

options

options sotres option and configuration data in a clean, high-function way.
Changes can “overlay” defaults or earlier settings.

For most code, options is flexibility overkill. Not everyone wants to be a
world-class gymnast, yogi, or contortionist. For most functions and classes,
Python’s regular arguments, *args, **kwargs, and inheritance patterns
are elegant and sufficient. options is for the top 1% that need:

	extremely functional classes, functions, and methods,

	with many different features and options,

	the settings for which might be adjusted or overriden at any time,

	yet that need “reasonable” or “intelligent” defaults, and

	that yearn for a simple, unobtrusive API.

In those cases, Python’s built-in, inheritance-based model stops being the
simple approach. Non-trivial argument-management code and complexity
begins to pervade. This is where options’s layered, delegation-based
approach begins to shine. Almost regardless of how varied the options it
wrangles, or how much flexibility is required, code complexity remains flat.

[image: _images/00000014.png]

Python has very flexible arguments for functions and methods, and
good connection of values from classes to subclasses to methods.
It doesn’t, however, connect those very well to configuration files,
module defaults, method parameters, and other uses. options,
in contrast, seamlessly connects all of these varied layers and cases.

For more backstory, see this StackOverflow.com discussion of how to combat “configuration sprawl” [http://stackoverflow.com/questions/11702437/where-to-keep-options-values-paths-to-important-files-etc/11703813#11703813].
For examples of options
in use, see say [https://pypi.org/project/say], quoter [https://pypi.org/project/quoter],
and show [https://pypi.org/project/show].

	Usage

	An Example

	Design Considerations

	Setting and Unsetting

	Leftovers

	Magic Parameters

	The Magic APIs

	Subclassing

	Transients and Internal Options

	Flat Arguments

	Choosing Option Names

	Special Values

	Loading From Configuration Files

	Related Work

	Notes

	Installation

	Change Log

Usage

In a typical use of options, your highly-functional class defines
default values. Subclasses can add, remove, or override options.
Instances use class defaults, but they can be overridden when each instance
is created. For any option an instance doesn’t override, the class default
“shines through.”

So far, this isn’t very different from a typical use of Python’s standard
instance and class variables. The next step is where options gets
interesting.

Individual method calls can similarly override instance and class defaults.
The options stated in each method call obtain only for the duration of the
method’s execution. If the call doesn’t set a value, the instance value
applies. If the instance didn’t set a value, the class default applies (and
so on, to its superclasses, if any).

One step further, Python’s with statement can be used to
set option values for just a specific duration. As soon as the
with block exists, the option values automagically fall back to
what they were before the block. (In general, if any option is unset,
its value falls back to what it was in the next higher layer.)

To recap: Python handles class, subclass, and instance settings. options
handles these as well, but also adds method and transient settings. By
default when Python overrides a setting, it’s destructive; the value cannot
be “unset” without additional code. When a program using options
overrides a setting, it does so non-destructively, layering the new settings
atop the previous ones. When attributes are unset, they immediately fall
back to their prior value (at whatever higher level it was last set).

An Example

Because the capability of options is designed for high-end, edge-case
situations, it’s hard to demonstrate its virtues with simple code. But we’ll
give it a shot.

from options import Options, attrs

class Shape(object):

 options = Options(
 name = None,
 color = 'white',
 height = 10,
 width = 10,
)

 def __init__(self, **kwargs):
 self.options = Shape.options.push(kwargs)

 def draw(self, **kwargs):
 opts = self.options.push(kwargs)
 print(attrs(opts))

one = Shape(name='one')
one.draw()
one.draw(color='red')
one.draw(color='green', width=22)

yielding:

color='white', width=10, name='one', height=10
color='red', width=10, name='one', height=10
color='green', width=22, name='one', height=10

So far we could do this with instance variables and standard arguments. It
might look a bit like this:

class ClassicShape(object):

 def __init__(self, name=None, color='white', height=10, width=10):
 self.name = name
 self.color = color
 self.height = height
 self.width = width

but when we got to the draw method, things would be quite a bit messier.:

def draw(self, **kwargs):
 name = kwargs.get('name', self.name)
 color = kwargs.get('color', self.color)
 height = kwargs.get('height', self.height)
 width = kwargs.get('width', self.width)
 print("color={0!r}, width={1}, name={2!r}, height={3}".format(color, width, name, height))

