

OPSPiggybacker

OPSPiggybacker is a tool to assist importing other simulation records into
OpenPathSampling for analysis. Because of the extensive metadata that OPS
tracks for each move, this isn’t completely trivial. The idea of
OPSPiggybacker is to request a reasonable set of inputs that a user of
another path sampling simulation tool can give, and then create from that a
file that can use most of OPS’s standard analysis tools.

The current version, 0.1, only aims to cover one-way shooting moves in a
single ensemble, as with TPS simulations. See the roadmap for future plans.

Installation

TODO

Overview

Since this combines OPS and some other sampler, you’ll need a little
familiarity with both. From the OPS side, you’ll need to set up an OPS
TransitionNetwork object that represents the simulation you’ll be
reading in. (For now, this only supports TPSNetwork (and possibly
FixedLengthTPSNetwork, although I haven’t tested that.) This includes
creating collective variables and volumes as always done in OPS.

You’ll also need to prepare you previous simulation in an input format that
can be read by OPSPiggybacker. Currently, we only support TPS simulations
with one-way shooting. Even within that, there are several options.

	create a one-way shooting summary file

	use the API with one-way (partial) trajectory input

	use the API with full trajectory input

In general, the summary file is probably the easiest approach for users to
implement. The two approaches that directly use the API are

What OPSPiggybacker does

The overall approach is very similar to the setup of an OPS simulation.
You use the standard OPS volume, collective variable, network, and ensemble
objects. The only things that change are the move scheme/path movers, and
the simulation object.

Instead of an OPS move scheme or OPS path movers, you build what we call a
mover stub. Currently, the ShootingStub is the only mover stub
supported. The ShootingStub is analogous to an
OneWayShootingMover in OpenPathSampling. It is initialized with an
ensemble, a selector (only UniformSelector is currently
supported) and optionally an engine.

Once you’ve defined the mover stub, you create a pseudo-simulator.
Currently, the only supported pseudo-simulator is the
ShootingPseudoSimulator. The pseudo-simulator plays the same role
as a PathSampling object in OpenPathSampling. It is initialized with a
storage, a set of initial_conditions (in the form of an
openpathsampling.SampleSet), a network, and a mover stub called
mover, which takes the place of the move scheme used in OPS.

Once this is done, you simply use the run method of the
ShootingPseudoSimulator to generate your file. However, whereas
the run method of the PathSampling object in OPS takes an integer with a
number of steps, in OPSPiggybacker, you must provide the output of your
previous simulation to the run method of the pseudo-simulator. The following
subsection will describe the moves.

Partial input trajectories

Full input trajectories

One of the input options for shooting moves is to use full input
trajectories (pre_joined=True). In this case, the input trajectory must
be an OPS format trajectory for the full trial trajectory. In addition,
the frames which are shared with other trajectories must be identical in
memory frames. Since this is quite hard to do, it is usually easier to use
the pre_joined=False version with partial input trajectories.

However, we full input trajectories, you don’t need to specify whether a
given trial was forward or backward: the OPSPiggybacker can figure that out
for you.

This is in
the format of a list of 4-tuples (replica, trial_trajectory,
shooting_point_index, accepted), where each 4-tuple represents a trial
move. In detail, the elements of the tuple are:

	replica: the replica ID. Currently always the same (usually 0).

	trial_trajectory: the generated trial trajectory, as an
openpathsampling.engine.Trajectory object. Note that there are two
tricky things here. First, this must be the entire trial trajectory (not
just the part generated during one-way shooting). Second, frames which are
shared between two trajectories much actually be the same object in
memory. This means that you have to rebuild the shooting process for your
trajectories. (TODO: find ways to make this part easier on people)

	shooting_point_index: the frame number of the shooting point from the
previous trajectory (counting from 0).

	accepted: boolean as to whether this trial move was accepted.

That’s it! If you can make that tuple for each of your moves, you can import
those moves into OPS for analysis.

API Reference

	One-Way Shooting Converters

	Mover Stubs

	Simulation Stubs

One-Way Shooting Converters

	
class ops_piggybacker.TPSConverterOptions

	
	Parameters

	
	trim (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to trim the file trajectories to minimum acceptable
length (default True)

	retrim_shooting (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the shooting point index given is based on an untrimmed
trajectory, and therefore needs to be shifted (default False).

	auto_reverse (bool [https://docs.python.org/3/library/functions.html#bool]) – whether to reverse backward trajectories (if the file version is
forward, instead of backward, default False)

	includes_shooting_point (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the one-way trial trajectory includes the shooting
point, and therefore must have it trimmed off (default True)

	full_trajectory (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the input trajectories are the full trajectories, instead of
the partial one-way trajectories (default False). Note that if you
use full_trajectory=True, you should also use auto_reverse=False.

