module oscbuildparse.
This module provides all low level tools to manipulate these structures, build them, encode them
to raw OSC packets, and decode them back.

You may specially be interested by message construction in the examples (encoding and decoding is
normally done automatically for you by osc4py3).

This module is only here to translate OSC packets from/to Python values.
It can be reused anywhere as is (only depend on Python3 standard modules).

Examples:

>>> from osc4py3.oscbuildparse import *
>>> dir()
['OSCBundle', 'OSCCorruptedRawError', 'OSCError', 'OSCInternalBugError',
'OSCInvalidDataError', 'OSCInvalidRawError', 'OSCInvalidSignatureError',
'OSCMessage', 'OSCUnknownTypetagError', 'OSC_BANG', 'OSC_IMMEDIATELY',
'OSC_IMPULSE', 'OSC_INFINITUM', 'OSCbang', 'OSCmidi', 'OSCrgba', 'OSCtimetag',
'__builtins__', '__doc__', '__name__', '__package__', 'decode_packet',
'dumphex_buffer', 'encode_packet', 'float2timetag', 'timetag2float',
'timetag2unixtime', 'unixtime2timetag']

>>> msg = OSCMessage('/my/pattern',',iisf',[1,3,"a string",11.3])
>>> raw = encode_packet(msg)
>>> dumphex_buffer(raw)
000:2f6d792f 70617474 65726e00 2c696973 /my/ patt ern. ,iis
016:66000000 00000001 00000003 61207374 f... a st
032:72696e67 00000000 4134cccd ring A4..
>>> decode_packet(raw)
OSCMessage(addrpattern='/my/pattern', typetags=',iisf', arguments=(1, 3,
'a string', 11.300000190734863))

>>> import time
>>> bun = OSCBundle(unixtime2timetag(time.time()+1),
 [OSCMessage("/first/message",",ii",[1,2]),
 OSCMessage("/second/message",",fT",[4.5,True])])
>>> raw = encode_packet(bun)
>>> dumphex_buffer(raw)
000:2362756e 646c6500 d2c3e04f 455a9000 #bun dle. ...O EZ..
016:0000001c 2f666972 73742f6d 65737361 /fir st/m essa
032:67650000 2c696900 00000001 00000002 ge.. ,ii.
048:00000018 2f736563 6f6e642f 6d657373 /sec ond/ mess
064:61676500 2c665400 40900000 age. ,fT. @...
>>> decode_packet(raw)
OSCBundle(timetag=OSCtimetag(sec=3536052435, frac=3018637312),
elements=(OSCMessage(addrpattern='/first/message', typetags=',ii',
arguments=(1, 2)), OSCMessage(addrpattern='/second/message', typetags=',fT',
arguments=(4.5, True))))

>>> msg = OSCMessage("/shortcut/with/typedetection", None,
 [True, OSC_BANG, 12, 11.3])
>>> raw = encode_packet(msg)
>>> dumphex_buffer(raw)
000:2f73686f 72746375 742f7769 74682f74 /sho rtcu t/wi th/t
016:79706564 65746563 74696f6e 00000000 yped etec tion
032:2c544969 66000000 0000000c 4134cccd ,TIi f... A4..
>>> decode_packet(raw)
OSCMessage(addrpattern='/shortcut/with/typedetection', typetags=',TIif',
arguments=(True, OSCbang(), 12, 11.300000190734863))

Note : you can find other examples in osc4py3/tests/buildparse.py module.

2.1. Programming interface

There are two main functions for advanced users:

	encode_packet() build the binary representation for OSC data

	decode_packet() retrieve OSC data from binary representation

An OSC packet can either be an OSC message, or an OSC bundle (which contains a collection
of messages and bundles - recursively if needed).

2.1.1. OSC Messages

For developer point of view, there is an OSCMessage named tuple class which is used as
container to encode and decode messages. It contains fields accordingly to OSC1.1 protocol:

	
class osc4py3.oscbuildparse.OSCMessage

	OSCMessage(addrpattern, typetags, arguments) → named tuple

	Variables

	
	addrpattern (string) – a string beginning by / and used by OSC dispatching protocol.

	typetags (string) – a string beginning by , and describing how to encode values

	arguments (list|tuple) – a list or tuple of values to encode.

The typetag must start by a comma (',') and use a set of chars to describe OSC defined
data types, as listed in the Supported atomic data types table.
It may optionally be set to None for an automatic detection of type tags from values
(see Automatic type tagging for detection rules).

2.1.2. OSC Bundles

And to add a time tag or group several messages in a packet, there is an OSCBundle named
tuple which is used to encode and decode bundles.
It contains fields accordingly to OSC1.1 protocol:

	
class osc4py3.oscbuildparse.OSCBundle

	OSCBundle(timetag, elements) → named tuple

	Variables

	
	timetag – a time representation using two int values, sec:frac

	elements (list|tuple) – a list or tuple of mixed OSCMessage / OSCBundle values

Its first timetag field must be set to osc4py3.oscbuildparse.OSC_IMMEDIATELY
to request an immediate processing of the bundle messages by the server’s matching handlers.
Else, it is considered as an OSC time (see Time Tag) and must be computed
for planned processing time.

