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Orange3-Recommendation is a Python library that extends Orange3 to include support for recommender systems. The
code is open source, and available on github.

User Guide 1

https://github.com/biolab/orange3-recommendation
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CHAPTER 1

Installation

Orange3-Recommendation has a couple of prerequisites that need to be installed first, but once met, the rest of picky
requirements are automatically handle by the installer.

Prerequisites

Python3 + pip

Orange3-Recommendation currently requires Python3 to run. (Note: The algorithms have been design using Numpy,
Scipy and Scikit-learn. Therefore, the algorithms could work with Python 2.7. But due to dependencies related with
Orange3 and its data.Tables, Python3 must be used)

Numpy, Scikit-learn and Orange3

The required dependencies to build the software are Numpy >= 1.9.0, Scikit-Learn >= 0.16 and Orange3.

This is automatically handled by the installer. So you don’t need to install anything else.

Install

This package uses distutils, which is the default way of installing python modules. To install in your home directory,
use:

python setup.py install –user

To install for all users on Unix/Linux:

python setup.py build sudo python setup.py install

For development mode use:

python setup.py develop

3
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Widget usage

After the installation, the widgets from this add-on are registered with Orange. To run Orange from the terminal use:

python3 -m Orange.canvas

new widgets are in the toolbox bar under Recommendation section.

4 Chapter 1. Installation



CHAPTER 2

Tutorial

For a more visual tutorial go to Biolab’s blog

Input data

This section describes how to load the data in Orange3-Recommendation.

Data format

Orange can read files in native tab-delimited format, or can load data from any of the major standard spreadsheet
file type, like CSV and Excel. Native format starts with a header row with feature (column) names. Second header
row gives the attribute type, which can be continuous, discrete, string or time. The third header line contains meta
information to identify dependent features (class), irrelevant features (ignore) or meta features (meta). Here are the
first few lines from a data set ratings.tab:

tid user movie score
string discrete discrete continuous
meta row=1 col=1 class
1 Breza HarrySally 2
2 Dana Cvetje 5
3 Cene Prometheus 5
4 Ksenija HarrySally 4
5 Albert Matrix 4
...

The third row is mandatory in this kind of datasets, in order to know which attributes correspond to the users
(row=1) and which ones to the items (col=1). For the case of big datasets, users and items must be specified as a
continuous attributes due to efficiency issues. Here are the first few lines from a data set MovieLens100K.tab:

user movie score tid
continuous continuous continuous time
row=1 col=1 class meta

5
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196 242 3 881250949
186 302 3 891717742
22 377 1 878887116
244 51 2 880606923
166 346 1 886397596
298 474 4 884182806
...

Loading data

Datasets can be loaded as follow:

import Orange
data = Orange.data.Table("ratings.tab")

In the add-on, several toy datasets are included: ratings.tab, movielens100k.tab, binary_data.tab, epinions_train.tab,
epinions_test.tab,... and a few more.

Getting started

Rating pairs (user, item)

Let’s presume that we want to load a dataset, train it and predict its first three pairs of (id_user, id_item)

1 import Orange
2 from orangecontrib.recommendation import BRISMFLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = BRISMFLearner(num_factors=15, num_iter=25, learning_rate=0.07, lmbda=0.1)
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)
12 >>>
13 [ 3.79505151 3.75096513 1.293013 ]

The first three lines of code, import the Orange module, the BRISMF factorization model and loads the Movie-
Lens100K dataset. In the next lines we instantiate the model (learner = BRISMFLearner(...)) and we fit the model
with the loaded data.

Finally, we predict the ratings for the first three pairs (user, item) in the loaded dataset.

Recommend items for set of users

Now we want to get all the predictions (all items) for a set of users:

1 import numpy as np
2 indices_users = np.array([4, 12, 36])
3 prediction = recommender.predict_items(indices_users)
4 print(prediction)

6 Chapter 2. Tutorial
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5 >>>
6 [[ 1.34743879 4.61513578 3.90757263 ..., 3.03535099 4.08221699 4.26139511]
7 [ 1.16652757 4.5516808 3.9867497 ..., 2.94690548 3.67274108 4.1868596 ]
8 [ 2.74395768 4.04859096 4.04553826 ..., 3.22923456 3.69682699 4.95043435]]

This time, we’ve fill an array with the indices of the users to which make the predictions for all the items.

If we want as an output just the first k elements (do not confuse with top best items), we have to add the parameter
top=INTEGER to the function

prediction = recommender.predict_items(indices_users, top=2)
print(prediction)
>>>
[[ 1.34743879 4.61513578]
[ 1.16652757 4.5516808]
[ 2.74395768 4.04859096]]

Evaluation

Finally, we want to known which of a list of recommender performs better on our dataset. Therefore, we perform
cross-validation over a list of learners.