	
__add__

	x.__add__(y) <==> x+y

	
__contains__

	x.__contains__(y) <==> y in x

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__eq__

	x.__eq__(y) <==> x==y

	
__format__()

	default object formatter

	
__ge__

	x.__ge__(y) <==> x>=y

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__getitem__

	x.__getitem__(y) <==> x[y]

	
__getslice__

	x.__getslice__(i, j) <==> x[i – j]

Use of negative indices is not supported.

	
__gt__

	x.__gt__(y) <==> x>y

	
__hash__

	

	
__iter__

	

	
__le__

	x.__le__(y) <==> x<=y

	
__len__

	

	
__lt__

	x.__lt__(y) <==> x<y

	
__mul__

	x.__mul__(n) <==> x*n

	
__ne__

	x.__ne__(y) <==> x!=y

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__rmul__

	x.__rmul__(n) <==> n*x

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	size of object in memory, in bytes

	
__str__

	

	
auto_reverse

	Alias for field number 2

	
count(value) → integer -- return number of occurrences of value

	

	
full_trajectory

	Alias for field number 4

	
includes_shooting_point

	Alias for field number 3

	
index(value[, start[, stop]]) → integer -- return first index of value.

	Raises ValueError if the value is not present.

	
retrim_shooting

	Alias for field number 1

	
trim

	Alias for field number 0

	
class ops_piggybacker.OneWayTPSConverter(storage, initial_file, mover, network, options=None, options_rejected=None)

	Bases: ops_piggybacker.simulation_stubs.ShootingPseudoSimulator

Single-ensemble network shooting pseudo-simulator from external
trajectories.

This object handles a wide variety of external simulators. The idea is
that the user must create a “simulation summary” file, which contains
the information we need to perform the pseudo-simulation, where the
trajectories are loaded via mdtraj.

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__format__()

	default object formatter

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__repr__

	

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	size of object in memory, in bytes

	
__str__

	

	
classmethod args()

	Return a list of args of the __init__ function of a class

	Returns

	the list of argument names. No information about defaults is
included.

	Return type

	list of str

	
classmethod base()

	Return the most parent class actually derived from StorableObject

Important to determine which store should be used for storage

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
base_cls

	Return the base class

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

See also

base()

	
base_cls_name

	Return the name of the base class

	Returns

	the string representation of the base class

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cls

	Return the class name as a string

	Returns

	the class name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static count_weaks()

	Return number of objects subclassed from StorableObject still in memory

This includes objects not yet recycled by the garbage collector.

	Returns

	dict of str – the dictionary which assigns the base class name of each references
objects the integer number of objects still present

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
default_name

	Return the default name.

Usually derived from the objects class

	Returns

	the default name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod descendants()

	Return a list of all subclassed objects

	Returns

	list of subclasses of a storable object

	Return type

	list of type

	
fix_name()

	Set the objects name to be immutable.

Usually called after load and save to fix the stored state.

	
classmethod from_dict(dct)

	Reconstruct an object from a dictionary representaiton

	Parameters

	dct (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary containing a state representaion of the class.

	Returns

	the reconstructed storable object

	Return type

	openpathsampling.netcdfplus.StorableObject

	
idx(store)

	Return the index which is used for the object in the given store.

Once you store a storable object in a store it gets assigned a unique
number that can be used to retrieve the object back from the store. This
function will ask the given store if the object is stored if so what
the used index is.

	Parameters

	store (openpathsampling.netcdfplus.ObjectStore) – the store in which to ask for the index

	Returns

	the integer index for the object of it exists or None else

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
is_named

	True if this object has a custom name.

This distinguishes default algorithmic names from assigned names.

	
name

	Return the current name of the object.

If no name has been set a default generated name is returned.

	Returns

	the name of the object

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
named(name)

	Name an unnamed object.

This only renames the object if it does not yet have a name. It can
be used to chain the naming onto the object creation. It should also
be used when naming things algorithmically: directly setting the
.name attribute could override a user-defined name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name to be used for the object. Can only be set once

Examples

>>> import openpathsampling as p
>>> full = p.FullVolume().named('myFullVolume')

	
static objects()

	Returns a dictionary of all storable objects

	Returns

	dict of str – a dictionary of all subclassed objects from StorableObject.
The name points to the class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
parse_summary_line(line)

	Parse a line from the summary file.

To control the parsing, set the OneWayTPSConverter.options (see
TPSConverterOptions).