2.1.3. Supported atomic data types

In addition to the required OSC1.1 ifsbtTFNI type tag chars, we support optional types of OSC1.0
protocol hdScrm[] (support for new types is easy to add if necessary).

Attention

Check that programs receiving your data also support optional data types.
You may use the Out of band options restrict_typetags to limit the data
types manipulated by osc4py3.

Type codes

	Tag

	Data

	Python

	Notes

	i

	int32

	int

	signed integer

	f

	float32

	float

	a C float (4 bytes)

	s

	string

	str

	ASCII string

	b

	blob

	memoryview

	mapping to part in received blob data

	h

	int64

	int

	to transmit larger integers

	t

	timetag

	OSCtimetag

	two bytes named tuple time

	d

	float64

	float

	a C double (8 bytes)

	S

	alt-string

	str

	ASCII strings to distinguish with ‘s’ strings

	c

	ascii-char

	str

	one ASCII char

	r

	rgba-color

	OSCrgba

	four bytes fields named tuple RGBA data

	m

	midi-msg

	OSCmidi

	four bytes fields named tuple MIDI data

	T

	(none)

	True

	direct True value only with type tag

	F

	(none)

	False

	direct False value only with type tag

	N

	(none)

	None

	‘nil’ in OSC only with type tag

	I

	(none)

	OSCbang

	named tuple with no field (see bang)

	[

	(none)

	tuple

	beginning of an array

]

	(none)

	
	end of the array (to terminate tuple)

2.1.3.1. Integer

Care that Python int has a range with “no limit”.
Overflows will only be detected when trying to pack such values into the 32 bits
representation of an OSC packet integer.

2.1.3.2. String and char

They are normally transmitted as ASCII, default processing ensure this encoding
(with strict error handling, raising an exception if a non-ASCII char
is in a string).
An oob option (see oob options below) allows to specify an encoding.

The value for a string/char is normally a Python str ;
you can give a bytes or bytearray or memoryview, but they must not contain a zero byte
(except at the end - and it will be used a string termination when decoding).

For a char, the string / bytes / … must contain only one element.

In OSC, distinction between s strings and S strings are application meaning
defined. And in osc4py3 you don’t have direct access to data type codes
(you may request to get the .

2.1.3.3. Blob

They allow transmission of any binary data of your own.
The value for a blob can be bytes or bytearray or memoryview.

When getting blob values on packet reception, they are returned as memoryview objects to avoid
extra data copying.
You may cast them to bytes if you want to copy/extract the value from the OSC packet.

2.1.3.4. Infinitum / Impulse / Bang

The Infinitum data ('I'), renamed as Impulse ‘bang’ in OSC 1.1, is returned in Python as a
OSCbang named tuple (with no value in the tuple).
Constant OSC_INFINITUM is defined as an OSCbang value, and aliases constants
OSC_IMPULSE and OSC_BANG are also defined.

You should test on object class with isinstance(x,OSCbang).

2.1.3.5. Time Tag

As time tag is stored into an OSCtimetag named tuple with two items.

	
class osc4py3.oscbuildparse.OSCtimetag

	OSCtimetag(sec, frac) → named tuple

Time tags are represented by a 64 bit fixed point number of
seconds relative to 1/1/1900, same as Internet NTP timestamps .

Warning

We don’t check that sec and frac parts fill in 32 bits integers,
this is detected by struct.pack() function.

	Attribute int sec

	first 32 bits specify the number of seconds since midnight on
January 1, 1900,

	Attribute int frac

	last 32 bits specify fractional parts of a
second to a precision of about 200 picoseconds.

As it is not really usable with usual Python time, four conversion functions have been defined:

	timetag2float() convert an OSCtimetag tuple into a float value in seconds from 1/1/1900,

	timetag2unixtime() convert an OSCtimetag tuple into a Unix float time in seconds
from 1/1/1970 (Python time),

	float2timetag() convert a float value of seconds from 1/1/1900 into an OSCtimetag tuple,

	unixtime2timetag() convert a Unix float value of seconds from 1/1/1970 (Python time) into an
OSCtimetag tuple - can be used

The special value used in OSC to indicate an “immediate” time, with a time tag having 0 in seconds
field and 1 in factional part field (represented as 0x00000001 value), is available for comparison
and usage in constant osc4py3.oscbuildparse.OSC_IMMEDIATELY.

2.1.3.6. Array

An array is a way to group some data in the OSC message arguments.
On the Python side an array is simply a list or a tuple of values.
By example, to create a message with two int followed by four grouped int, you will have:

	Type tags string: ',ii[iiii]'

	Arguments list: [3, 1, [4, 2, 8, 9]]

Note : When decoding a message, array arguments are returned as tuple, not list.
In this example: (3, 1, (4, 2, 8, 9)).

2.1.3.7. RGBA data

RGBA values are stored into an OSCrgba named tuple
containing four single byte values (int in 0..255 range):

	red

	green

	blue

	alpha

2.1.3.8. MIDI data

MIDI values are stored into an OSCmidi named tuple
containing four single byte values (int in 0..255 range):

	portid

	status

	data1

	data2

OSCbang = namedtuple(‘OSCbang’, ‘’)

2.1.4. Automatic type tagging

When creating an OSCMessage, you can give a None value as typetags.
Then, message arguments are automatically parsed to identify their types and build the type tags
string for you.

