

OpenXC Accessories

[image: _images/logo.png]

	Version:	0.0.1

	Web:	http://openxcplatform.com

	Documentation:	http://accessories.openxcplatform.com

	Source:	http://github.com/openxc/openxc-accessories

The OpenXC Accessories are a line of hardware accessories intended to augment the
Vehicle Interface (VI) [http://openxcplatform.com/vehicle-interface/hardware.html]
and communicate with other entities. The benefit of the Accessory Platform is that
all accessories share a common base (or motherboard) and new features are added by
modifying or designing a new daughter card (mPCIe connector).

The base board contains an Atmel SAMA5 (Cortex-A5) running embedded Linux. All
accessory functions are coded in Python. Interfaces include SD card slot, Bluetooth
Classic, Bluetooth Low Energy (a.k.a Bluetooth Smart), USB OTG, and WiFi. A debug serial port is available.

The first in the line of accessories is a 3G Modem to enable sharing of vehicle
data directly with the cloud, OTA updates to the Modem configuration, and still
allows use of the Enabler app.

The second accessory is the V2X device. The OpenXC-V2X device can act as a modem, which connects to the VI device or a phone, and shares OpenXC data via WiFi or 802.11p (in RSU mode).

Table of Contents

	Getting Started
	Install

	Directory Structure

	Scripts

	Firmware Update

	Kernel Upgrade

	System Overview
	General Overview

	Application Overview

	Modem Overview

	V2X Overview

	RSU Overview

	Configuration
	Configuration File

	Notes

	LEDs

	Design Sources
	Electrical

	Mechanical

	Assembly

	License Disclosure

License

Copyright (c) 2015 Ford Motor Company

Licensed under the BSD license.

This software depends on other open source projects, and a binary distribution
may contain code covered by other licenses.

Getting Started

The OpenXC-Modem and OpenXC-V2X/RSU devices come preloaded with the kernel and firmware for operation. Before using
for the first time, please charge the devices for at least 15 minutes with a micro-USB
cable, or 12V wall wort. A full battery will last approximately 8-10 hours during operation.

To turn on, press the button on the side of the device once until the LED lights
stay on. If there are no lights emitting from the device, ensure that the device
is charged. Please note, this is a latching button that needs to be pushed in far enough to latch (a little past where the LEDs turn on).

Once the device is on, the device will automatically proceed with the auto
start script, which initiates the connection and data communication with a VI and
Android Device.

The following sections describe the next steps.

	Install

	Directory Structure

	Scripts

	Firmware Update

	Kernel Upgrade

Install

Android

In order to connect with the Android device, install the accessories branch of
the Enabler in the openxc-android project. The enabler app that works with the accessories is available here [https://github.com/openxc/openxc-accessories/tree/master/tools/openxc-enabler-v6.0.6-modem.354.apk].

Be sure Bluetooth is enabled
before trying to connect to the Modem. Once the Modem is running the main function,
connect to the OpenXC-Modem from the Android device using Bluetooth. The
password/pin code is “1234”.

Windows

The main method of configuring and setting up the modem or V2X device will be through USB from the
device to a Windows PC. A program called Teraterm will be used to interface with the
operating system on the device. To allow ease of use, a program called “OpenXC Modem Connect”
will be used to automatically configure the connection settings.

Note

Using OpenXC Modem Connect is suggested for easier and faster access to the Modem,
although you may choose to manually configure TeraTerm to connect to the modem.

Download OpenXC Modem Connect here [https://github.com/openxc/openxc-accessories/blob/master/tools/ModemConnect/ModemConnect-v1.0.0.143.msi]. Detailed instructions are available here [https://github.com/openxc/openxc-accessories/blob/master/tools/ModemConnect/Documents/OpenXC%20Modem%20Connect%20App%20Installation%20Procedure.docx].

Directory Structure

The following directory structure is used.

