
OPi.GPIO Documentation
Release 0.2.5

Richard Hull and contributors

Sep 06, 2017

Contents

1 Installation 3

2 API Documentation 5
2.1 Importing the module . 5
2.2 Pin Numbering . 5
2.3 Inputs . 6

2.3.1 Pull up / Pull down resistors . 6
2.3.2 Testing inputs (polling) . 7
2.3.3 Interrupts and Edge detection . 7
2.3.4 Threaded Callbacks . 7
2.3.5 Switch debounce . 8
2.3.6 Remove event detection . 8

2.4 Outputs . 8
2.5 Methods . 9

3 Contributing 13
3.1 GitHub . 13
3.2 Contributors . 13

4 ChangeLog 15

5 The MIT License (MIT) 17

Python Module Index 19

i

ii

OPi.GPIO Documentation, Release 0.2.5

OPi-GPIO is a drop-in replacement library for RPi.GPIO for the Orange Pi Zero. Only the basic GPIO functions are
replicated, using sysfs: this allows the GPIO pins to be accessed from user space.

Contents 1

https://travis-ci.org/rm-hull/OPi.GPIO
https://coveralls.io/github/rm-hull/OPi.GPIO?branch=master
https://pypi.python.org/pypi/OPi.GPIO
https://pypi.python.org/pypi/OPi.GPIO
https://sourceforge.net/projects/raspberry-gpio-python/

OPi.GPIO Documentation, Release 0.2.5

2 Contents

CHAPTER 1

Installation

Note: The library has been tested against Python 2.7 and 3.4+.

For Python3 installation, substitute pip3 for pip in the instructions below.

Install the latest version of the library directly from PyPI:

$ sudo pip install --upgrade OPi.GPIO

3

https://pypi.python.org/pypi?:action=display&name=OPi.GPIO

OPi.GPIO Documentation, Release 0.2.5

4 Chapter 1. Installation

CHAPTER 2

API Documentation

2.1 Importing the module

To import the OPi.GPIO module:

import OPi.GPIO as GPIO

By doing it this way, you can refer to it as just GPIO through the rest of your script.

2.2 Pin Numbering

Pins on Orange Pi Zero are named PxNN where x = A..Z and NN = 00..99. This implementation aims to paper
over the cracks to make GPIO usage consistent across Raspberry Pi and Orange Pi. Quoting from the RPi.GPIO
documentation:

There are two ways of numbering the IO pins on a Raspberry Pi within RPi.GPIO. The first is using the
BOARD numbering system. This refers to the pin numbers on the P1 header of the Raspberry Pi board.
The advantage of using this numbering system is that your hardware will always work, regardless of the
board revision of the RPi. You will not need to rewire your connector or change your code.

The second numbering system is the BCM numbers. This is a lower level way of working - it refers to
the channel numbers on the Broadcom SOC. You have to always work with a diagram of which channel
number goes to which pin on the RPi board. Your script could break between revisions of Raspberry Pi
boards.

This library monkeys the original implementation (and the documentation, as you are about to find out), by adding a
third numbering system that is SUNXI naming.

5

OPi.GPIO Documentation, Release 0.2.5

2.3 Inputs

There are several ways of getting GPIO input into your program. The first and simplest way is to check the input value
at a point in time. This is known as ‘polling’ and can potentially miss an input if your program reads the value at the
wrong time. Polling is performed in loops and can potentially be processor intensive. The other way of responding to
a GPIO input is using ‘interrupts’ (edge detection). An edge is the name of a transition from HIGH to LOW (falling
edge) or LOW to HIGH (rising edge).

2.3.1 Pull up / Pull down resistors

Note: Support for pull up / pull down resistors is not yet complete: if specified, a warning will be displayed instead,
so that it is at least compatible with existing code, but without implemening the actual functionality.

If you do not have the input pin connected to anything, it will ‘float’. In other words, the value that is read in is
undefined because it is not connected to anything until you press a button or switch. It will probably change value a
lot as a result of receiving mains interference.

To get round this, we use a pull up or a pull down resistor. In this way, the default value of the input can be set. It is
possible to have pull up/down resistors in hardware and using software. In hardware, a 10K resistor between the input
channel and 3.3V (pull-up) or 0V (pull-down) is commonly used. The OPi.GPIO module allows you to configure the
SOC to do this in software:

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_UP)
or

GPIO.setup(channel, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

(where channel is the channel number based on the numbering system you have specified - BOARD, BCM or SUNXI).