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the input line

	Returns

	
	replica (0) – always zero for now

	trial_trajectory (openpathsampling.Trajectory) – one-way trial segments

	shooting_point_index (int) – index of the shooting point based on the previous trajectory
(None if no previous trajectory)

	accepted (bool) – whether the trial was accepted

	direction (1 or -1) – positive if forward shooting, negative if backward

	
run(summary_file_name, n_trajs_per_block=None)

	
	Parameters

	step_info_list (list of tuple) – (replica, trial_trajectory, shooting_point_index, accepted) or
(replica, one_way_trial_segment, shooting_point_index, accepted,
direction)

	
save_initial_step()

	Save the initial state as an MCStep to the storage

	
static set_observer(active)

	(De-)Activate observing creation of storable objects

This can be used to track which storable objects are still alive and
hence look for memory leaks and inspect caching. Use
openpathsampling.netcdfplus.base.StorableObject.count_weaks()
to get the current summary of created objects

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then observing is enabled. False disables observing.
Per default observing is disabled.

See also

openpathsampling.netcdfplus.base.StorableObject.count_weaks()

	
sync_storage()

	Will sync all collective variables and the storage to disk

	
to_dict()

	Convert object into a dictionary representation

Used to convert the dictionary into JSON string for serialization

	Returns

	the dictionary representing the (immutable) state of the object

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
class ops_piggybacker.GromacsOneWayTPSConverter(storage, network, initial_file, topology_file, options=None, options_rejected=None)

	Bases: ops_piggybacker.one_way_tps_converters.OneWayTPSConverter

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__format__()

	default object formatter

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__repr__

	

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	size of object in memory, in bytes

	
__str__

	

	
classmethod args()

	Return a list of args of the __init__ function of a class

	Returns

	the list of argument names. No information about defaults is
included.

	Return type

	list of str

	
classmethod base()

	Return the most parent class actually derived from StorableObject

Important to determine which store should be used for storage

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
base_cls

	Return the base class

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

See also

base()

	
base_cls_name

	Return the name of the base class

	Returns

	the string representation of the base class

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cls

	Return the class name as a string

	Returns

	the class name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static count_weaks()

	Return number of objects subclassed from StorableObject still in memory

This includes objects not yet recycled by the garbage collector.

	Returns

	dict of str – the dictionary which assigns the base class name of each references
objects the integer number of objects still present

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
default_name

	Return the default name.

Usually derived from the objects class

	Returns

	the default name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod descendants()

	Return a list of all subclassed objects

	Returns

	list of subclasses of a storable object

	Return type

	list of type

	
fix_name()

	Set the objects name to be immutable.

Usually called after load and save to fix the stored state.

	
classmethod from_dict(dct)

	Reconstruct an object from a dictionary representaiton

	Parameters

	dct (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary containing a state representaion of the class.

	Returns

	the reconstructed storable object

	Return type

	openpathsampling.netcdfplus.StorableObject

	
idx(store)

	Return the index which is used for the object in the given store.

Once you store a storable object in a store it gets assigned a unique
number that can be used to retrieve the object back from the store. This
function will ask the given store if the object is stored if so what
the used index is.

	Parameters

	store (openpathsampling.netcdfplus.ObjectStore) – the store in which to ask for the index

	Returns

	the integer index for the object of it exists or None else

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
is_named

	True if this object has a custom name.

This distinguishes default algorithmic names from assigned names.

	
load_trajectory(file_name)

	Creates an OPS trajectory from the given file

	
name

	Return the current name of the object.

If no name has been set a default generated name is returned.

	Returns

	the name of the object

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
named(name)

	Name an unnamed object.

This only renames the object if it does not yet have a name. It can
be used to chain the naming onto the object creation. It should also
be used when naming things algorithmically: directly setting the
.name attribute could override a user-defined name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name to be used for the object. Can only be set once

Examples

>>> import openpathsampling as p
>>> full = p.FullVolume().named('myFullVolume')

	
static objects()

	Returns a dictionary of all storable objects

	Returns

	dict of str – a dictionary of all subclassed objects from StorableObject.
The name points to the class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
parse_summary_line(line)

	Parse a line from the summary file.

To control the parsing, set the OneWayTPSConverter.options (see
TPSConverterOptions).

	Parameters

	line (str [https://docs.python.org/3/library/stdtypes.html#str]) – the input line

	Returns

	
	replica (0) – always zero for now

	trial_trajectory (openpathsampling.Trajectory) – one-way trial segments

	shooting_point_index (int) – index of the shooting point based on the previous trajectory
(None if no previous trajectory)

	accepted (bool) – whether the trial was accepted

	direction (1 or -1) – positive if forward shooting, negative if backward

	
run(summary_file_name, n_trajs_per_block=None)

	
	Parameters

	step_info_list (list of tuple) – (replica, trial_trajectory, shooting_point_index, accepted) or
(replica, one_way_trial_segment, shooting_point_index, accepted,
direction)

	
save_initial_step()

	Save the initial state as an MCStep to the storage

	
static set_observer(active)

	(De-)Activate observing creation of storable objects

This can be used to track which storable objects are still alive and
hence look for memory leaks and inspect caching. Use
openpathsampling.netcdfplus.base.StorableObject.count_weaks()
to get the current summary of created objects

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then observing is enabled. False disables observing.
Per default observing is disabled.