The following mapping is used:

Automatic typing

	What

	Type tag and corresponding data

	value None

	N without data

	value True

	T without data

	value False

	F without data

	type int

	i with int32

	type float

	f with float32

	type str

	s with string

	type bytes

	b with raw binary

	type bytearray

	b with raw binary

	type memoryview

	b with raw binary

	type OSCrgba

	r with four byte values

	type OSCmidi

	m with four byte values

	type OSCbang

	I without data

	type OSCtimetag

	t with two int32

2.2. Errors

All errors explicitly raised by the module use specify hierarchy of exceptions:

Exception
 OSCError
 OSCCorruptedRawError
 OSCInternalBugError
 OSCInvalidDataError
 OSCInvalidRawError
 OSCInvalidSignatureError
 OSCUnknownTypetagError

2.2.1. OSCError

This is the parent class for OSC errors, usable as a catchall for all errors related to this module.

2.2.2. OSCInvalidDataError

There is a problem in some OSC data provided for encoding to raw OSC representation.

2.2.3. OSCInvalidRawError

There is a problem in a raw OSC buffer when decoding it.

2.2.4. OSCInternalBugError

Hey, we detected a bug in OSC module. Please, signal it with description of the context, data processed, options used.

2.2.5. OSCUnknownTypetagError

Found an invalid (unknown) type tag when encoding or decoding.
This include type tags not in a subset with restrict_typetags option.

2.2.6. OSCInvalidSignatureError

Check of raw data with signature failed due bad source or modified data.
This can only occur with advanced packet control enabled and signature functions installed in out-of-band.

2.2.7. OSCCorruptedRawError

Check of raw data with checksum failed. This can only occur with advanced packet control enabled and
checksum functions installed in out-of-band.

2.3. Out of band options

Warning

Out of band options may need further debugging.

These OOB options are transmitted as a simple Python dict among internal oscbuildparse
functions to enable and define parameters of extra processing.

You may add your own keys in this dict to transmit data to your extra processing functions.

2.3.1. Supported data types

2.3.1.1. restrict_typetags

oob['restrict_typetags'] must contain a string with the subset
typecode chars you want to allow (in ifsbtTFNIhdScrm[])
— see Supported atomic data types.
This make your program ensure that it don’t use data types
unsupported by other OSC implementations.

2.3.2. Strings encoding

The OSC standard encode strings as
ASCII
only chars, which include control chars (codes 1 to 31 and 127; code 0
is used as end of string marker), whitespace and following printable chars:
!”#$%&’()*+,-./ 0123456789 :;<=>?@
ABCDEFGHIJKLMNOPQRSTUVWXYZ
[]^_`
abcdefghijklmnopqrstuvwxyz
{|}~

This is how osc4py3 works, converting all Unicode Python strings
into an ASCII encoding.
By default the encoding and decoding use strict error handling scheme:
any out of ASCII char in a Python string raise an UnicodeEncodeError when
encoding to OSC sctring,
and any non-ASCII char in an OSC string coming from somewhere
raise an UnicodeDecodeError when decoding to Python string.

You can modify the encoding to use and the error processing scheme
(strict, replace, ignore…) with following OOB options.

Caution

Changing strings encoding to non-ASCII goes out of OSC standards,
you may brake communications with other OSC implementations.
It may be better to transmit encoded text in blobs and to
agree on encoding on both sides (ex. transmit encoding in
a separate OSC string).

2.3.2.1. str_decode

oob['str_decode'] must contain a tuple of two values
to specify how to decode OSC strings.
First item is the encoding to use, second item the error handling scheme.
Default to ('ascii', 'strict').

2.3.2.2. str_encode

oob['str_encode'] must contain a tuple of two values
to specify how to encode OSC strings.
First item is the encoding to use, second item the error handling scheme.
Default to ('ascii', 'strict').

2.3.2.3. char_decode

oob['char_decode'] must contain a tuple of two values
to specify how to decode OSC char.
First item is the encoding to use, second item the error handling scheme.
Default to ('ascii', 'strict').

2.3.2.4. char_encode

oob['char_encode'] must contain a tuple of two values
to specify how to encode OSC char.
First item is the encoding to use, second item the error handling scheme.
Default to ('ascii', 'strict').

2.3.3. Compression of addresses

Note

The osc4py3 package implement support for OSC address compression as presented in
Improving the Efficiency of Open Sound Control (OSC) with Compressed Address Strings [http://research.spa.aalto.fi/publications/papers/smc2011-osc/]
(SMC 2011, by Jari Kleimola and Patrick J. McGlynn).

Two sides of an OSC communication agree on some int to string mapping.
The address is then sent as a single "/" OSC string followed by a
32 bits int code.

This implementation only do compression / decompression of addresses, it’s up to
the user to exchange int / address mapping — by example via an initial exchange
of OSC messages (eventually grouped in a bundle).