The first thing we need to do is to make a list of all the learners that we want to cross-validate.

from orangecontrib.recommendation import GlobalAvgLearner,
ItemAvgLearner,
UserAvgLearner,
UserItemBaselineLearner

global_avg = GlobalAvgLearner()
items_avg = ItemAvgLearner()
users_avg = UserAvgLearner()
useritem_baseline = UserItemBaselineLearner()
brismf = BRISMFLearner(num_factors=15, num_iter=25, learning_rate=0.07, lmbda=0.1)
learners = [global_avg, items_avg, users_avg, useritem_baseline, brismf]

Once, we have the list of learners and the data loaded, we score the methods. For the case, we have scored the
recommendation two measures for goodnes of fit, which they’re later printed. To measure the error of the scoring, you
can use all the functions defined in Orange.evaluation.

res = Orange.evaluation.CrossValidation(data, learners, k=5)
rmse = Orange.evaluation.RMSE(res)
r2 = Orange.evaluation.R2(res)

print("Learner RMSE R2")
for i in range(len(learners)):

print("{:8s} {:.2f} {:5.2f}".format(learners[i].name, rmse[i], r2[i]))
>>>
Learner RMSE R2

- Global average 1.13 -0.00
- Item average 1.03 0.16
- User average 1.04 0.14
- User-Item Baseline 0.98 0.25
- BRISMF 0.96 0.28

2.2. Getting started 7
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CHAPTER 3

Frequently Asked Questions

Do I need to know to program?

Not at all. This library can be installed in Orange3 in such a way that you only need to drag and drop widgets to build
your pipeline.

9
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Why is there no widget for the ranking models?

Short answer: Currently Orange3 does not support ranking.

Long answer: This problem is related with how Orange3 works internally. For a given sample X, it expects to return
a single value Y. The reason behind this is related with “safety”, as most of the regression and classification models
return just one single value.

In ranking problems, multiple results are returned. Therefore, Orange3 treats the output as the output of a classification,
returning the maximun value in the sequence.

Is the library prepared for big data?

Not really. From its very beginnings we were focused on building something easy to use, mostly oriented towards
educational purposes and research.

This doesn’t mean that you cannot run big datasets. For instance, you can train BRISMF with the Netflix dataset in
30-40min. But if you plan to do so, we recommend you to use other alternatives highly optimized for those purposes.

Why are the algorithms not implemented in C/C++?

I refer back to the answer above. We want to speed-up the code as much as we can but keeping its readability and
flexibility at its maximun levels, as well as having the less possible amount of dependecies.

Therefore, in order to achieve so, we try to cache as much accessings and operations as we can (keeping in mind the
spacial cost), and also we try to vectorized everything we can.

Why don’t you use Cython or Numba?

As it is been said before, readability and flexibility are a top priority. Cython is not as simple to read as Numpy
vectorized operations and Numba can present problems with dependencies in some computers.

Can I contribute to the library?

Yes, please! Indeed, if you don’t want, you don’t have to worry neither about the widgets nor the documentation if
you don’t want. The only requirement is you add a new model is that it passes through all the tests.

Fork and contribute all as you want! https://github.com/biolab/orange3-recommendation

10 Chapter 3. Frequently Asked Questions
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CHAPTER 4

Baselines

This widget includes four basic baseline models: Global average, User average, Item average and User-Item baseline.

Signals

Inputs:

• Data

Data set.

• Preprocessor

Preprocessed data.

Outputs:

• Learner

The selected learner in the widget.

• Predictor

Trained recommender. Signal Predictor sends the output signal only if input Data is present.

Description

• Global average:

Computes the average of all ratings and use it to make predictions.

• User average:

Takes the average rating value of a user to make predictions.

11
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• Item average:

Takes the average rating value of an item to make predictions.

• User-Item baseline:

Takes the bias of users and items plus the global average to make predictions.

Example

Below is a simple workflow showing how to use both the Predictor and the Learner output. For the Predictor we
input the prediction model into Predictions widget and view the results in Data Table. For Learner we can compare
different learners in Test&Score widget.

12 Chapter 4. Baselines
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CHAPTER 5

BRISMF

Matrix factorization with explicit ratings, learning is performed by stochastic gradient descent.

Signals

Inputs:

• Data

Data set.

• Preprocessor

Preprocessed data.

Outputs:

• Learner

The learning algorithm with the supplied parameters

• Predictor

Trained recommender. Signal Predictor sends the output signal only if input Data is present.

• P

Latent features of the users

• Q

Latent features of the items

13
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Description

BRISMF widget uses a biased regularized algorithm to factorize a matrix into two low rank matrices as it’s explained
in Y. Koren, R. Bell, C. Volinsky, Matrix Factorization Techniques for Recommender Systems. IEE Computer Society,
2009.

Example

Below is a simple workflow showing how to use both the Predictor and the Learner output. For the Predictor we
input the prediction model into Predictions widget and view the results in Data Table. For Learner we can compare
different learners in Test&Score widget.

14 Chapter 5. BRISMF
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CHAPTER 6

SVD++

Matrix factorization model which makes use of implicit feedback information.

Signals

Inputs:

• Data

Data set.

• Preprocessor

Preprocessed data.