One problem here is that we broke apart the values provided to
__init__() into separate instance variables, now we need to
re-assemble them into something unified. And we need to explicitly
choose between the **kwargs and the instance variables. It
gets repetitive, and is not pretty. Another classic alternative,
using native keyword arguments, is no better:

def draw2(self, name=None, color=None, height=None, width=None):
 name = name or self.name
 color = color or self.color
 height = height or self.height
 width = width or self.width
 print("color={0!r}, width={1}, name={2!r}, height={3}".format(color, width, name, height))

If we add just a few more instance variables, we’ve arrived at the Mr.
Creosote [http://en.wikipedia.org/wiki/Mr_Creosote] of class design. For
every instance variable that might be overridden in a method call, that
method needs one line of code to decide whether the override is, in fact, in
effect. And that line will appear in every method call needing to support
such overrides. Suddenly, dealing with parameters starts to be a full-time
job and responsibility of every method. That’s neither elegant nor scalable.
Pretty soon we’re in “just one more wafer-thin mint…” territory.

But with options, it’s easy. No matter how many configuration variables there
are to be managed, each method needs just one line of code to manage them:

opts = self.options.push(kwargs)

Changing things works simply and logically:

Shape.options.set(color='blue')
one.draw()
one.options.set(color='red')
one.draw(height=100)
one.draw(height=44, color='yellow')

yields:

color='blue', width=10, name='one', height=10
color='red', width=10, name='one', height=100
color='yellow', width=10, name='one', height=44

In one line, we reset the default color for all Shape objects. That’s
visible in the next call to one.draw(). Then we set the instance color
of one (all other Shape instances remain blue). Finally, we call
one with a temporary override of the color.

A common pattern makes this even easier:

class Shape(OptionsClass):
 ...

The OptionsClass base class will provide a set() method so that you
don’t need Shape.options.set(). Shape.set() does the same thing,
resulting in an even simpler API. The set() method is a “combomethod”
that will take either a class or an instance and “do the right thing.”
OptionsClass also provides a settings() method to easily handle
transient with contexts (more on this in a minute), and a __repr__()
method so that it prints nicely.

The more options and settings a class has, the more unwieldy the
class and instance variable approach becomes, and the more desirable
the delegation alternative. Inheritance is a great software pattern
for many situations–but it’s poor pattern for complex option and
configuration handling.

For richly-featured APIs, options’s delegation pattern is simpler. As
the number of options grows, delegation imposes almost no additional coding,
complexity, or failure modes. Options are consolidated in one place,
providing neat attribute-style access and keeping everything tidy. We can
add new options or methods with confidence:

def is_tall(self, **kwargs):
 opts = self.options.push(kwargs)
 return opts.height > 100

Under the covers, options uses a variation on the ChainMap data
structure (a multi-layer dictionary) to provide option stacking. Every
option set is stacked on top of previously set option sets, with lower-level
values shining through if they’re not set at higher levels. This stacking or
overlay model resembles how local and global variables are managed in many
programming languages.

This makes advanced use cases, such as temporary value changes, easy:

with one.settings(height=200, color='purple'):
 one.draw()
 if is_tall(one):
 ... # it is, but only within the ``with`` context

if is_tall(one): # nope, not here!
 ...

Note

You will still need to do some housekeeping in your class’s
__init__() method, including creating a new options layer.
If you don’t wish to inherit from OptionsClass, you can
manually add set() and settings() methods to your own class.
See the OptionsClass source code for details.

As one final feature, consider “magical” parameters. Add the following
code to your class description:

options.magic(
 height = lambda v, cur: cur.height + int(v) if isinstance(v, str) else v,
 width = lambda v, cur: cur.width + int(v) if isinstance(v, str) else v
)

Now, in addition to absolute height and width parameters specified with
int (integer/numeric) values, your module
auto-magically supports relative parameters for height and width given
as string parameters.:

one.draw(width='+200')

yields:

color='blue', width=210, name='one', height=10

Neat, huh?