2.3.3.1. addrpattern_decompression

oob['addrpattern_decompression'] must contain the int to string mapping
to retrieve message address from int code for incoming packets.

2.3.3.2. addrpattern_compression

oob['addrpattern_decompression'] must contain the string to int mapping
to get int code from message address for outgoing packets.

2.3.4. Basic messages controls

2.3.4.1. check_addrpattern

This option allows to check that address string correctly follow OSC pattern.

oob['check_addrpattern'] must be a boolean set to True to check
that address string correctly follow OSC pattern.

2.3.4.2. force_typetags

This option force presence of type tags in received OSC packets, you can’t
send an only address message with this option enabled (it must contain at least
a "," string indicating no data).

oob['force_typetags'] must be a boolean set to True to force
presence of a type tags specification, even with no data
(in such case type tags simply contains "," string).

2.3.5. Dump of packets

2.3.5.1. decode_packet_dumpraw

oob['decode_packet_dumpraw'] must be a boolean set to True to enable
file writing of raw OSC packets in hexadecimal representation.

2.3.5.2. encode_packet_dumpraw

oob['encode_packet_dumpraw'] must be a boolean set to True to enable
file writing of raw OSC packets in hexadecimal representation.

2.3.5.3. decode_packet_dumpacket

oob['decode_packet_dumpacket'] must be a boolean set to True to enable file writing
of decoded OSC packets representation (OSCMessage or OSCBundle).

2.3.5.4. encode_packet_dumpacket

oob['encode_packet_dumpacket'] must be a boolean set to True to enable file writing
of encoded OSC packets representation (OSCMessage or OSCBundle).

2.3.5.5. dump_decoded_values

oob['dump_decoded_values'] must be a boolean set to True to enable file writing
of individual fields of decoded message data .

2.3.5.6. dumpfile

oob['dumpfile'] must be a writable stream (file…), used to dump OSC packets
(raw or decoded) when decode_packet_dumpraw or decode_packet_dumpacket
encode_packet_dumpraw or encode_packet_dumpacket is enabled.

If it is not defined, packets are dump to sys.stdout stream.

2.3.6. Advanced control

Note

Following OOB options have been installed to setup controlled OSC communications,
with possible encryption of data, authentication, checksum…

In such situation OSC messages have an address string set to "/packet",
and data is a set of 6 data corresponding to:

	cheksumprot a string indicating checksum to use

	rawcksum a blob with checksum

	authprot a string indicating authentication to use

	rawckauth a blob with authentication token

	cryptprot a string indicating encryption to use

	rawoscdata a blob containing (encrypted) data

Once the message have passed all steps, a normal OSC message is retrieved (which
can go normally in osc4py3 pipeline).

When receiving a packet, data is decoded then authentified then sumchecked.

When sending a packet, data is sumchecked then authentified then encoded.

If a support function is not present in the oob, its feature is simply ignored.

When advanced control functions receive raw data, it’s a memoryview (on the rawoscdata blob).

2.3.6.1. advanced_packet_control

oob['advanced_packet_control'] must be a boolean set to True to enable
packets control.

2.3.6.2. packet_crypt_prot

oob['packet_crypt_prot'] may contain string indicating encryption protocol to use.
It default to empty string.

2.3.6.3. packet_encrypt_fct

oob['packet_encrypt_fct'] is a function to encode raw osc data.
It is called with the data to encode, indication of the encryption protocol,
and the oob.
It must return binary representation of encoded data.
Call example:

tobuffer = fencrypt(tobuffer, cryptprot, oob)

2.3.6.4. packet_decrypt_fct

oob['packet_decrypt_fct'] is a function to decode raw osc data.
It is called with the data to decode, indication of the encryption protocol,
and the oob.
It must return binary representation of decoded data.
Call example:

rawoscdata = fdecrypt(rawoscdata, cryptprot, oob)

2.3.6.5. packet_authsign_prot

oob['packet_authsign_prot'] may contain string indicating authentication
protocol to use.
It default to empty string.

2.3.6.6. packet_mkauthsign_fct

oob['packet_mkauthsign_fct'] is a function to build authentication
data.
It is called with osc data buffer and the authentication protocol.
It must return the authentication value to transmit as a blob compatible data.
Call example:

authsign = fauthsign(tobuffer, authprot, oob)

2.3.6.7. packet_ckauthsign_fct

oob['packet_ckauthsign_fct'] is a function to check authentication.
It is called with (decoded) osc data, the two authentication fields
and the oob.
It must simply raise an exception if authentication is not proven.
Call example:

fckauthsign(rawoscdata, rawckauth, authprot, oob)

2.3.6.8. packet_checksum_prot

oob['packet_checksum_prot'] may contain string indicating checksum
protocol to use.
It default to empty string.