See also

openpathsampling.netcdfplus.base.StorableObject.count_weaks()

	
sync_storage()

	Will sync all collective variables and the storage to disk

	
to_dict()

	Convert object into a dictionary representation

Used to convert the dictionary into JSON string for serialization

	Returns

	the dictionary representing the (immutable) state of the object

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Mover Stubs

	
class ops_piggybacker.ShootingStub(ensemble, selector=None, engine=None, pre_joined=True)

	Bases: openpathsampling.pathmover.PathMover

Stub to mimic a shooting move.

	Parameters

	
	ensemble (paths.Ensemble) – the ensemble for the shooting mover

	selector (paths.ShootingPointSelector or None) – the selector for the shooting point. Default None creates a
UniformSelector. Currently, only UniformSelector is supported.

	engine (paths.engines.DynamicsEngine) – the engine to report as the source of the dynamics

	pre_joined (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the input trial trajectories are pre-joined into complete
trajectories, or take partial one-way segments which should by
dynamically joined. Currently defaults to pre_joined=True (likely to
change soon, though).

	
mimic

	paths.OneWayShootingMover – the mover that this stub mimics

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__format__()

	default object formatter

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__repr__

	

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	size of object in memory, in bytes

	
classmethod args()

	Return a list of args of the __init__ function of a class

	Returns

	the list of argument names. No information about defaults is
included.

	Return type

	list of str

	
classmethod base()

	Return the most parent class actually derived from StorableObject

Important to determine which store should be used for storage

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
base_cls

	Return the base class

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

See also

base()

	
base_cls_name

	Return the name of the base class

	Returns

	the string representation of the base class

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cls

	Return the class name as a string

	Returns

	the class name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static count_weaks()

	Return number of objects subclassed from StorableObject still in memory

This includes objects not yet recycled by the garbage collector.

	Returns

	dict of str – the dictionary which assigns the base class name of each references
objects the integer number of objects still present

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
depth_post_order(fnc, level=0, **kwargs)

	Traverse the tree in post-order applying a function with depth

This traverses the underlying tree and applies the given function at
each node returning a list of the results. Post-order means
that subnodes are called BEFORE the node itself is evaluated.

	Parameters

	
	fnc (function(node, **kwargs)) – the function run at each node. It is given the node and the
optional (fixed) parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – the initial level

	kwargs (named arguments) – optional arguments added to the function

	Returns

	flattened list of tuples of results of the map. First part of
the tuple is the level, second part is the function result.

	Return type

	list of tuple(level, func(node, **kwargs))

See also

map_pre_order(), map_post_order(), level_pre_order(), level_post_order()

	
depth_pre_order(fnc, level=0, only_canonical=False, **kwargs)

	Traverse the tree of node in pre-order applying a function

This traverses the underlying tree applies the given function at
each node returning a list of the results. Pre-order means
that subnodes are called AFTER the node itself is evaluated.

	Parameters

	
	fnc (function(node, **kwargs)) – the function run at each node. It is given the node and the
optional parameters

	level (int [https://docs.python.org/3/library/functions.html#int]) – the initial level

	only_canonical (bool [https://docs.python.org/3/library/functions.html#bool], default: False) – if True the recursion stops at canonical movers and will hence be
more compact

	kwargs (named arguments) – optional arguments added to the function

	Returns

	flattened list of tuples of results of the map. First part of
the tuple is the level, second part is the function result.

	Return type

	list of tuple(level, fnc(node, **kwargs))

See also

map_pre_order(), map_post_order(), level_pre_order(), level_post_order()

	
classmethod descendants()

	Return a list of all subclassed objects

	Returns

	list of subclasses of a storable object

	Return type

	list of type

	
fix_name()

	Set the objects name to be immutable.

Usually called after load and save to fix the stored state.

	
classmethod from_dict(dct)

	Reconstruct an object from a dictionary representaiton

	Parameters

	dct (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary containing a state representaion of the class.

	Returns

	the reconstructed storable object

	Return type

	openpathsampling.netcdfplus.StorableObject

	
idx(store)

	Return the index which is used for the object in the given store.

Once you store a storable object in a store it gets assigned a unique
number that can be used to retrieve the object back from the store. This
function will ask the given store if the object is stored if so what
the used index is.