6 Chapter 2. API Documentation

OPi.GPIO Documentation, Release 0.2.5

2.3.2 Testing inputs (polling)

You can take a snapshot of an input at a moment in time:

if GPIO.input(channel):
print('Input was HIGH')

else:
print('Input was LOW')

To wait for a button press by polling in a loop:

while GPIO.input(channel) == GPIO.LOW:
time.sleep(0.01) # wait 10 ms to give CPU chance to do other things

(this assumes that pressing the button changes the input from LOW to HIGH)

2.3.3 Interrupts and Edge detection

An edge is the change in state of an electrical signal from LOW to HIGH (rising edge) or from HIGH to LOW (falling
edge). Quite often, we are more concerned by a change in state of an input than it’s value. This change in state is an
event.

To avoid missing a button press while your program is busy doing something else, there are two ways to get round
this:

• the wait_for_edge() function

• the event_detected() function

• a threaded callback function that is run when an edge is detected

2.3.4 Threaded Callbacks

OPi.GPIO manages a number of secondary threads for callback functions. This means that callback functions can be
run at the same time as your main program, in immediate response to an edge.

For example:

def my_callback(channel):
print('This is a edge event callback function!')
print('Edge detected on channel %s'%channel)
print('This is run in a different thread to your main program')

GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback) # add rising edge
→˓detection on a channel
#...the rest of your program...

If you wanted more than one callback function:

def my_callback_one(channel):
print('Callback one')

def my_callback_two(channel):
print('Callback two')

GPIO.add_event_detect(channel, GPIO.RISING)

2.3. Inputs 7

OPi.GPIO Documentation, Release 0.2.5

GPIO.add_event_callback(channel, my_callback_one)
GPIO.add_event_callback(channel, my_callback_two)

Note that in this case, the callback functions are run sequentially, not concurrently. This is because there is only one
thread used for callbacks, in which every callback is run, in the order in which they have been defined.

2.3.5 Switch debounce

Note: Support for switch debounce is not yet complete: if specified, a warning will be displayed instead, so that it is
at least compatible with existing code, but without implemening the actual functionality.

You may notice that the callbacks are called more than once for each button press. This is as a result of what is known
as ‘switch bounce’. There are two ways of dealing with switch bounce:

• add a 0.1µF capacitor across your switch.

• software debouncing

• a combination of both

To debounce using software, add the bouncetime= parameter to a function where you specify a callback function.
Bouncetime should be specified in milliseconds. For example:

add rising edge detection on a channel, ignoring further edges for 200ms for switch
→˓bounce handling
GPIO.add_event_detect(channel, GPIO.RISING, callback=my_callback, bouncetime=200)

or

GPIO.add_event_callback(channel, my_callback, bouncetime=200)

2.3.6 Remove event detection

If for some reason, your program no longer wishes to detect edge events, it is possible to stop them:

GPIO.remove_event_detect(channel)

2.4 Outputs

1. First set up OPi.GPIO

import OPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setup(12, GPIO.OUT)

2. To set an output high:

GPIO.output(12, GPIO.HIGH)
or
GPIO.output(12, 1)
or
GPIO.output(12, True)

8 Chapter 2. API Documentation

OPi.GPIO Documentation, Release 0.2.5

3. To set an output low:

GPIO.output(12, GPIO.LOW)
or
GPIO.output(12, 0)
or
GPIO.output(12, False)

4. To output to several channels at the same time:

chan_list = (11,12)
GPIO.output(chan_list, GPIO.LOW) # all LOW
GPIO.output(chan_list, (GPIO.HIGH,GPIO.LOW)) # first LOW, second HIGH

5. Clean up at the end of your program

GPIO.cleanup()

Note that you can read the current state of a channel set up as an output using the input() function. For example to
toggle an output:

GPIO.output(12, not GPIO.input(12))

2.5 Methods

OPi.GPIO.add_event_callback(channel, callback, bouncetime=None)

Parameters

• channel – the channel based on the numbering system you have specified (GPIO.BOARD,
GPIO.BCM or GPIO.SUNXI).

• callback – TODO

• bouncetime – (optional) TODO

OPi.GPIO.add_event_detect(channel, trigger, callback=None, bouncetime=None)
This function is designed to be used in a loop with other things, but unlike polling it is not going to miss the
change in state of an input while the CPU is busy working on other things. This could be useful when using
something like Pygame or PyQt where there is a main loop listening and responding to GUI events in a timely
basis.