2.3.6.9. packet_mkchecksum_fct

oob['packet_mkchecksum_fct'] is a function to build data integrity
checksum value.
It is called with osc data buffer, the checksum protocol and the oob.
It must return the checksum value to transmit as a blob compatible data.
Call example:

cksum = fchecksum(tobuffer, cksumprot, oob)

2.3.6.10. packet_ckcheksum_fct

oob['packet_ckauthsign_fct'] is a function to check data integrity.
It is called with (decoded) osc data, the two checksum fields and the oob.
It must simply raise an exception if checksum is not verified.
Call example:

fchecksumcheck(rawoscdata, rawcksum, cheksumprot, oob)

2.4. Code documentation

	
osc4py3.oscbuildparse.decode_packet(rawoscdata, oob=None)

	From a raw OSC packet, extract the list of OSCMessage.

Generally the packet come from an OSC channel reader (UDP, multicast, USB port,
serial port, etc). It can contain bundle or message.
The function guess the packet content and call ah-hoc decoding.

This function map a memoryview on top of the raw data. This allow
sub-called functions to not duplicate data when processing.
You can provide directly a memoryview if you have a packet from which
just a part is the osc data.

	Parameters

	
	rawoscdata (bytes or bytearray or memoryview (indexable bytes)) – content of packet data to decode.

	oob (dict) – out of band extra parameters (see Out of band options).

	Returns

	decoded OSC messages from the packet, in decoding order.

	Return type

	[OSCMessage]

	
osc4py3.oscbuildparse.encode_packet(content, oob=None)

	From an OSCBundle or an OSCMessage, build OSC raw packet.

	Parameters

	
	content (OSCMessage or OSCBundle) – data of packet to encode

	oob (dict) – out of band extra parameters (see Out of band options).

	Returns

	raw representation of the packet

	Return type

	bytearray

	
osc4py3.oscbuildparse.dumphex_buffer(rawdata, tofile=None)

	Dump hexa codes of OSC stream, group by 4 bytes to identify parts.

	Parameters

	
	data (bytes) – some raw data to format.

	tofile (file (or file-like)) – output stream to receive dump

	
osc4py3.oscbuildparse.timetag2float(timetag)

	Convert a timetag tuple into a float value in seconds from 1/1/1900.

	Parameters

	timetag (OSCtimetag) – the tuple time to convert

	Returns

	same time in seconds, with decimal part

	Return type

	float

	
osc4py3.oscbuildparse.timetag2unixtime(timetag)

	Convert a timetag tuple into a float value of seconds from 1/1/1970.

	Parameters

	timetag (OSCtimetag) – the tuple time to convert

	Returns

	time in unix seconds, with decimal part

	Return type

	float

	
osc4py3.oscbuildparse.float2timetag(ftime)

	Convert a float value of seconds from 1/1/1900 into a timetag tuple.

	Parameters

	ftime (float) – number of seconds to convert, with decimal part

	Returns

	same time in sec,frac tuple

	Return type

	OSCtimetag

	
osc4py3.oscbuildparse.unixtime2timetag(ftime=None)

	Convert a float value of seconds from 1/1/1970 into a timetag tuple.

	Parameters

	ftime (float) – number of seconds to convert, with decimal part.
If not specified, the function use current Python time.time().

	Returns

	same time in sec,frac tuple

	Return type

	OSCtimetag

3. Development

You may keep the osc4py3-bigpicture
graphic on hand.
It shows the general organization of the packages, classes, functions, how they interact,
how data are transmitted between the different layers.

[image: _images/osc4py3-bigpicture-0.2.svg]

The osc4py3 package is cut among:

	two OSC core modules for packets manipulation and methods routing:
oscbuildparse and oscmethod ;

	four modules to run processing: oscchannel, oscscheduling,
oscdistributing and oscdispatching ;

	Module oscchannel manage transport (emission, reception) of raw OSC packets.
It uses monitoring tools from oscscheduling to get information of incoming data or
connexion availability for outgoing data.

	Module oscdistributing transform OSC message and bundles into/from OSC raw packets and provide them to
ad-hoc objects/functions for processing.

	Module oscdispaching identify methods to call from messages address pattern matching and control delayed
processing of bundle with future time tag.

	helped by specialized tool modules, by transport protocol specific modules and
by a set of user helper modules providing different scheduling policies.

3.1. Implementation Modules

The two modules described here may be used without core modules if you require a simpler implementation of
communications and distribution of OSC packets.

3.1.1. oscbuildparse

This module has an extensive documentation string you are invited to read.

3.1.1.1. Out-Of-Band options

These options are transmitted among building and parsing functions to activate / deactivate some
processing alternatives. Options (keys, type, usage) are listed in the module documentation.

That way, you can control encoding, trace data, restrict supported type tags, activate address pattern
compression, enable checksum or authentication signature or encryption, etc (warning : some code is
untested).

3.1.2. oscmethod

This module has an extensive documentation string you are invited to read.

Pattern matching can use two syntax, OSC defined syntax or Python regular expression
syntax (former is rewritten as later).

You basically create a MethodFilter object with at least an address pattern (a string) and a
callable object.
By default address pattern use OSC messages patterns syntax (parameter patternkind)

3.2. Core Modules

3.2.1. oscchannel

Organize communication channels to send and receive OSC packets from different transport protocols.
TransportChannel provides an abstract class with ad-hoc interfaces.
It gives some common services to subclasses and allow organization of sockets management to avoid
multiplying threads (use of select or ad-hoc platform specific socket monitoring service upon a
scheduling scheme).
Specific handlers can be installed at transport channel object level, to have special operations
occurring at identified processing time of in/out data (see actions_handlers).