• Feedback information

Implicit feedback information. Optional, if None (default), it will be inferred from the ratings.

Outputs:

• Learner

The learning algorithm with the supplied parameters.

• Predictor

Trained recommender. Signal Predictor sends the output signal only if input Data is present.

• P

Latent features of the users.

• Q

Latent features of the items.

15
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• Y

Latent features of the implicit information.

Description

SVD++ widget uses a biased regularized algorithm which makes use of implicit feedback information to factorize a
matrix into three low rank matrices as it’s explained in Y. Koren, Factorization Meets the Neighborhood: a Multifaceted
Collaborative Filtering Model

Example

Below is a simple workflow showing how to use both the Predictor and the Learner output. For the Predictor we
input the prediction model into Predictions widget and view the results in Data Table. For Learner we can compare
different learners in Test&Score widget.

16 Chapter 6. SVD++
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CHAPTER 7

TrustSVD

Trust-based matrix factorization, which extends SVD++ with trust information.

Signals

Inputs:

• Data

Data set.

• Preprocessor

Preprocessed data.

• Trust information

Trust information. The weights of the connections can be integer or float (binary relations can represented by 0
or 1).

Outputs:

• Learner

The learning algorithm with the supplied parameters.

• Predictor

Trained recommender. Signal Predictor sends the output signal only if input Data is present.

• P

Latent features of the users.

• Q

Latent features of the items.

17
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• Y

Latent features of the implicit information.

• W

Latent features of the trust information.

Description

TrustSVD widget uses a biased regularized algorithm which makes use of implicit feedback information and trust
information to factorize a matrix into four low rank matrices as it’s explained in Guibing Guo, Jie Zhang, Neil Yorke-
Smith, TrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item
Ratings

Example

Below is a simple workflow showing how to use both the Predictor and the Learner output. For the Predictor we
input the prediction model into Predictions widget and view the results in Data Table. For Learner we can compare
different learners in Test&Score widget.

18 Chapter 7. TrustSVD
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CHAPTER 8

Baselines (recommendation)

Global Average

Global Average uses the average rating value of all ratings to make predictions.

𝑟𝑢𝑖 = 𝜇

Example

1 import Orange
2 from orangecontrib.recommendation import GlobalAvgLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = GlobalAvgLearner()
7 recommender = learner(data)
8

9 prediction = recommender(data[:3])
10 print(prediction)
11 >>>
12 [ 3.52986 3.52986 3.52986]

class orangecontrib.recommendation.GlobalAvgLearner(preprocessors=None, ver-
bose=False)

Global Average

This model takes the average rating value of all ratings to make predictions.

Attributes:

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

fit_storage(data)
Fit the model according to the given training data.

19
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Args: data: Orange.data.Table

Returns:

self: object Returns self.

User Average

User Average uses the average rating value of a user to make predictions.

𝑟𝑢𝑖 = 𝜇𝑢

Example

1 import Orange
2 from orangecontrib.recommendation import UserAvgLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = UserAvgLearner()
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)
12 >>>
13 [ 3.61538462 3.41304348 3.3515625 ]

class orangecontrib.recommendation.UserAvgLearner(preprocessors=None, verbose=False)
User average

This model takes the average rating value of a user to make predictions.

Attributes:

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.

Item Average

Item Average uses the average rating value of an item to make predictions.

𝑟𝑢𝑖 = 𝜇𝑖

20 Chapter 8. Baselines (recommendation)
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Example

1 import Orange
2 from orangecontrib.recommendation import ItemAvgLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = ItemAvgLearner()
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)
12 >>>
13 [ 3.99145299 4.16161616 2.15384615]

class orangecontrib.recommendation.ItemAvgLearner(preprocessors=None, verbose=False)
Item average

This model takes the average rating value of an item to make predictions.

Attributes:

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.

User-Item Baseline

User-Item Baseline takes the bias of users and items plus the global average to make predictions.

𝑟𝑢𝑖 = 𝜇+ 𝑏𝑢 + 𝑏𝑖

Example

1 import Orange
2 from orangecontrib.recommendation import UserItemBaselineLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = UserItemBaselineLearner()
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)
12 >>>
13 [ 4.07697761 4.04479964 1.97554865]

8.4. User-Item Baseline 21
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class orangecontrib.recommendation.UserItemBaselineLearner(preprocessors=None, ver-
bose=False)

User-Item baseline

This model takes the bias of users and items plus the global average to make predictions.

Attributes:

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.

22 Chapter 8. Baselines (recommendation)



CHAPTER 9

Rating (recommendation)

BRISMF

BRISMF (Biased Regularized Incremental Simultaneous Matrix Factorization) is factorization-based algorithm for
large scale recommendation systems.

The basic idea is to factorize a very sparse matrix into two low-rank matrices which represents user and item factors.
This can be done by using an iterative approach to minimize the loss function.