For more backstory, see this StackOverflow.com discussion of how to combat
“configuration sprawl” [http://stackoverflow.com/questions/11702437/where-to-keep-options-values-paths-to-important-files-etc/11703813#11703813].
For examples of options in use, see say [https://pypi.org/project/say/]
and show [https://pypi.org/project/show].

Design Considerations

options is not intended to replace every class’s or method’s
parameter passing mechanisms–just the most highly-optioned
ones that multiplex a package’s functionality to a range of use
cases. These are generally the highest-level, most outward-facing
classes, objects, and APIs. They will generally have at
least four configuration variables (e.g. kwargs used to create,
configure, and define each instance).

In general, classes will define a set of methods that are “outwards
facing”–methods called by external code when consuming the class’s
functionality. Those methods should generally expose their options through
**kwargs, creating a local variable (say opts) that represents the sum
of all options in use–the full stack of call, instance, and class options,
including any present magical interpretations.

Internal class methods–the sort that are not generally called by external
code, and that by Python convention are often prefixed by an underscore
(_)–these generally do not need **kwargs. They should accept their
options as a single variable (say opts again) that the externally-facing
methods will provide.

For example, if options didn’t provide the nice formatting
function attrs, we might have designed our own:

def _attrs(self, opts):
 nicekeys = [k for k in opts.keys() if not k.startswith('_')]
 return ', '.join(["{}={}".format(k, repr(opts[k])) for k in nicekeys])

def draw(self, **kwargs):
 opts = self.options.push(kwargs)
 print(self._attrs(opts))

draw(), being the outward-facing API, accepts general arguments and
manages their stacking (by push``ing ``kwargs onto the instance options).
When the internal _attrs() method is called, it is handed a pre-digested
opts package of options.

A nice side-effect of making this distinction: Whenever you see a method with
**kwargs, you know it’s outward-facing. When you see a method with just
opts, you know it’s internal.

Objects defined with options make excellent “callables.”
Define the __call__ method, and you have a very nice analog of
function calls.

options has broad utility, but it’s not for every class or
module. It best suits high-level front-end APIs that multiplex lots
of potential functionality, and wish/need to do it in a clean/simple
way. Classes for which the set of instance variables is small, or
functions/methods for which the set of known/possible parameters
is limited–these work just fine with classic Python calling
conventions. For those, options is overkill. “Horses for courses.”

Setting and Unsetting

Using options, objects often become “entry points” that represent both
a set of capabilities and a set of configurations for how that functionality
will be used. As a result, you may want to be able to set the object’s
values directly, without referencing their underlying options. It’s
convenient to add a set() method, then use it, as follows:

def set(self, **kwargs):
 self.options.set(**kwargs)

one.set(width='*10', color='orange')
one.draw()

yields:

color='orange', width=100, name='one', height=10

one.set() is now the equivalent of one.options.set(). Or continue using
the options attribute explicitly, if you prefer that.

Values can also be unset.:

from options import Unset

one.set(color=Unset)
one.draw()

yields:

color='blue', width=100, name='one', height=10

Because 'blue' was the color to which Shape had be most recently set.
With the color of the instance unset, the color of the class shines through.

Note

While options are ideally accessed with an attribute notion,
the preferred of setting options is through method calls: set() if
accessing directly, or push() if stacking values as part of a method call.
These perform the interpretation and unsetting magic;
straight assignment does not. In the future, options may provide an
equivalent __setattr__() method to allow assignment–but not yet.

Leftovers

options expects you to define all feasible and legitimate options at the
class level, and to give them reasonable defaults.

None of the initial settings ever have magic applied. Much of the
expected interpretation “magic” will be relative settings, and relative settings
require a baseline value. The top level is expected and demanded to provide a
reasonable baseline.

Any options set “further down” such as when an instance is created or a method
called should set keys that were already-defined at the class level.

However, there are cases where “extra” **kwargs values may be
provided and make sense. Your object might be a very high level
entry point, for example, representing very large buckets of
functionality, with many options. Some of those options are relevant
to the current instance, while others are intended as pass-throughs
for lower-level modules/objects. This may seem a doubly rarefied
case–and it is, relatively speaking. But it does happen [https://pypi.python.org/pypi/show]–and when you need multi-level
processing, it’s really, really super amazingly handy to have it.

options supports this in its core push() method by taking
the values that are known to be part of the class’s options, and
deleting those from kwargs. Any values left over in the kwargs
dict are either errors, or intended for other recipients.