3.2.2. oscscheduling

This module does the real job of monitoring the transport channels and transmitting data

3.2.3. oscdistributing

3.2.4. oscdispatching

3.3. Specialized Tools

3.3.1. oscpacketoptions

3.3.2. osctoolspools

3.3.3. oscnettools

3.4. Transport Protocol

3.4.1. Base transport class

Each transport protocol has its own module defining one or more TransportChannel subclasses.
All these subclasses use the same construction scheme:

channel = ChannelClass("channelname", mode, { 'option_key': optionvalue })

The mode is a combination of 'r' and 'w' for read and write channels (ie. OSC servers to
receive/read packets and OSC clients to send/write packets), and 'e' for stream based channels
waiting for connection event.

3.4.1.1. Common channel options

Most parameters of channels are set via the third parameter in the options dictionary.
Here is a description of possible keys and values (with default value) :

	auto_start (True) ‒ bool flag to immediately activate the channel and start monitoring
its activity once is has been initialized (else you must call yourself activate() and begin_scheduling()
methods)

	logger (None) ‒ Python logging.Logger to trace activity.
If left to None, there is almost no overhead… but you silently pass all errors.
You may better setup one logger with an logging.ERROR filtering level.

	actions_handlers ({}) ‒ map { str : callable / str } of action verb and code or message to call,
see “Action Handlers“ below. For advanced usage with personal hacks at some processing times.

	monitor (Monitoring) ‒ monitor used for this channel - the channel register itself among this monitor
when becoming scheduled.
This is the tool used to detect state modification on the channel and activate reading or writing of data.

	monitor_terminate (False) ‒ bool flag to indicate that our monitor must be terminated with
the channel deletion.
Default upon automatic monitor, or use monitor_terminate key in options.

	read_forceident (None) ‒ map { source : identification } informations to use for peer
identification on read data (don’t use other identification ways).

	read_dnsident (True) ‒ bool flag to use address to DNS mapping automatically built from
oscnettools module.

	read_datagram (False) ‒ bool flag to consider received data as entire datagrams
(no data remain in the buffer, its all processed when received).

	read_maxsources (500) ‒ int count of maximum different sources allowed to send data to this reader
simultaneously, used to limit an eventuel DOS on the system by sending incomplete packets.
Set it to 0 to disable the limit. Default to MAX_SOURCES_ALLOWED (500).

	read_withslip (False) ‒ bool flag to enable SLIP protocol on received data.

	read_withheader (False) ‒ bool flag to enable detection of packet size in the beginning
of data, and use read_headerunpack.

	read_headerunpack (None) ‒ (str,int,int) for automatic use of struct.unpack() or
fct(data) → packsize,headsize to call a function.
For struct.unpack(), data is a tuple with: the format to decode header, the fixed header size,
and the index of packet length value within the header tuple returned by unpack().
For function, it will receive the currently accumulated data and must return a tuple with:
the packet size extracted from the header, and the total header size.
If there is no enough data in header to extract packet size, the function must return (0, 0).
Default to ("!I", 4, 0) to detect a packet length encoded in 4 bytes unsigned int with network
bytes order.
If the function need to pass some data in the current buffer (ex. remaining of an old failed communication),
it can return an header size corresponding to the bytes count to ignore, and a packet size of 0 ;
this will consume data with an -ignored- empty packet.

	read_headermaxdatasize (1 MiB) ‒ int maximum count of bytes allowed in a packet size field when using
headers. Set it to 0 to disable the limit. Default to MAX_PACKET_SIZE_WITH_HEADER (1 MiB).

	write_workqueue (None) ‒ WorkQueue queue of write jobs to execute.
This allow to manage initial writing to peers in their own threads (nice for blocking write() calls)
or in an event loop if working without thread.
The queue will be filled when we detect that a write can occur (ie same channel will have maximum one
write operation in the workqueue, even if there are multiple pending operations in the write_pending
queue).

	write_wqterminate (False) ‒ bool flag to indicate to call work queue termination when
terminating the channel.

	write_withslip (False) ‒ bool flag to enable SLIP protocol on sent data.

	write_slip_flagatstart (True) ‒ bool flag to insert the SLIP END code (192) at beginning of
sent data (when using SLIP).

3.4.1.2. Network address options

For channels using network address and port, the oscnettools module provide a common way to retrieve
these informations.
This is done via a options with variable prefix :

	<prefix>_host (no default) ‒ str representing an host, as a host name resolved via DNS,
or as an IP address in IPV4 format or IPV6 format.
Can use "*" string to specify wildcard address (ex. use with TCP to have server socket on all networks).

	<prefix>_port (no default) ‒ int or str representing a network port number or service name.
Can use 0 integer or "None" string to specify random port.

	<prefix>_forceipv4 (False) ‒ bool flag to require use of IPV4 address in case of multiple address
family resolution by a DNS.

	<prefix>_forceipv6 (False) ‒ bool flag to require use of IPV6 address in case of multiple address
family resolution by a DNS.