User’s predictions are defined as follows:

𝑟𝑢𝑖 = 𝜇+ 𝑏𝑢 + 𝑏𝑖 + 𝑞𝑇𝑖 𝑝𝑢

We learn the values of involved parameters by minimizing the regularized squared error function associated with:

min
𝑝*,𝑞*,𝑏*

∑︁
(𝑢,𝑖∈𝑘)

(𝑟𝑢𝑖 − 𝜇− 𝑏𝑢 − 𝑏𝑖 − 𝑞𝑇𝑖 𝑝𝑢)
2
+ 𝜆(𝑏𝑢

2 + 𝑏𝑖
2 + ‖𝑝𝑢‖

2
+ ‖𝑞𝑖‖2)

Example

1 import Orange
2 from orangecontrib.recommendation import BRISMFLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = BRISMFLearner(num_factors=15, num_iter=25, learning_rate=0.07, lmbda=0.1)
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)
12 >>>
13 [ 3.79505151 3.75096513 1.293013 ]

23
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class orangecontrib.recommendation.BRISMFLearner(num_factors=5, num_iter=25,
learning_rate=0.07,
bias_learning_rate=None, lmbda=0.1,
bias_lmbda=None, min_rating=None,
max_rating=None, optimizer=None,
preprocessors=None, verbose=False,
random_state=None, callback=None)

BRISMF: Biased Regularized Incremental Simultaneous Matrix Factorization

This model uses stochastic gradient descent to find two low-rank matrices: user-feature matrix and item-feature
matrix.

Attributes:

num_factors: int, optional The number of latent factors.

num_iter: int, optional The number of passes over the training data (aka epochs).

learning_rate: float, optional The learning rate controlling the size of update steps (general).

bias_learning_rate: float, optional The learning rate controlling the size of the bias update steps. If
None (default), bias_learning_rate = learning_rate

lmbda: float, optional Controls the importance of the regularization term (general). Avoids overfitting
by penalizing the magnitudes of the parameters.

bias_lmbda: float, optional Controls the importance of the bias regularization term. If None (default),
bias_lmbda = lmbda

min_rating: float, optional Defines the lower bound for the predictions. If None (default), ratings won’t
be bounded.

max_rating: float, optional Defines the upper bound for the predictions. If None (default), ratings won’t
be bounded.

optimizer: Optimizer, optional Set the optimizer for SGD. If None (default), classical SGD will be ap-
plied.

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

random_state: int, optional Set the seed for the numpy random generator, so it makes the random num-
bers predictable. This a debbuging feature.

callback: callable Method that receives the current iteration as an argument.

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.

SVD++

SVD++ is matrix factorization model which makes use of implicit feedback information.

24 Chapter 9. Rating (recommendation)
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User’s predictions are defined as follows:

𝑟𝑢𝑖 = 𝜇+ 𝑏𝑢 + 𝑏𝑖 +

⎛⎝𝑝𝑢 +
1√︀

|𝑁(𝑢)|

∑︁
𝑗∈𝑁(𝑢)

𝑦𝑗

⎞⎠𝑇

𝑞𝑖

We learn the values of involved parameters by minimizing the regularized squared error function associated with:

min
𝑝*,𝑞*,𝑦*,𝑏*

∑︁
(𝑢,𝑖∈𝑘)

(𝑟𝑢𝑖 − 𝜇− 𝑏𝑢 − 𝑏𝑖 − 𝑞𝑇𝑖

⎛⎝𝑝𝑢 +
1√︀

|𝑁(𝑢)|

∑︁
𝑗∈𝑁(𝑢)

𝑦𝑗

⎞⎠)

2

+ 𝜆(𝑏𝑢
2 + 𝑏𝑖

2 + ‖𝑝𝑢‖
2
+ ‖𝑞𝑖‖2 +

∑︁
𝑗∈𝑁(𝑢)

‖𝑦𝑗‖2)

Example

1 import Orange
2 from orangecontrib.recommendation import SVDPlusPlusLearner
3

4 # Load data and train the model
5 data = Orange.data.Table('movielens100k.tab')
6 learner = SVDPlusPlusLearner(num_factors=15, num_iter=25, learning_rate=0.07, lmbda=0.

→˓1)
7 recommender = learner(data)
8

9 # Make predictions
10 prediction = recommender(data[:3])
11 print(prediction)

class orangecontrib.recommendation.SVDPlusPlusLearner(num_factors=5, num_iter=25,
learning_rate=0.01,
bias_learning_rate=None,
lmbda=0.1, bias_lmbda=None,
min_rating=None,
max_rating=None, feed-
back=None, optimizer=None,
preprocessors=None,
verbose=False, ran-
dom_state=None, call-
back=None)

SVD++ matrix factorization

This model uses stochastic gradient descent to find three low-rank matrices: user-feature matrix, item-feature
matrix and feedback-feature matrix.

Attributes:

num_factors: int, optional The number of latent factors.

num_iter: int, optional The number of passes over the training data (aka epochs).

learning_rate: float, optional The learning rate controlling the size of update steps (general).

bias_learning_rate: float, optional The learning rate controlling the size of the bias update steps. If
None (default), bias_learning_rate = learning_rate

lmbda: float, optional Controls the importance of the regularization term (general). Avoids overfitting
by penalizing the magnitudes of the parameters.