Parameters

• channel – the channel based on the numbering system you have specified (GPIO.BOARD,
GPIO.BCM or GPIO.SUNXI).

• trigger – The event to detect, one of: GPIO.RISING, GPIO.FALLING or GPIO.
BOTH.

• callback – (optional) TODO

• bouncetime – (optional) TODO

OPi.GPIO.cleanup(channel=None)
At the end any program, it is good practice to clean up any resources you might have used. This is no different
with OPi.GPIO. By returning all channels you have used back to inputs with no pull up/down, you can avoid
accidental damage to your Orange Pi by shorting out the pins. Note that this will only clean up GPIO channels
that your script has used. Note that GPIO.cleanup() also clears the pin numbering system in use.

2.5. Methods 9

OPi.GPIO Documentation, Release 0.2.5

To clean up at the end of your script:

GPIO.cleanup()

It is possible that don’t want to clean up every channel leaving some set up when your program exits. You can
clean up individual channels, a list or a tuple of channels:

GPIO.cleanup(channel)
GPIO.cleanup((channel1, channel2))
GPIO.cleanup([channel1, channel2])

OPi.GPIO.event_detected(channel)
This function is designed to be used in a loop with other things, but unlike polling it is not going to miss the
change in state of an input while the CPU is busy working on other things. This could be useful when using
something like Pygame or PyQt where there is a main loop listening and responding to GUI events in a timely
basis.

GPIO.add_event_detect(channel, GPIO.RISING) # add rising edge detection on a
→˓channel
do_something()
if GPIO.event_detected(channel):

print('Button pressed')

Note that you can detect events for GPIO.RISING, GPIO.FALLING or GPIO.BOTH.

Parameters channel – the channel based on the numbering system you have specified (GPIO.
BOARD, GPIO.BCM or GPIO.SUNXI).

Returns True if an edge event was detected, else False.

OPi.GPIO.getmode()
To detect which pin numbering system has been set.

Returns GPIO.BOARD, GPIO.BCM, GPIO.SUNXI or None if not set.

OPi.GPIO.input(channel)
Read the value of a GPIO pin.

Parameters channel – the channel based on the numbering system you have specified (GPIO.
BOARD, GPIO.BCM or GPIO.SUNXI).

Returns This will return either 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True).

OPi.GPIO.output(channel, state)
Set the output state of a GPIO pin.

Parameters

• channel – the channel based on the numbering system you have specified (GPIO.BOARD,
GPIO.BCM or GPIO.SUNXI).

• state – can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True.

Output to several channels: You can output to many channels in the same call. For example:

chan_list = [11,12] # also works with tuples
GPIO.output(chan_list, GPIO.LOW) # sets all to GPIO.LOW
GPIO.output(chan_list, (GPIO.HIGH, GPIO.LOW)) # sets first HIGH and second LOW

OPi.GPIO.remove_event_detect(channel)

10 Chapter 2. API Documentation

OPi.GPIO Documentation, Release 0.2.5

Parameters channel – the channel based on the numbering system you have specified (GPIO.
BOARD, GPIO.BCM or GPIO.SUNXI).

OPi.GPIO.setmode(mode)
You must call this method prior to using all other calls.

Parameters mode – the mode, one of GPIO.BOARD, GPIO.BCM or GPIO.SUNXI only.

OPi.GPIO.setup(channel, direction, initial=None, pull_up_down=None)
You need to set up every channel you are using as an input or an output.

Parameters

• channel – the channel based on the numbering system you have specified (GPIO.BOARD,
GPIO.BCM or GPIO.SUNXI).

• direction – whether to treat the GPIO pin as input or output (use only GPIO.IN or
GPIO.OUT).

• initial – (optional) When supplied and setting up an output pin, resets the pin to the
value given (can be 0 / GPIO.LOW / False or 1 / GPIO.HIGH / True).