	Parameters

	store (openpathsampling.netcdfplus.ObjectStore) – the store in which to ask for the index

	Returns

	the integer index for the object of it exists or None else

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
in_out

	List the input -> output relation for ensembles

A mover will pick one or more replicas from specific ensembles.
Alter them (or not) and place these (or additional ones) in specific
ensembles. This relation can be visualized as a mapping of input to
output ensembles. Like

ReplicaExchange
ens1 -> ens2
ens2 -> ens1

EnsembleHop (A sample in ens1 will disappear and appear in ens2)
ens1 -> ens2

DuplicateMover (create a copy with a new replica number) Not used yet!
ens1 -> ens1
None -> ens1

	Returns

	
	list of list of tuple ((openpathsampling.Ensemble,)

	openpathsampling.Ensemble) – a list of possible lists of tuples of ensembles.

Notes

The default implementation will
(1) in case of a single input and output connect the two,
(2) return nothing if there are no out_ensembles and
(3) for more then two require implementation

	
input_ensembles

	Return a list of possible used ensembles for this mover

This list contains all Ensembles from which this mover might pick
samples. This is very useful to determine on which ensembles a
mover acts for analysis and sanity checking.

	Returns

	the list of input ensembles

	Return type

	list of openpathsampling.Ensemble

	
is_named

	True if this object has a custom name.

This distinguishes default algorithmic names from assigned names.

	
static join_one_way(input_trajectory, partial_trial, shooting_point, direction)

	Create a one-way trial trajectory

	Parameters

	
	input_trajectory (paths.Trajectory) – the previous complete trajectory

	partial_trial (paths.Trajectory) – The partial (one-way) trial trajectory. Must not include the
shooting point.

	shooting_point (paths.Snapshot) – the snapshot for the shooting point – must be a member of the
input trajectory

	direction (+1 or -1) – if positive, treat as forward shooting; if negative, treat as
backward shooting

	Returns

	the complete trial trajectory

	Return type

	paths.Trajectory

	
keylist()

	Return a list of key : subtree tuples

	Returns

	A list of all subtrees with their respective keys

	Return type

	list of tuple(key, subtree)

	
static legal_sample_set(sample_set, ensembles=None, replicas='all')

	This returns all the samples from sample_set which are in both
self.replicas and the parameter ensembles. If ensembles is None, we
use self.ensembles. If you want all ensembles allowed, pass
ensembles=’all’.

	Parameters

	
	sample_set (openpathsampling.SampleSet) – the sampleset from which to pick specific samples matching certain
criteria

	ensembles (list of openpathsampling.Ensembles) – the ensembles to pick from

	replicas (list of int or all) – the replicas to pick or ‘all’ for all

	
map_post_order(fnc, **kwargs)

	Traverse the tree in post-order applying a function

This traverses the underlying tree and applies the given function at
each node returning a list of the results. Post-order means
that subnodes are called BEFORE the node itself is evaluated.

	Parameters

	
	fnc (function(node, kwargs)) – the function run at each node. It is given the node and the
optional (fixed) parameters

	kwargs (named arguments) – optional arguments added to the function

	Returns

	flattened list of the results of the map

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] (fnc(node, **kwargs))

Notes

This uses the same order as reversed()

See also

map_pre_order(), map_post_order(), level_pre_order(), level_post_order()

	
map_pre_order(fnc, **kwargs)

	Traverse the tree in pre-order applying a function

This traverses the underlying tree applies the given function at
each node returning a list of the results. Pre-order means
that subnodes are called AFTER the node itself is evaluated.

	Parameters

	
	fnc (function(node, **kwargs)) – the function run at each node. It is given the node and the
optional parameters

	kwargs (named arguments) – optional arguments added to the function

	Returns

	flattened list of the results of the map

	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list] (fnc(node, **kwargs))

Notes

This uses the same order as iter()

See also

map_pre_order(), map_post_order(), level_pre_order(), level_post_order()

	
map_tree(fnc)

	Apply a function to each node and return a nested tree of results

	Parameters

	
	fnc (function(node, args, kwargs)) – the function run at each node node. It is given the node
and the optional (fixed) parameters

	kwargs (named arguments) – optional arguments added to the function

	Returns

	nested list of the results of the map

	Return type

	tree (fnc(node, **kwargs))

	
move(input_sample, trial_trajectory, shooting_point, accepted, direction=None)

	Fake a move.

	Parameters

	
	input_sample (paths.Sample) – the input sample for this shooting move

	trial_trajectory (paths.Trajectory) – the trial trajectory generated by this move

	shooting_point (paths.Snapshot) – the shooting point snapshot for this trial

	accepted (bool [https://docs.python.org/3/library/functions.html#bool]) – whether the trial was accepted

	direction (+1, -1, or None) – direction of the shooting move (positive is forward, negative is
backward). If self.pre_joined is True, the trial trajectory is
reconstructed from the parts. To use the exact input trial
trajectory with self.pre_joined == True, set direction=None

	
name

	Return the current name of the object.