9.2. SVD++ 25
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bias_lmbda: float, optional Controls the importance of the bias regularization term. If None (default),
bias_lmbda = lmbda

min_rating: float, optional Defines the lower bound for the predictions. If None (default), ratings won’t
be bounded.

max_rating: float, optional Defines the upper bound for the predictions. If None (default), ratings won’t
be bounded.

feedback: Orange.data.Table Implicit feedback information. If None (default), implicit information will
be inferred from the ratings (e.g.: item rated, means items seen).

optimizer: Optimizer, optional Set the optimizer for SGD. If None (default), classical SGD will be ap-
plied.

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

random_state: int, optional Set the seed for the numpy random generator, so it makes the random num-
bers predictable. This a debbuging feature.

callback: callable Method that receives the current iteration as an argument.

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.

TrustSVD

TrustSVD is a trust-based matrix factorization, which extends SVD++ with trust information.

User’s predictions are defined as follows:

𝑟𝑢𝑖 = 𝜇+ 𝑏𝑢 + 𝑏𝑖 + 𝑞𝑖
⊤

(︃
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2
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𝑤𝑣

)︃

We learn the values of involved parameters by minimizing the regularized squared error function associated with:
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Example

1 import Orange
2 from orangecontrib.recommendation import TrustSVDLearner
3

4 # Load data and train the model
5 ratings = Orange.data.Table('filmtrust/ratings.tab')
6 trust = Orange.data.Table('filmtrust/trust.tab')
7 learner = TrustSVDLearner(num_factors=15, num_iter=25, learning_rate=0.07,
8 lmbda=0.1, social_lmbda=0.05, trust=trust)
9 recommender = learner(data)

10

11 # Make predictions
12 prediction = recommender(data[:3])
13 print(prediction)

class orangecontrib.recommendation.TrustSVDLearner(num_factors=5, num_iter=25,
learning_rate=0.07,
bias_learning_rate=None,
lmbda=0.1, bias_lmbda=None, so-
cial_lmbda=0.05, min_rating=None,
max_rating=None, trust=None, op-
timizer=None, preprocessors=None,
verbose=False, random_state=None,
callback=None)

Trust-based matrix factorization

This model uses stochastic gradient descent to find four low-rank matrices: user-feature matrix, item-feature
matrix, feedback-feature matrix and trustee-feature matrix.

Attributes:

num_factors: int, optional The number of latent factors.

num_iter: int, optional The number of passes over the training data (aka epochs).

learning_rate: float, optional The learning rate controlling the size of update steps (general).

bias_learning_rate: float, optional The learning rate controlling the size of the bias update steps. If
None (default), bias_learning_rate = learning_rate

lmbda: float, optional Controls the importance of the regularization term (general). Avoids overfitting
by penalizing the magnitudes of the parameters.

bias_lmbda: float, optional Controls the importance of the bias regularization term. If None (default),
bias_lmbda = lmbda

social_lmbda: float, optional Controls the importance of the trust regularization term.

min_rating: float, optional Defines the lower bound for the predictions. If None (default), ratings won’t
be bounded.

max_rating: float, optional Defines the upper bound for the predictions. If None (default), ratings won’t
be bounded.

feedback: Orange.data.Table Implicit feedback information. If None (default), implicit information will
be inferred from the ratings (e.g.: item rated, means items seen).

trust: Orange.data.Table Social trust information.

optimizer: Optimizer, optional Set the optimizer for SGD. If None (default), classical SGD will be ap-
plied.
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verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

random_state: int seed, optional Set the seed for the numpy random generator, so it makes the random
numbers predictable. This a debbuging feature.

callback: callable Method that receives the current iteration as an argument.

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.
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CHAPTER 10

Ranking (recommendation)

CLiMF

CLiMF (Collaborative Less-is-More Filtering) is used in scenarios with binary relevance data. Hence, it’s focused on
improving top-k recommendations through ranking by directly maximizing the Mean Reciprocal Rank (MRR).

Following a similar technique as other iterative approaches, the two low-rank matrices can be randomly initialize and
then optimize through a training loss like this:

𝐹 (𝑈, 𝑉 ) =

𝑀∑︁
𝑖=1

𝑁∑︁
𝑗=1

𝑌𝑖𝑗 [ln 𝑔(𝑈𝑇
𝑖 𝑉𝑖) +

𝑁∑︁
𝑘=1

ln (1− 𝑌𝑖𝑘𝑔(𝑈
𝑇
𝑖 𝑉𝑘 − 𝑈𝑇

𝑖 𝑉𝑗))]−
𝜆

2
(‖𝑈‖2 + ‖𝑉 ‖2)

Note: Orange3 currently does not support ranking operations. Therefore, this model cannot be used neither in cross-
validation nor in the prediction module available in Orange3

Example

1 import Orange
2 import numpy as np
3 from orangecontrib.recommendation import CLiMFLearner
4

5 # Load data
6 data = Orange.data.Table('epinions_train.tab')
7

8 # Train recommender
9 learner = CLiMFLearner(num_factors=10, num_iter=10, learning_rate=0.0001, lmbda=0.