• pull_up_down – (optional) When supplied and setting up an input pin, configures the pin
to 3.3V (pull-up) or 0V (pull-down) depending on the value given (can be GPIO.PUD_OFF
/ GPIO.PUD_UP / GPIO.PUD_DOWN)

To configure a channel as an input:

GPIO.setup(channel, GPIO.IN)

To set up a channel as an output:

GPIO.setup(channel, GPIO.OUT)

You can also specify an initial value for your output channel:

GPIO.setup(channel, GPIO.OUT, initial=GPIO.HIGH)

Setup more than one channel: You can set up more than one channel per call. For example:

chan_list = [11,12] # add as many channels as you want!
you can tuples instead i.e.:
chan_list = (11,12)

GPIO.setup(chan_list, GPIO.OUT)

OPi.GPIO.setwarnings(enabled)

OPi.GPIO.wait_for_edge(channel, trigger, timeout=-1)
This function is designed to block execution of your program until an edge is detected.

Parameters

• channel – the channel based on the numbering system you have specified (GPIO.BOARD,
GPIO.BCM or GPIO.SUNXI).

• trigger – The event to detect, one of: GPIO.RISING, GPIO.FALLING or GPIO.
BOTH.

• timeout – (optional) TODO

In other words, the polling example above that waits for a button press could be rewritten as:

2.5. Methods 11

OPi.GPIO Documentation, Release 0.2.5

GPIO.wait_for_edge(channel, GPIO.RISING)

Note that you can detect edges of type GPIO.RISING, :py:attr‘GPIO.FALLING‘ or GPIO.BOTH. The advan-
tage of doing it this way is that it uses a negligible amount of CPU, so there is plenty left for other tasks.

If you only want to wait for a certain length of time, you can use the timeout parameter:

wait for up to 5 seconds for a rising edge (timeout is in milliseconds)
channel = GPIO.wait_for_edge(channel, GPIO_RISING, timeout=5000)
if channel is None:

print('Timeout occurred')
else:

print('Edge detected on channel', channel)

12 Chapter 2. API Documentation

CHAPTER 3

Contributing

Pull requests (code changes / documentation / typos / feature requests / setup) are gladly accepted. If you are intending
to introduce some large-scale changes, please get in touch first to make sure we’re on the same page: try to include a
docstring for any new method or class, and keep method bodies small, readable and PEP8-compliant. Add tests and
strive to keep the code coverage levels high.

3.1 GitHub

The source code is available to clone at: https://github.com/rm-hull/OPi.GPIO

3.2 Contributors

• Simon Rowe (@srowe)

13

https://github.com/rm-hull/OPi.GPIO

OPi.GPIO Documentation, Release 0.2.5

14 Chapter 3. Contributing

CHAPTER 4

ChangeLog

Version Description Date
0.2.5

• sysfs: set output() value to 0
or 1

2017/07/15

0.2.4
• Add compatibility for pull

up/down and bouncetime
params

2017/05/27

0.2.3
• Make worker threads dae-

monic (can’t exit otherwise)

2017/05/26

0.2.2
• GPIO.setup() catches

IOError and re-exports

2017/03/28

0.2.1
• Minor bug fixes
• Additional tests

2017/03/14

0.2.0
• Added edge detection and

eventing

2017/03/14

0.1.0
• Initial version

2017/03/11

15

OPi.GPIO Documentation, Release 0.2.5

16 Chapter 4. ChangeLog

CHAPTER 5

The MIT License (MIT)

Copyright (c) 2017 Richard Hull & Contributors

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

17

OPi.GPIO Documentation, Release 0.2.5

18 Chapter 5. The MIT License (MIT)

Python Module Index

o
OPi.GPIO, 5

19

OPi.GPIO Documentation, Release 0.2.5

20 Python Module Index

Index

A
add_event_callback() (in module OPi.GPIO), 9
add_event_detect() (in module OPi.GPIO), 9

C
cleanup() (in module OPi.GPIO), 9

E
event_detected() (in module OPi.GPIO), 10

G
getmode() (in module OPi.GPIO), 10

I
input() (in module OPi.GPIO), 10

O
OPi.GPIO (module), 5
output() (in module OPi.GPIO), 10

R
remove_event_detect() (in module OPi.GPIO), 10

S
setmode() (in module OPi.GPIO), 11
setup() (in module OPi.GPIO), 11
setwarnings() (in module OPi.GPIO), 11

W
wait_for_edge() (in module OPi.GPIO), 11

21

	Installation
	API Documentation
	Importing the module
	Pin Numbering
	Inputs
	Pull up / Pull down resistors
	Testing inputs (polling)
	Interrupts and Edge detection
	Threaded Callbacks
	Switch debounce
	Remove event detection

	Outputs
	Methods

	Contributing
	GitHub
	Contributors

	ChangeLog
	The MIT License (MIT)
	Python Module Index