As yet, there is no automatic check for leftovers.

Magic Parameters

Python’s *args variable-number of arguments and **kwargs keyword
arguments are sometimes called “magic” arguments. options takes this up a
notch, allowing setters much like Python’s property function or
@property decorator. This allows arguments to be interpreted on the fly.
This is useful, for instance, to provide relative rather than just absolute
values. As an example, say that we added this code after Shape.options was
defined:

options.magic(
 height = lambda v, cur: cur.height + int(v) if isinstance(v, str) else v,
 width = lambda v, cur: cur.width + int(v) if isinstance(v, str) else v
)

Now, in addition to absolute height and width parameters which are
provided by specifying int (integer/numeric) values, your module
auto-magically supports relative parameters for height and width.:

one.draw(width='+200')

yields:

color='blue', width=210, name='one', height=10

This can be as fancy as you like, defining an entire domain-specific expression language.
But even small functions can give you a great bump in expressive power. For example,
add this and you get full relative arithmetic capability (+, -, *, and /):

def relmath(value, currently):
 if isinstance(value, str):
 if value.startswith('*'):
 return currently * int(value[1:])
 elif value.startswith('/'):
 return currently / int(value[1:])
 else:
 return currently + int(value)
 else:
 return value

...

options.magic(
 height = lambda v, cur: relmath(v, cur.height),
 width = lambda v, cur: relmath(v, cur.width)
)

Then:

one.draw(width='*4', height='/2')

yields:

color='blue', width=40, name='one', height=5

Magically interpreted parameters are the sort of thing that one doesn’t need
very often or for every parameter–but when they’re useful, they’re enormously
useful and highly leveraged, leading to much simpler, much higher function APIs.

We call them ‘magical’ here because of the “auto-magical” interpretation, but
they are really just analogs of Python object properties. The magic function is
basically a “setter” for a dictionary element.

The Magic APIs

The callables (usually functions, lambda expressions, static methods, or methods) called
to preform magical interpretation can be called with 1, 2, or 3 parameters.
options inquires as to how many parameters the callable accepts. If it
accepts only 1, it will be the value passed in. Cleanups like “convert to upper case”
can be done, but no relative interpretation. If it accepts 2 arguments,
it will be called with the value and the current option mapping, in that order.
(NB this order reverses the way you may think logical. Caution advised.) If the
callable requires 3 parameters, it will be None, value, current mapping. This
supports method calls, though has the defect of not really
passing in the current instance.

A decorator form, magical() is also supported. It must be given the
name of the key exactly:

@options.magical('name')
def capitalize_name(self, v, cur):
 return ' '.join(w.capitalize() for w in v.split())

The net is that you can provide just about any kind of callable.
But the meta-programming of the magic interpretation API could use a little work.

Subclassing

Subclass options may differ from superclass options. Usually they will share
many options, but some may be added, and others removed. To modify the set of
available options, the subclass defines its options with the add() method to
the superclass options. This creates a layered
effect, just like push() for an instance. The difference is, push() does
not allow new options (keys) to be defined; add() does. It is also possible to
assign the special null object Prohibited, which will disallow instances of the
subclass from setting those values.:

options = Superclass.options.add(
 func = None,
 prefix = Prohibited, # was available in superclass, but not here
 suffix = Prohibited, # ditto
)

Because some of the “additions” can be prohibitions (i.e. removing
particular options from being set or used), this is “adding to” the superclass’s
options in the sense of “adding a layer onto” rather than strict “adding
options.”

An alternative is to copy (or restate) the superclass’s options. That suits
“unlinked” cases–where the subclass is highly independent, and where changes to
the superclass’s options should not effect the subclass’s options. With
add(), they remain linked in the same way as instances and classes are.

Transients and Internal Options

Some options do not make sense as permanent values–they are needed only as
transient settings in the context of individual method calls. The special null value
Transient can be assigned as an option value to signal this.

Other options are useful, but only internal to your class. They are not meant to
be exposed as part of the external API. In this case, they can be signified
by prefixing with an underscore, such as _cached_value. This is consistent
with Python naming practice.