→˓001)
10 recommender = learner(data)
11

12 # Load test dataset
13 testdata = Orange.data.Table('epinions_test.tab')
14

15 # Sample users
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16 num_users = len(recommender.U)
17 num_samples = min(num_users, 1000) # max. number to sample
18 users_sampled = np.random.choice(np.arange(num_users), num_samples)
19

20 # Compute Mean Reciprocal Rank (MRR)
21 mrr, _ = recommender.compute_mrr(data=testdata, users=users_sampled)
22 print('MRR: %.4f' % mrr)
23 >>>
24 MRR: 0.3975

class orangecontrib.recommendation.CLiMFLearner(num_factors=5, num_iter=25, learn-
ing_rate=0.0001, lmbda=0.001, pre-
processors=None, optimizer=None,
verbose=False, random_state=None,
callback=None)

CLiMF: Collaborative Less-is-More Filtering Matrix Factorization

This model uses stochastic gradient descent to find two low-rank matrices: user-feature matrix and item-feature
matrix.

CLiMF is a matrix factorization for scenarios with binary relevance data when only a few (k) items are recom-
mended to individual users. It improves top-k recommendations through ranking by directly maximizing the
Mean Reciprocal Rank (MRR).

Attributes:

num_factors: int, optional The number of latent factors.

num_iter: int, optional The number of passes over the training data (aka epochs).

learning_rate: float, optional The learning rate controlling the size of update steps (general).

lmbda: float, optional Controls the importance of the regularization term (general). Avoids overfitting
by penalizing the magnitudes of the parameters.

optimizer: Optimizer, optional Set the optimizer for SGD. If None (default), classical SGD will be ap-
plied.

verbose: boolean or int, optional Prints information about the process according to the verbosity level.
Values: False (verbose=0), True (verbose=1) and INTEGER

random_state: int, optional Set the seed for the numpy random generator, so it makes the random num-
bers predictable. This a debbuging feature.

callback: callable

fit_storage(data)
Fit the model according to the given training data.

Args: data: Orange.data.Table

Returns:

self: object Returns self.
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CHAPTER 11

Optimizers (recommendation.optimizers)

The classes presented in this section are optimizers to modify the SGD updates during the training of a model.

The update functions control the learning rate during the SGD optimization

SGD Stochastic Gradient Descent (SGD) updates
Momentum Stochastic Gradient Descent (SGD) updates with momen-

tum
NesterovMomentum Stochastic Gradient Descent (SGD) updates with Nesterov

momentum
AdaGrad AdaGrad updates
RMSProp Scale learning rates by dividing with the moving average

of the root mean squared (RMS) gradients.
AdaDelta Scale learning rates by a the ratio of accumulated gradi-

ents to accumulated step sizes, see4 and notes for further
description.

Adam Adam updates implemented as in5.
Adamax Adamax updates implemented as in6.

Stochastic Gradient Descent

This is the optimizer by default in all models.

class orangecontrib.recommendation.optimizers.SGD(learning_rate=1.0)
Stochastic Gradient Descent (SGD) updates

Generates update expressions of the form:

•param := param - learning_rate * gradient

4 Zeiler, M. D. (2012): ADADELTA: An Adaptive Learning Rate Method. arXiv Preprint arXiv:1212.5701.
5 Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
6 Kingma, Diederik, and Jimmy Ba (2014): Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
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Args:

learning_rate: float, optional The learning rate controlling the size of update steps

update(grads, params, indices=None)
SGD updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices in params to update

Momentum

class orangecontrib.recommendation.optimizers.Momentum(learning_rate=1.0, momen-
tum=0.9)

Stochastic Gradient Descent (SGD) updates with momentum

Generates update expressions of the form:

•velocity := momentum * velocity - learning_rate * gradient

•param := param + velocity

Args:

learning_rate: float The learning rate controlling the size of update steps

momentum: float, optional The amount of momentum to apply. Higher momentum results in smoothing
over more update steps. Defaults to 0.9.

Notes: Higher momentum also results in larger update steps. To counter that, you can optionally scale your
learning rate by 1 - momentum.

See Also: apply_momentum: Generic function applying momentum to updates nesterov_momentum: Nes-
terov’s variant of SGD with momentum

update(grads, params, indices=None)
Momentum updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array Indices in params to update

Nesterov’s Accelerated Gradient

class orangecontrib.recommendation.optimizers.NesterovMomentum(learning_rate=1.0,
momentum=0.9)

Stochastic Gradient Descent (SGD) updates with Nesterov momentum

Generates update expressions of the form:

•param_ahead := param + momentum * velocity
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•velocity := momentum * velocity - learning_rate * gradient_ahead

•param := param + velocity

In order to express the update to look as similar to vanilla SGD, this can be written as:

•v_prev := velocity

•velocity := momentum * velocity - learning_rate * gradient

•param := -momentum * v_prev + (1 + momentum) * velocity

Args:

learning_rate [float] The learning rate controlling the size of update steps

momentum: float, optional The amount of momentum to apply. Higher momentum results in smoothing
over more update steps. Defaults to 0.9.