	/root/OpenXCAccessory:

	Directory Name
	Description

	bluez-test-script
	BlueZ 5.23 test scripts (1)

	openxc-python
	OpenXC Python development platform. (1)

	startup
	Base board startup scripts (1)

	common
	Common Software for OpenXC-Modem/OpenXC-V2X

	modem
	Modem specific software

	backup
	Place holder for Firmware Factory Reset and current software versions. Also has backup of configuration files such as WiFi, xc.conf, boardid, and topology

	etc
	wpa configuration files for modem, V2X, and RSU

	V2X
	V2X specific Software (1)

	rsu
	RSU specific Software

Note

1 - Not covered in this document

	/root/OpenXCAccessory/common

	File Name
	Description

	xcmodem_boardid
	Hidden file to specify board type: where board_type is

	board _type = {

	
	{‘type’: ‘MODEM-EVT’, ‘prefix’: ‘OpenXC-VI-MODEM’}, # OpenXC-Modem EVT

	{‘type’: ‘MODEM-DVT’, ‘prefix’: ‘OpenXC-VI-MODEM’}, # OpenXC-Modem DVT

	{‘type’: ‘V2X’ , ‘prefix’: ‘OpenXC-VI-V2X’} # OpenXC-V2X

	{‘type’: ‘RSU’ , ‘prefix’: ‘OpenXC-VI-V2X’} # OpenXC-V2X

}

	xcmodem_topology
	File to specify the config mode/topology

	Topology 1

	Topology 2

	Topology 3

	xc_led.py
	LED unit test

	xc_ser.py
	Serial Terminal Emulator

	Usage: xcmodem_ser.py [-h] dev

	where dev: Serial Device

	xc_cmd.py
	OpenXC-Modem application command handler and unit test

	xc_app.py
	OpenXC-Modem application (Mobile / PC) agent and unit test

	xc_vi.py
	OpenXC-Modem Vehicle Interface agent and unit test

	xcmodem.conf.web
	OpenXC-Modem auto start script, used during board startup

	xc.conf
	Local user variable options configuration file. This file is common to Modem, V2X and RSU

	xc_rsu_common.py
	File for RSU functions that are common to V2X and RSU

	ota_upgrade.py
	File for OTA upgrade functions

	xc_ver.py
	PpenXC-Modem version

	xc_scp.pem
	RSA Private Key

	xc.common.py
	OpenXC-Modem common functions

	cleanup.py
	RSU cleanup

	/root/OpenXCAccessory/modem: (applicable for OpenXC Modem Accessory only)

	File Name
	Description

	xc.conf
	Link to the xc.conf file in common directory

	xcmodem.conf.web
	Downloaded configuration file from remote server, if applicable

	xcmodem.conf.bk
	Configuration backup file which is generated during upgrading process

	xcmodem.conf.cur
	All options value currently in effect

	trace_raw.json
	Current raw VI stream snapshot in json format

	trace_raw_bk.json
	Back up of current raw VI stream snapshot to be processed for uploading

	trace.json
	Modified upload-able VI stream snapshot in json format

	xcmodem_gsm.py
	GSM agent and unit test

	xcmodem_gsm.sh
	GSM debug shell script

	xcmodem_gps.py
	GPS agent and unit test

	xcmodem_gps.sh
	GPS debug shell script

	/root/OpenXCAccessory/backup:

	File Name
	Description

	factory
	Directory to store factory released SW version info (upgrade.ver) and its upgraded package

	current
	Directory to store current SW version info (upgrade.ver) and its upgraded package

	other
	Directory to store backup of wpa_supplicant config files for Modem, V2X, RSU, and xc.conf before upgrade is performed. Boardid and topology are also backed up

	previous
	Directory for previous SW version during over-the-air auto upgrade, if applicable

	/root/OpenXCAccessory/v2x: (applicable for OpenXC V2X Accessory only)

	File Name
	Description

	xc.conf
	Link to the xc.conf file in common directory

	xc_scp.pem
	PEM key file to access AWS

	xc.conf.cur
	All options value currently in effect

	xc_v2x.py
	V2X-MODEM MD client agent and unit test

	/root/OpenXCAccessory/etc:

	File Name
	Description

	create_symlinks.sh
	Remove and replace exisiting .etc files with new files

	wpa_supplicant_modem.conf
	Overwrite modem configuration file whenever changed

	wpa_supplicant_rsu.conf
	Overwrite RSU configuration file whenever changed

	wpa_supplicant_v2x.conf
	Overwrite V2X configuration file whenever changed

	wpa_supplicant_v2x_top2.conf
	Overwrite V2X configuration file whenever changed in Topology 2

	RSU: (applicable for OpenXC V2X Accessory only)

	File Name
	Description

	xc_rsu.py
	V2X-MODEM MD client agent and unit test

	rsu_fn.py
	File for RSU specific functions e.g. garage

Scripts

Main Functions

OpenXCSoftware main functions can be performed by invoking the appropriate scripts depending on the device (Modem, V2X or RSU) as described in this section.