Flat Arguments

Sometimes it’s more elegant to provide some arguments as flat, sequential values
rather than by keyword. In this case, use the addflat() method:

def __init__(self, *args, **kwargs):
 self.options = Quoter.options.push(kwargs)
 self.options.addflat(args, ['prefix', 'suffix'])

to consume optional prefix and suffix flat arguments. This makes the following
equivalent:

q1 = Quoter('[', ']')
q2 = Quoter(prefix='[', suffix=']')

An explicit addflat() method is provided not as much for Zen of Python
reasons (“Explicit is better than implicit.”), but because flat arguments are
commonly combined with abbreviation/shorthand conventions, which may require
some logic to implement. For example, if only a prefix is given as a flat
argument, you may want to use the same value to implicitly set the suffix.
To this end, addflat returns the set of keys that it consumed:

if args:
 used = self.options.addflat(args, ['prefix', 'suffix'])
 if 'suffix' not in used:
 self.options.suffix = self.options.prefix

Choosing Option Names

You can choose pretty much any option name that is a legitimate
Python keyword argument. The exceptions: Names that are already
defined by methods of Options or OptionsChain. To wit:
add, addflat, clear, copy, fromkeys, get,
items, iteritems, iterkeys, itervalues, keys,
magic, magical, new_child, parents, pop,
popitem, push, read, set, setdefault, update,
values, and write are off-limits.

If you try to define options with verboten names, a BadOptionName
exception will be raised. This will save you grief down the road;
getting back a wrong thing at runtime is vastly harder to debug
than fielding an early exception.

Special Values

Some special values (“sentinels”
values [http://en.wikipedia.org/wiki/Sentinel_value]) are defined:

	Prohibited

	This option cannot be used (set or accessed). Useful primarily in
subclasses, to “turn off” options that apply in the superclass, but
not the subclass.

	Transient

	Option is not set initially or on a per-instance basis, but may be
invoked on a call-by-call basis.

	Reserved

	Not used, but explicitly marked as reserved for future use.

	Unset

	If an option is set to Unset, the current value
is removed, letting values from higher up the option chain shine through.

Loading From Configuration Files

options values can be easily writen to, or read from,
configuration files. E.g. reading from JSON and YAML with
a low-level approach:

import json
o = Options()
jdata = json.load(open('config.json'))
o.update(jdata)

Or for YAML:

import yaml
o = Options()
ydata = yaml.load(open('config.yml').read())
o.update(ydata)

At a higher level, Options objects contain a write method
that will directly write the object to a JSON file, and a read
class method that will construct an Options object from a JSON file.

Related Work

A huge amount of work, both in Python and beyond, has gone into
the effective management of configuration information.

	Program defaults. Values pre-established by developers, often
as ALL_UPPERCASE_IDENTIFIERS or as keyword default to
functions.

	Configuration file format parsers/formatters. Huge amounts of the INI,
JSON, XML, and YAML specifications and toolchains, for example, are
configuration-related. There are many. anyconfig [https://pypi.org/project/anyconfig] is perhaps of interest for its
flexibility. You could probably lump into this group binary data
marshaling schemes such as pickle.

	Command-line argument parsers. These are all about taking configuration
information from the command line. argh [https://pypi.org/project/argh] is one I particularly like for its
simple, declarative nature. (aaargh [https://pypi.org/project/aaargh] is similar.)

	System and environment introspection. The best known of these would be
sys.argv and os.environ to get command line arguments and the
values of operating system environment variables (especially when running
on Unixy platforms). But any code that asks “Where am I running?” or
“What is my IP address?” or otherwise inspects its current execution
environment and configures itself accordingly is doing a form of
configuration discovery.

	Attribute-accessible dictionary objects. It is incredibly easy to create
simple versions of this idea in Python–and rather tricky to create
robust, full-featured versions. Caveat emptor. stuf [https://pypi.org/project/stuf] and treedict [https://pypi.org/project/treedict] are cream-of-the-crop
implementations of this idea. I have not tried confetti [https://pypi.org/project/confetti] or Yaco [https://pypi.org/project/Yaco], but they look like interesting
variations on the same theme.