Notes: Higher momentum also results in larger update steps. To counter that, you can optionally scale your
learning rate by 1 - momentum.

The classic formulation of Nesterov momentum (or Nesterov accelerated gradient) requires the gradient
to be evaluated at the predicted next position in parameter space. Here, we use the formulation described
at https://github.com/lisa-lab/pylearn2/pull/136#issuecomment-10381617, which allows the gradient to be
evaluated at the current parameters.

See Also: apply_nesterov_momentum: Function applying momentum to updates

update(grads, params, indices=None)
NAG updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices in params to update

Returns

updates: list of float Variables updated with the gradients

AdaGradient

class orangecontrib.recommendation.optimizers.AdaGrad(learning_rate=1.0, epsilon=1e-
06)

AdaGrad updates

Scale learning rates by dividing with the square root of accumulated squared gradients. See1 for further descrip-
tion.

•param := param - learning_rate * gradient

Args:

learning_rate [float or symbolic scalar] The learning rate controlling the size of update steps

epsilon: float or symbolic scalar Small value added for numerical stability

1 Duchi, J., Hazan, E., & Singer, Y. (2011): Adaptive subgradient methods for online learning and stochastic optimization. JMLR, 12:2121-2159.
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Notes: Using step size eta Adagrad calculates the learning rate for feature i at time step t as:

𝜂𝑡,𝑖 =
𝜂√︁∑︀𝑡

𝑡′ 𝑔
2
𝑡′,𝑖 + 𝜖

𝑔𝑡,𝑖

as such the learning rate is monotonically decreasing.

Epsilon is not included in the typical formula, see2.

References:

update(grads, params, indices=None)
AdaGrad updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices in params to update

RMSProp

class orangecontrib.recommendation.optimizers.RMSProp(learning_rate=1.0, rho=0.9,
epsilon=1e-06)

Scale learning rates by dividing with the moving average of the root mean squared (RMS) gradients. See3 for
further description.

Args:

learning_rate: float The learning rate controlling the size of update steps

rho: float Gradient moving average decay factor

epsilon: float Small value added for numerical stability

Notes: rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a
value close to 0 will decay the moving average fast.

Using the step size 𝜂 and a decay factor 𝜌 the learning rate 𝜂𝑡 is calculated as:

𝑟𝑡 = 𝜌𝑟𝑡−1 + (1− 𝜌) * 𝑔2

𝜂𝑡 =
𝜂√

𝑟𝑡 + 𝜖

References:

update(grads, params, indices=None)
RMSProp updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices in params to update

2 Chris Dyer: Notes on AdaGrad. http://www.ark.cs.cmu.edu/cdyer/adagrad.pdf
3 Tieleman, T. and Hinton, G. (2012): Neural Networks for Machine Learning, Lecture 6.5 - rmsprop. Coursera. http://www.youtube.com/

watch?v=O3sxAc4hxZU (formula @5:20)
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AdaDelta

class orangecontrib.recommendation.optimizers.AdaDelta(learning_rate=1.0, rho=0.95,
epsilon=1e-06)

Scale learning rates by a the ratio of accumulated gradients to accumulated step sizes, see4 and notes for further
description.

Args:

learning_rate: float The learning rate controlling the size of update steps

rho: float Squared gradient moving average decay factor

epsilon: float Small value added for numerical stability

Notes: rho should be between 0 and 1. A value of rho close to 1 will decay the moving average slowly and a
value close to 0 will decay the moving average fast.

rho = 0.95 and epsilon=1e-6 are suggested in the paper and reported to work for multiple datasets (MNIST,
speech).

In the paper, no learning rate is considered (so learning_rate=1.0). Probably best to keep it at this value.
epsilon is important for the very first update (so the numerator does not become 0).

Using the step size eta and a decay factor rho the learning rate is calculated as:

𝑟𝑡 = 𝜌𝑟𝑡−1 + (1− 𝜌) * 𝑔2

𝜂𝑡 = 𝜂

√
𝑠𝑡−1 + 𝜖√
𝑟𝑡 + 𝜖

𝑠𝑡 = 𝜌𝑠𝑡−1 + (1− 𝜌) * 𝑔2

References:

update(grads, params, indices=None)
AdaDelta updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices in params to update

Adam

class orangecontrib.recommendation.optimizers.Adam(learning_rate=0.001, beta1=0.9,
beta2=0.999, epsilon=1e-08)

Adam updates implemented as in5.

Args:

learning_rate [float] The learning rate controlling the size of update steps

beta_1 [float] Exponential decay rate for the first moment estimates.

beta_2 [float] Exponential decay rate for the second moment estimates.

epsilon [float] Constant for numerical stability.
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Notes: The paper5 includes an additional hyperparameter lambda. This is only needed to prove convergence of
the algorithm and has no practical use, it is therefore omitted here.