3.4.2. Datagram transport class

Module oscudpmc manage transport for datagram protocols over IP : UDP, multicast, broadcast, etc.
All these protocols share the same UdpMcChannel transport class, multicast and broadcast simply
being enabled via options. An UdpMcChannel object can only act as a server or as a client, not both.

3.4.2.1. Datagram channel options

As such transport channels can be used either as a server (reader, receiving OSC packets) or as a client
(writer, sending OSC packets), some options have read or write prefix and are only considered when using
channel accordingly.

3.4.2.2. Read options

	udpread_host ‒ see “Network address options“, above. This is the address where the socket is bound
for reading.

	udpread_port ‒ see “Network address options“, above. This is the port where the socket is bound
for reading.

	udpread_forceipv4 ‒ see “Network address options“, above.

	udpread_forceipv6 ‒ see “Network address options“, above.

	udpread_dontcache (False) ‒ bool flag to not cache data in case of DNS resolution.
By default resolved DNS addresses are cached in the application.

	udpread_reuseaddr (True) ‒ bool flag to enable ioctl settings for reuse of socket address.

	udpread_nonblocking (True) ‒ bool flag to enable non-blocking on the socket.

	udpread_identusedns (False) ‒ bool flag to translate address to DNS name using oscnettools
DNS addresses cache.

	udpread_identfields (2) ‒ int count of fields of remote address identification to use for source
identification.
Use 0 for all fields. Default to 2 for (hostname, port) even with IPV6.

	udpread_asstream (False) ‒ bool flag to process UDP packets with stream-based methods,
to manage rebuild of OSC packets from multiple UDP reads. Bad idea - but if you need it, don’t miss to
set up options like read_withslip, read_withheader…

3.4.2.3. Write options

	udpwrite_host ‒ see “Network address options“, above. This is the address where the socket will
send written packets.

	udpwrite_port ‒ see “Network address options“, above. This is the port where the socket will
send written packets.

	udpwrite_outport (0) ‒ int number of port to bind the socket locally.
Default to 0 for auto-select.

	udpwrite_forceipv4 ‒ see “Network address options“, above.

	udpwrite_forceipv6 ‒ see “Network address options“, above.

	udpwrite_dontcache (False) ‒ bool flag to not cache data in case of DNS resolution.
By default resolved DNS addresses are cached in the application.

	udpread_reuseaddr (True) ‒ bool flag to enable ioctl settings for reuse of socket address.

	udpwrite_ttl (None) - int time to leave counter for packets, also used for multicast hops.
Default leave OS default settings.

	udpwrite_nonblocking (True) ‒ bool flag to enable non-blocking on the socket.

3.4.2.4. Multicast & Broadcast options

	mcast_enabled (False) ‒ bool flag to enable multicast. If True, the udpwrite_host must be a
multicast group, and its a good idea to set udpwrite_ttl to 1 (or more if need to reach furthest networks).

	mcast_loop (None) ‒ bool flag to enable/disable looped back multicast packets to host.
Normally enabled by default at the OS level. Default to None (don’t modify OS settings).

	bcast_enabled (False) ‒ bool flag to enable broadcast.
If True, the udpwrite_host must be a network broadcast address, and its a good idea to set
udpwrite_ttl to 1 (or more if need to reach furthest networks).

3.4.3. Stream transport class

Network stream based transport using TCP is defined in module osctcp. It uses the class TcpChannel
to manage connection and to transmissions.

3.4.3.1. TCP

	tcp_consocket (None) ‒ socket specified when creating a TcpChannel just after a connection,
to manage communications with peer.

	tcp_consocketspec (None) ‒ tuple specifying socket specs.

	tcp_host ‒ see “Network address options“, above. For a TCP server, you may generally use "*" here to
require a server listening on all networks. For a TCP client, just specify the server host.

	udpread_port ‒ see “Network address options“, above.

	udpread_forceipv4 ‒ see “Network address options“, above.

	udpread_forceipv6 ‒ see “Network address options“, above.

	tcp_reuseaddr (True) ‒ bool flag to enable ioctl settings for reuse of socket address.

3.5. User Helpers

These modules are described in the user documentation - we will not describe their interface.

3.5.1. as_eventloop

3.5.2. as_allthreads

3.5.3. as_comthreads

3.6. Action Handlers

These are action verbs which can be associated, at the transport channel level, to locally dispatched
OSC messages or to direct callback functions to have special processing in some conditions.

3.6.1. Generic

These action handlers apply to all channel kind.

	activating —
The channel is being activated (ie. system access via open() or like). No action parameter.

	activated —
The channel has been activated. No action parameter.

	deactivating —
The channel is being deactivated (ie. stop system access via close() or like). No action parameter.

	deactivated —
The channel has been deactivated.

	scheduling —
The channel is being scheduled (ie. begin monitoring of I/O on the underlying layers). No action parameter.

	scheduled —
The channel has been scheduled. No action parameter.

	unscheduling —
The channel is being unscheduled. No action parameter.

	unscheduled —
The channel has been unscheduled. No action parameter.