	The portion of Web frameworks concerned with getting and setting cookies,
URL query and hash attributes, form variables, and/or HTML5 local
storage. Not that these are particularly secure, scalable, or robust
sources…but they’re important configuration information nonetheless.

	While slightly afield, database interface modules are often used for
querying configuration information from SQL or NoSQL databases.

	Some object metaprogramming systems. That’s a mouthful, right? Well some
modules implement metaclasses that change the basic behavior of objects.
value [https://pypi.org/project/value] for example provides very
common-sense treatment of object instantiation with out all the Javaesque
self.x = x; self.y = y; self.z = z repetition. options similarly
redesigns how parameters should be passed and object values stored.

	Combomatics. Many configuration-related modules combine two or more of
these approaches. E.g. yconf [https://pypi.org/project/yconf]
combines YAML config file parsing with argparse command line parsing.
In the future, options will also follow this path. There’s no need to
take programmer time and attention for several different low-level
configuration-related tasks.

	Dependency injection frameworks are all about providing configuration
information from outside code modules. They tend to be rather
abstract and have a high “activation energy,” but the more complex
and composed-of-many-different-components your system is, the
more valuable the “DI pattern” becomes.

	Other things. conflib [https://pypi.org/project/conflib], uses
dictionary updates to stack default, global, and local settings; it also
provides a measure of validation.

This diversity, while occasionally frustrating, makes some sense.
Configuration data, after all, is just “state,” and “managing state” is
pretty much what all computing is about. Pretty much every program has to do
it. That so many use so many different, home-grown ways is why there’s such
a good opportunity.

Flask’s documentation [http://flask.pocoo.org/docs/config/#configuring-from-files] is a
real-world example of how “spread everywhere” this can be, with some data
coming from the program, some from files, some from environment variables,
some from Web-JSON, etc.

Notes

	Automated multi-version testing managed with
pytest [http://pypi.org/project/pytest],
pytest-cov [http://pypi.org/project/pytest-cov],
coverage [https://pypi.org/project/coverage/4.0b1], and
tox [http://pypi.org/project/tox].
Packaging linting with pyroma [https://pypi.org/project/pyroma].

	Version 1.4.4 updates testing for early 2017 Python
versions. Successfully packaged for, and
tested against, all late-model versions of Python: 2.6, 2.7, 3.3,
3.4, 3.5, and 3.6, as well as PyPy 5.6.0 (based on
2.7.12) and PyPy3 5.5.0 (based on 3.3.5).

	The author, Jonathan Eunice or
@jeunice on Twitter [http://twitter.com/jeunice] welcomes your
comments and suggestions. If you’re using options in your own
code, drop me a line!

Installation

To install or upgrade to the latest version:

pip install -U options

To easy_install under a specific Python version (3.3 in this example):

python3.3 -m easy_install --upgrade options

(You may need to prefix these with sudo to authorize
installation. In environments without super-user privileges, you may want to
use pip’s --user option, to install only for a single user, rather
than system-wide.)

Testing

If you wish to run the module tests locally, you’ll need to install
pytest and tox. For full testing, you will also need pytest-cov
and coverage. Then run one of these commands:

tox # normal run - speed optimized
tox -e py27 # run for a specific version only (e.g. py27, py34)
tox -c toxcov.ini # run full coverage tests

Change Log

1.4.9 (March 14, 2019)

Refresh testing matrix, pushing older version testing to Travis CI
and adding Python 3.6 and 3.7 as primary testing platforms.

Freshened/updated requirements, esp. for chainmap.

Updated docs, e.g. with new PyPI URL.

1.4.7 (May 15, 2017)

More updates to method update scheme.

1.4.6 (May 15, 2017)

Updated mechanism for method-specific option setting. Still work
in progress, but code now much cleaner.

1.4.5 (January 31, 2017)

Retfined testing matrix, esp for coverage.

1.4.4 (January 23, 2017)

Updates testing. Newly qualified under 2.7.13 and 3.6, as well as
most recent builds of pypy and pypy3. Drops Python 3.2 support;
should still work, but no longer in testing matrix.

1.4.2 (September 15, 2015)

Updated testing with PyPy 2.6.1 (based on 2.7.10).

1.4.1 (September 14, 2015)

Updated testing matrix with 3.5.0 final.