If no name has been set a default generated name is returned.

	Returns

	the name of the object

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
named(name)

	Name an unnamed object.

This only renames the object if it does not yet have a name. It can
be used to chain the naming onto the object creation. It should also
be used when naming things algorithmically: directly setting the
.name attribute could override a user-defined name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name to be used for the object. Can only be set once

Examples

>>> import openpathsampling as p
>>> full = p.FullVolume().named('myFullVolume')

	
static objects()

	Returns a dictionary of all storable objects

	Returns

	dict of str – a dictionary of all subclassed objects from StorableObject.
The name points to the class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
output_ensembles

	Return a list of possible returned ensembles for this mover

This list contains all Ensembles for which this mover might return
samples. This is very useful to determine on which ensembles a
mover affects in later steps for analysis and sanity checking.

	Returns

	the list of output ensembles

	Return type

	list of Ensemble

	
static select_sample(sample_set, ensembles=None, replicas=None)

	Returns one of the legal samples given self.replica and the ensemble
set in ensembles.

	Parameters

	
	sample_set (openpathsampling.SampleSet) – the sampleset from which to pick specific samples matching certain
criteria

	ensembles (list of openpathsampling.Ensembles or None) – the ensembles to pick from or None for all

	replicas (list of int or None) – the replicas to pick or None for all

	
static set_observer(active)

	(De-)Activate observing creation of storable objects

This can be used to track which storable objects are still alive and
hence look for memory leaks and inspect caching. Use
openpathsampling.netcdfplus.base.StorableObject.count_weaks()
to get the current summary of created objects

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then observing is enabled. False disables observing.
Per default observing is disabled.

See also

openpathsampling.netcdfplus.base.StorableObject.count_weaks()

	
sub_replica_state(replica_states)

	Return set of replica states that a submover might be called with

	Parameters

	replica_states (set of openpathsampling.pathmover_inout.ReplicaState) –

	Returns

	

	Return type

	list of set of ReplicaState

	
submovers

	Returns a list of submovers

	Returns

	the list of sub-movers

	Return type

	list of openpathsampling.PathMover

	
to_dict()

	Convert object into a dictionary representation

Used to convert the dictionary into JSON string for serialization

	Returns

	the dictionary representing the (immutable) state of the object

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

	
tree()

	Return the object as a tree structure of nested lists of nodes

	Returns

	the tree in nested list format

	Return type

	nested list of nodes

Simulation Stubs

	
class ops_piggybacker.ShootingPseudoSimulator(storage, initial_conditions, mover, network)

	Bases: openpathsampling.pathsimulator.PathSimulator

Pseudo-simulator for shooting-only mimics.

	Parameters

	
	storage (openpathsampling.netcdfplus.Storage) – file to store OPS-ready analysis

	initial_conditions (openpathsampling.SampleSet) – sample set giving the OPS version of the initial conditions

	mover (ShootingStub) – stub to mimic the shooting mover

	network (openpathsampling.TransitionNetwork) – transition network with information about this system

	
__delattr__

	x.__delattr__(‘name’) <==> del x.name

	
__format__()

	default object formatter

	
__getattribute__

	x.__getattribute__(‘name’) <==> x.name

	
__reduce__()

	helper for pickle

	
__reduce_ex__()

	helper for pickle

	
__repr__

	

	
__setattr__

	x.__setattr__(‘name’, value) <==> x.name = value

	
__sizeof__() → int

	size of object in memory, in bytes

	
__str__

	

	
classmethod args()

	Return a list of args of the __init__ function of a class

	Returns

	the list of argument names. No information about defaults is
included.

	Return type

	list of str

	
classmethod base()

	Return the most parent class actually derived from StorableObject

Important to determine which store should be used for storage

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
base_cls

	Return the base class

	Returns

	the base class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

See also

base()

	
base_cls_name

	Return the name of the base class

	Returns

	the string representation of the base class

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
cls

	Return the class name as a string

	Returns

	the class name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
static count_weaks()

	Return number of objects subclassed from StorableObject still in memory

This includes objects not yet recycled by the garbage collector.

	Returns

	dict of str – the dictionary which assigns the base class name of each references
objects the integer number of objects still present

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
default_name

	Return the default name.

Usually derived from the objects class

	Returns

	the default name

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
classmethod descendants()

	Return a list of all subclassed objects

	Returns

	list of subclasses of a storable object

	Return type

	list of type

	
fix_name()

	Set the objects name to be immutable.

Usually called after load and save to fix the stored state.

	
classmethod from_dict(dct)

	Reconstruct an object from a dictionary representaiton

	Parameters

	dct (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – the dictionary containing a state representaion of the class.