TODO: Add handlers to get packetoption structures from the channel.

	encodepacket —
A packet must be encoded to send via the channel.

Two action parameters, the OSC source packet to encode and the packet options for processing.
The handler must be a direct callback (as the second parameter is not valid for sending via OSC messages).

If the handler return None, the processing of the packet continue (standard encoding, then sending).

If the handler return (None, None), the processing of the packet stop - we consider that the handler manage itself
the packet transmission to the channel.

If the handler return (rawoscdata, packet option), they are used to transmit the raw packet via the channel,
and standard encoding is not used.

	decodepacket —
A packet coming from a transport channel must be decoded.

Two action parameters, the raw OSC packet data to decode and the packet options for processing.
The handler must be a direct callback (as the second parameter is not valid for sending via OSC messages).

If the handler return None, the processing of the packet continue (standard decoding, then queue for dispatching).

If the handler return (None, None), the processing of the packet stop - we consider that the handler manage
itself the packet transmission to the dispatcher.

If the handler return (packet, packet option), they are used to queue the packet for dispatching, and standard
decoding is not used.

3.6.2. UDP

	bound —
The UDP socket has been bound to a port, waiting for writing or reading. Action parameter is the port number.

3.6.3. TCP

	conreq —
A connexion request has been received and a transport channel will be created to manage communications on
the corresponding socket.
A callback trigged on this handler can raise an exception to cancel the establishment of TCP communications.
If a callback method

Two parameters: (address, sockfileno).
The remote network address as a tuple (maybe more than two items with IPV6) and the socket file number
as an integer.

	connected —
A connexion has been established with a remote pair.

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 osc4py3	

 	
 	
 osc4py3.as__common	

 	
 	
 osc4py3.oscbuildparse	

Index

 D
 | E
 | F
 | O
 | T
 | U

D

 	
 	decode_packet() (in module osc4py3.oscbuildparse)

 	
 	dumphex_buffer() (in module osc4py3.oscbuildparse)

E

 	
 	encode_packet() (in module osc4py3.oscbuildparse)

F

 	
 	float2timetag() (in module osc4py3.oscbuildparse)

O

 	
 	osc4py3.as__common (module)

 	osc4py3.oscbuildparse (module)

 	osc_broadcast_client() (in module osc4py3.as__common)

 	osc_broadcast_server() (in module osc4py3.as__common)

 	osc_method() (in module osc4py3.as__common)

 	osc_multicast_client() (in module osc4py3.as__common)

 	osc_multicast_server() (in module osc4py3.as__common)

 	osc_process() (in module osc4py3.as__common)

 	
 	osc_send() (in module osc4py3.as__common)

 	osc_startup() (in module osc4py3.as__common)

 	osc_terminate() (in module osc4py3.as__common)

 	osc_udp_client() (in module osc4py3.as__common)

 	osc_udp_server() (in module osc4py3.as__common)

 	OSCBundle (class in osc4py3.oscbuildparse)

 	OSCMessage (class in osc4py3.oscbuildparse)

 	OSCtimetag (class in osc4py3.oscbuildparse)

T

 	
 	timetag2float() (in module osc4py3.oscbuildparse)

 	
 	timetag2unixtime() (in module osc4py3.oscbuildparse)

U

 	
 	unixtime2timetag() (in module osc4py3.oscbuildparse)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Osc4py3 documentation

 		
 Usage

 		
 Introduction

 		
 What is osc4py3?

 		
 What Python?

 		
 Why?

 		
 What’s new?

 		
 Complicated to use?

 		
 Quick OSC

 		
 Messages

 		
 Simple use

 		
 Examples

 		
 Sending messages

 		
 Message handlers

 		
 Threading model

 		
 Servers channels

 		
 Client channels

 		
 Light coupling

 		
 Logging OSC operations

 		
 Advanced pattern/handler

 		
 User main functions

 		
 Messages and Bundles

 		
 Programming interface

 		
 OSC Messages

 		
 OSC Bundles

 		
 Supported atomic data types

 		
 Automatic type tagging

 		
 Errors

 		
 OSCError

 		
 OSCInvalidDataError

 		
 OSCInvalidRawError

 		
 OSCInternalBugError

 		
 OSCUnknownTypetagError

 		
 OSCInvalidSignatureError

 		
 OSCCorruptedRawError

 		
 Out of band options

 		
 Supported data types

 		
 Strings encoding

 		
 Compression of addresses

 		
 Basic messages controls

 		
 Dump of packets

 		
 Advanced control

 		
 Code documentation

 		
 Development

 		
 Implementation Modules

 		
 oscbuildparse

 		
 oscmethod

 		
 Core Modules

 		
 oscchannel

 		
 oscscheduling

 		
 oscdistributing

 		
 oscdispatching

 		
 Specialized Tools

 		
 oscpacketoptions

 		
 osctoolspools

 		
 oscnettools

 		
 Transport Protocol

 		
 Base transport class

 		
 Datagram transport class

 		
 Stream transport class

 		
 User Helpers

 		
 as_eventloop

 		
 as_allthreads

 		
 as_comthreads

 		
 Action Handlers

 		
 Generic

 		
 UDP

 		
 TCP

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