References:

update(grads, params, indices=None)
Adam updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices of parameters (‘params’) to update. If None (default), all parameters
will be updated.

Returns

updates: list of float Variables updated with the gradients

Adamax

class orangecontrib.recommendation.optimizers.Adamax(learning_rate=0.001, beta1=0.9,
beta2=0.999, epsilon=1e-08)

Adamax updates implemented as in6. This is a variant of of the Adam algorithm based on the infinity norm.

Args:

learning_rate [float] The learning rate controlling the size of update steps

beta_1 [float] Exponential decay rate for the first moment estimates.

beta_2 [float] Exponential decay rate for the second moment estimates.

epsilon [float] Constant for numerical stability.

References:

update(grads, params, indices=None)
Adamax updates

Args:

grads: array List of gradient expressions

params: array The variables to generate update expressions for

indices: array, optional Indices of parameters (‘params’) to update. If None (default), all parameters
will be updated.

Returns

updates: list of float Variables updated with the gradients
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CHAPTER 12

Benchmarks

Rating

All this results refer to the training phase.

FilmTrust

Additional information:

• Loading time: 0.748s

• Training dataset: users=1,508; items=2,071; ratings=35,497; sparsity: 1.14%

• No optimizers for SGD used.

Algorithm RMSE MAE Train
time

Settings

Global Average 0.919 0.715 0.000s -
Item Average 0.861 0.674 0.000s -
User Average 0.785 0.606 0.000s -
User-Item
Baseline

0.738 0.566 0.001s -

BRISMF 0.712 0.551 0.820s/iter num_factors=10; num_iter=15, learning_rate=0.01; lmbda=0.1
SVD++ 0.707 0.546 1.974s/iter num_factors=10; num_iter=15; learning_rate=0.01; lmbda=0.1;
TrustSVD 0.677 0.520 3.604s/iter num_factors=10; num_iter=15; learning_rate=0.01; lmbda=0.12;

social_lmbda=0.9

MovieLens100K

Additional information:

• Loading time: 0.748s
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• Training dataset: users=943; items=1,682; ratings=100,000; sparsity: 6.30%

• No optimizers for SGD used.

Algorithm RMSE MAE Train
time

Settings

Global
Average

1.126 0.945 0.001s -

Item
Average

1.000 0.799 0.001s -

User
Average

1.031 0.826 0.001s -

User-Item
Baseline

0.938 0.738 0.001s -

BRISMF 0.810 0.642 2.027s/iternum_factors=15; num_iter=15, learning_rate=0.07; lmbda=0.1
SVD++ 0.823 0.648 7.252s/iternum_factors=15; num_iter=15; learning_rate=0.02;

bias_learning_rate=0.01; lmbda=0.1; bias_lmbda=0.007

MovieLens1M

Additional information:

• Loading time: 5.144s

• Training dataset: users=6,040; items=3,706; ratings=1,000,209; sparsity: 4.47%

• No optimizers for SGD used.

Algorithm RMSE MAE Train
time

Settings

Global
Average

1.117 0.934 0.010s -

Item
Average

0.975 0.779 0.018s -

User
Average

1.028 0.823 0.021s -

User-Item
Baseline

0.924 0.727 0.027s -

BRISMF 0.886 0.704 19.757s/iternum_factors=15; num_iter=15, learning_rate=0.07; lmbda=0.1
SVD++ 0.858 0.677 98.249s/iternum_factors=15; num_iter=15; learning_rate=0.02;

bias_learning_rate=0.01; lmbda=0.1; bias_lmbda=0.007

MovieLens10M

Additional information:

• Loading time: 55.312s

• Training dataset: users=71,567; items=10,681; ratings=10,000,054; sparsity: 1.308%

• No optimizers for SGD used.
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Algorithm RMSE MAE Train time Settings
Global Average 1.060 0.856 0.150s -
Item Average 0.942 0.737 0.271s -
User Average 0.970 0.763 0.293s -
User-Item
Baseline

0.877 0.677 0.393s -

BRISMF - - 230.656s/iter num_factors=15; num_iter=15, learning_rate=0.07;
lmbda=0.1

Ranking

Epinions

Additional information:

• Loading time (training dataset): 0.094s

• Loading time (test dataset): 1.392s

• Training dataset: users=4,718; items=49,288; ratings=23,590; sparsity: 0.0101%

• Testing dataset: users=4,718; items=49,288; ratings=322,445; sparsity: 0.1386%

• No optimizers for SGD used.

Algorit
hm

MRR
(train)

MRR
(test)

Train
time

Settings

CLiMF 0.0758 0.3975 1.323s/i
ter

num_factors=10; num_iter=10; learning_rate=0.0001;
lmda=0.001

12.2. Ranking 39
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CHAPTER 13

Indices and tables

• genindex

• modindex

• search
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