	Returns

	the reconstructed storable object

	Return type

	openpathsampling.netcdfplus.StorableObject

	
idx(store)

	Return the index which is used for the object in the given store.

Once you store a storable object in a store it gets assigned a unique
number that can be used to retrieve the object back from the store. This
function will ask the given store if the object is stored if so what
the used index is.

	Parameters

	store (openpathsampling.netcdfplus.ObjectStore) – the store in which to ask for the index

	Returns

	the integer index for the object of it exists or None else

	Return type

	int [https://docs.python.org/3/library/functions.html#int] or None

	
is_named

	True if this object has a custom name.

This distinguishes default algorithmic names from assigned names.

	
name

	Return the current name of the object.

If no name has been set a default generated name is returned.

	Returns

	the name of the object

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
named(name)

	Name an unnamed object.

This only renames the object if it does not yet have a name. It can
be used to chain the naming onto the object creation. It should also
be used when naming things algorithmically: directly setting the
.name attribute could override a user-defined name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – the name to be used for the object. Can only be set once

Examples

>>> import openpathsampling as p
>>> full = p.FullVolume().named('myFullVolume')

	
static objects()

	Returns a dictionary of all storable objects

	Returns

	dict of str – a dictionary of all subclassed objects from StorableObject.
The name points to the class

	Return type

	type [https://docs.python.org/3/library/functions.html#type]

	
run(step_info_list)

	
	Parameters

	step_info_list (list of tuple) – (replica, trial_trajectory, shooting_point_index, accepted) or
(replica, one_way_trial_segment, shooting_point_index, accepted,
direction)

	
save_initial_step()

	Save the initial state as an MCStep to the storage

	
static set_observer(active)

	(De-)Activate observing creation of storable objects

This can be used to track which storable objects are still alive and
hence look for memory leaks and inspect caching. Use
openpathsampling.netcdfplus.base.StorableObject.count_weaks()
to get the current summary of created objects

	Parameters

	active (bool [https://docs.python.org/3/library/functions.html#bool]) – if True then observing is enabled. False disables observing.
Per default observing is disabled.

See also

openpathsampling.netcdfplus.base.StorableObject.count_weaks()

	
sync_storage()

	Will sync all collective variables and the storage to disk

	
to_dict()

	Convert object into a dictionary representation

Used to convert the dictionary into JSON string for serialization

	Returns

	the dictionary representing the (immutable) state of the object

	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

_

 	
 	__add__ (ops_piggybacker.TPSConverterOptions attribute)

 	__contains__ (ops_piggybacker.TPSConverterOptions attribute)

 	__delattr__ (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	(ops_piggybacker.TPSConverterOptions attribute)

 	__eq__ (ops_piggybacker.TPSConverterOptions attribute)

 	__format__() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	(ops_piggybacker.TPSConverterOptions method)

 	__ge__ (ops_piggybacker.TPSConverterOptions attribute)

 	__getattribute__ (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	(ops_piggybacker.TPSConverterOptions attribute)

 	__getitem__ (ops_piggybacker.TPSConverterOptions attribute)

 	__getslice__ (ops_piggybacker.TPSConverterOptions attribute)

 	__gt__ (ops_piggybacker.TPSConverterOptions attribute)

 	__hash__ (ops_piggybacker.TPSConverterOptions attribute)

 	__iter__ (ops_piggybacker.TPSConverterOptions attribute)

 	__le__ (ops_piggybacker.TPSConverterOptions attribute)

 	__len__ (ops_piggybacker.TPSConverterOptions attribute)

 	__lt__ (ops_piggybacker.TPSConverterOptions attribute)

 	__mul__ (ops_piggybacker.TPSConverterOptions attribute)

 	__ne__ (ops_piggybacker.TPSConverterOptions attribute)

 	
 	__reduce__() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	(ops_piggybacker.TPSConverterOptions method)

 	__reduce_ex__() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	(ops_piggybacker.TPSConverterOptions method)

 	__repr__ (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	__rmul__ (ops_piggybacker.TPSConverterOptions attribute)

 	__setattr__ (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	(ops_piggybacker.TPSConverterOptions attribute)

 	__sizeof__() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	(ops_piggybacker.TPSConverterOptions method)

 	__str__ (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.TPSConverterOptions attribute)

A

 	
 	args() (ops_piggybacker.GromacsOneWayTPSConverter class method)

 	(ops_piggybacker.OneWayTPSConverter class method)

 	(ops_piggybacker.ShootingPseudoSimulator class method)

 	(ops_piggybacker.ShootingStub class method)

 	
 	auto_reverse (ops_piggybacker.TPSConverterOptions attribute)

B

 	
 	base() (ops_piggybacker.GromacsOneWayTPSConverter class method)

 	(ops_piggybacker.OneWayTPSConverter class method)