1.4.0 (August 31, 2015)

Major reorganization of implementation. The two-level Options
and OptionsChain strategy replaced with single-level
Options based directly on ChainMap (or more precisely, on
an attribute-accessible subclass of it). It’s now turtles all the
way down.

Systematic enough change that by traditional versioning standards
this would be a 2.0 release. But following Semantic Versioning,
while the class structure changes, the effective API seen by using
modules does not change, so 1.4.0 is enough.

Correctness of this systematic roto-tilling confirmed by test
suite. Testing now extended to 100% line coverage (and 99% branch
coverage). Some edge case issues were discovered and corrected.
Thank you to coverage testing for ferreting those out.

No longer depends on stuf [https://pypi.python.org/pypi/stuf].
Coupled with a new supporting chainmap [https://pypi.python.org/pypi/chainmap] polyfill, decisively
returns compatibility for Python 2.6 in a way that doesn’t depend
on the release schedule or priorities of external modules.

1.3.2 (August 26, 2015)

Reorganized documentation structure.

1.3.0 (August 25, 2015)

Added test branch metrics to coverage evaluation. Line coverage
now 93%; branch coverage 92%.

Integrated reading/writing of options data to JSON files now
operational and tested.

1.2.5 (August 17, 2015)

Inaugurated automated test coverage analysis. Extended a few tests
and cleaned up some code as a result. Published with coverage at
88%.

1.2.2 (August 11, 2015)

Simplified setup.

1.2.1 (August 4, 2015)

Added wheel distribution format. Updated test matrix.

Moved from BSD to Apache Software License.

Moved status to production/stable from beta.

1.2.0 (July 22, 2015)

Doc and config tweaks.

Python 2.6 support wavering, primarily because of failure of
stuf 0.9.16 to build there. 0.9.14 works fine. But either
stuf support will have to improve (I’ve submitted a pull
request that fixes the problem), or we’ll have to swap stuf
out, or we’‘ll have to decomit py26.

1.1.7 (December 16, 2014)

Added snazzy badges to PyPI readme

1.1.5 (December 16, 2014)

Changed dependencies to utilize new nulltype package
(unbundling it). Ensured tested on all lastest Python versions.

1.1.1 (October 29, 2013)

Added OptionsClass base class. If client classes inherit from
this, they automatically get ` set()`` and settings() methods.

1.0.7 (October 25, 2103)

Mainly doc tweaks.

1.0.4 (October 24, 2013)

When bad option names are defined (“bad” here meaning “conflicts
with names already chosen for pre-existing methods”), a
BadOptionName exception will be raised.

Tweaked docs, adding comparison chart.

1.0.3 (September 23, 2013)

Switched to local version of chainstuf until bug with
generator values in stuf.chainstuf can be tracked down and
corrected. This was blocking a downstream feature-release of
say.

1.0.2 (September 19, 2013)

Improved setdefault and update methods, and added tests,
primarily in effort to work around bug that appears in stuf,
orderedstuf, or chainstuf when a mapping value is a
generator.

Documentation improved.

1.0.1 (September 14, 2013)

Moved main documentation to Sphinx format in ./docs, and hosted
the long-form documentation on readthedocs.org. README.rst now an
abridged version/teaser for the module.

1.0.0 (September 10, 2013)

Cleaned up source for better PEP8 conformance

Bumped version number to 1.0 as part of move to semantic
versioning [http://semver.org], or at least enough of it so as
to not screw up Python installation procedures (which don’t seem
to understand 0.401 is a lesser version that 0.5, because 401 >
5).

Index

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/00000014.png
[| soxpyion | _options |

config. file

module

O
©

class

subelass

instance
©
©

method

function/
method call

with context O
named styles. Q
updates destructive layered

strategy inheritance delegation

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 options

 		
 Usage

 		
 An Example

 		
 Design Considerations

 		
 Setting and Unsetting

 		
 Leftovers

 		
 Magic Parameters

 		
 The Magic APIs

 		
 Subclassing

 		
 Transients and Internal Options

 		
 Flat Arguments

 		
 Choosing Option Names

 		
 Special Values

 		
 Loading From Configuration Files

 		
 Related Work

 		
 Notes

 		
 Installation

 		
 Change Log

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