 	(ops_piggybacker.ShootingPseudoSimulator class method)

 	(ops_piggybacker.ShootingStub class method)

 	base_cls (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	
 	base_cls_name (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

C

 	
 	cls (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	
 	count() (ops_piggybacker.TPSConverterOptions method)

 	count_weaks() (ops_piggybacker.GromacsOneWayTPSConverter static method)

 	(ops_piggybacker.OneWayTPSConverter static method)

 	(ops_piggybacker.ShootingPseudoSimulator static method)

 	(ops_piggybacker.ShootingStub static method)

D

 	
 	default_name (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	depth_post_order() (ops_piggybacker.ShootingStub method)

 	
 	depth_pre_order() (ops_piggybacker.ShootingStub method)

 	descendants() (ops_piggybacker.GromacsOneWayTPSConverter class method)

 	(ops_piggybacker.OneWayTPSConverter class method)

 	(ops_piggybacker.ShootingPseudoSimulator class method)

 	(ops_piggybacker.ShootingStub class method)

F

 	
 	fix_name() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	
 	from_dict() (ops_piggybacker.GromacsOneWayTPSConverter class method)

 	(ops_piggybacker.OneWayTPSConverter class method)

 	(ops_piggybacker.ShootingPseudoSimulator class method)

 	(ops_piggybacker.ShootingStub class method)

 	full_trajectory (ops_piggybacker.TPSConverterOptions attribute)

G

 	
 	GromacsOneWayTPSConverter (class in ops_piggybacker)

I

 	
 	idx() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	in_out (ops_piggybacker.ShootingStub attribute)

 	includes_shooting_point (ops_piggybacker.TPSConverterOptions attribute)

 	
 	index() (ops_piggybacker.TPSConverterOptions method)

 	input_ensembles (ops_piggybacker.ShootingStub attribute)

 	is_named (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

J

 	
 	join_one_way() (ops_piggybacker.ShootingStub static method)

K

 	
 	keylist() (ops_piggybacker.ShootingStub method)

L

 	
 	legal_sample_set() (ops_piggybacker.ShootingStub static method)

 	
 	load_trajectory() (ops_piggybacker.GromacsOneWayTPSConverter method)

M

 	
 	map_post_order() (ops_piggybacker.ShootingStub method)

 	map_pre_order() (ops_piggybacker.ShootingStub method)

 	
 	map_tree() (ops_piggybacker.ShootingStub method)

 	mimic (ops_piggybacker.ShootingStub attribute)

 	move() (ops_piggybacker.ShootingStub method)

N

 	
 	name (ops_piggybacker.GromacsOneWayTPSConverter attribute)

 	(ops_piggybacker.OneWayTPSConverter attribute)

 	(ops_piggybacker.ShootingPseudoSimulator attribute)

 	(ops_piggybacker.ShootingStub attribute)

 	
 	named() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

O

 	
 	objects() (ops_piggybacker.GromacsOneWayTPSConverter static method)

 	(ops_piggybacker.OneWayTPSConverter static method)

 	(ops_piggybacker.ShootingPseudoSimulator static method)

 	(ops_piggybacker.ShootingStub static method)

 	
 	OneWayTPSConverter (class in ops_piggybacker)

 	output_ensembles (ops_piggybacker.ShootingStub attribute)

P

 	
 	parse_summary_line() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

R

 	
 	retrim_shooting (ops_piggybacker.TPSConverterOptions attribute)

 	run() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

S

 	
 	save_initial_step() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	select_sample() (ops_piggybacker.ShootingStub static method)

 	set_observer() (ops_piggybacker.GromacsOneWayTPSConverter static method)

 	(ops_piggybacker.OneWayTPSConverter static method)

 	(ops_piggybacker.ShootingPseudoSimulator static method)

 	(ops_piggybacker.ShootingStub static method)

 	
 	ShootingPseudoSimulator (class in ops_piggybacker)

 	ShootingStub (class in ops_piggybacker)

 	sub_replica_state() (ops_piggybacker.ShootingStub method)

 	submovers (ops_piggybacker.ShootingStub attribute)

 	sync_storage() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

T

 	
 	to_dict() (ops_piggybacker.GromacsOneWayTPSConverter method)

 	(ops_piggybacker.OneWayTPSConverter method)

 	(ops_piggybacker.ShootingPseudoSimulator method)

 	(ops_piggybacker.ShootingStub method)

 	
 	TPSConverterOptions (class in ops_piggybacker)

 	tree() (ops_piggybacker.ShootingStub method)

 	trim (ops_piggybacker.TPSConverterOptions attribute)

 nav.xhtml

 Table of Contents

 		
 OPSPiggybacker

 		
 One-Way Shooting Converters

 		
 Mover Stubs

 		
 Simulation Stubs

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