Modem: The Modem main function can be started by invoking xc_modem.py in /root/OpenXCAccessory/modem directory

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2014.PNG]
V2X: The V2X main function can be started by invoking xc_v2x.py in /root/OpenXCAccessory/v2x directory

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2015.PNG]
RSU: The RSU is a subset function of the V2X accessory. The RSU main function can be started by invoking xc_rsu.py in /root/OpenXCAccessory/rsu directory

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2016.PNG]

Config Scripts

The Configuration scripts are used to setup the environment for the application. These scripts are stored in ~/OpenXCAccessory/startup directory.

	Script Name
	Description

	openxc_init
	Set the config files, Set boardid file contents, set topology, set .pem files found here [https://github.com/openxc/OpenXCAccessory/tree/master/scripts].

	openxc_load_config
	Load /restore config files found here [https://github.com/openxc/OpenXCAccessory/tree/master/scripts].

	openxc_save_config
	Save backup of current configuration found here [https://github.com/openxc/OpenXCAccessory/tree/master/scripts].

Python Scripts

Helpful Python scripts for converting OpenXC trace files into JSON data files optimized for browsers (and Freeboard! [https:/openxc.freeboard.io].”)

	Script Name
	Description
	Example Usage

	/openxc_json_converter.py
	Takes any raw trace file from the OpenXC library (examples can be downloaded from here [http://openxcplatform.com/resources/traces.html]) and converts into an array of JSON data objects. This will output a new version of the trace file named input_trace_filename_VALIDATED.json, which can be parsed by Freeboard datasources and widgets, and many other external APIs
	`Shell
$ python openxc_json_converter.py input_trace_filename.json
`

	/signal_extractor.py
	Takes in a JSON data file (created by using /openxc_json_converter.py) and a list of signals (each prepended with ‘-s’) that the user wishes to keep. Outputs new JSON data file with only those signals included, named input_trace_filename_VALIDATED_STRIPPED.json
	`Shell
$ python signal_extractor.py input_trace_filename_VALIDATED.json -s openxc_signal_name -s openxc_signal_name2 [...]
`

	/normalizer.py
	Strips the input JSON data file to one data point, per signal, per second. Outputs new files named input_trace_filename_VALIDATED_STRIPPED_NORMALIZED.json
	`Shell
$ python normalizer.py input_trace_filename_VALIDATED_STRIPPED.json
`

WiFi Setup

	Modem
	The script connects the modem to one of the Access Points (APs) specified in the “wpa_supplicant” file.

	The script opens an “OPENXC_AP” access point with 20.0.0.1 IP address for the V2X device to connect to the modem, in topology 3.

	V2X
	The script connects the V2X device to one of the APs specified in the “wpa_supplicant” file, in topology 2.

	The script connects to “OPENXC_AP” from modem, in topology 3.

	RSU
	The script connects the RSU to one of the APs specified in the “wpa_supplicant” file.

Note

The scripts reset the hardware (Modem and V2X) if the required connector is not connected.

Cohda Setup

The “Cohda_setup.sh” script performs the following functions for the setting the Cohda environment and the necessary IP setup for the
802.11p based network.

	Enable Cohda HW.

	Download Firmware.

	Install llc kernel object with TCP/IP and UDP/IP support.

	Bring up Cohda interface and assign IP address.

	Create IP neighborhood for other Cohda devices (this is a pre-assigned network configuration).
	Each Cohda device is assigned a unique 10.0.0.XX address and a unique MAC address based on the last four characters of the Bluetooth MAC address, found through a lookup table in the script.

	All the Cohda devices in the supplied population (50 units) are added to the current device neighborhood.

Firmware Update

Firmware Git Pull

The best way to update firmware is with a git pull.

	Navigate to the /root/OpenXCAccessory directory.

	Issue a ‘git pull’ command.

	Make sure the device has an Internet connection

	Files and scripts will be updated to their latest versions from https://github.com/openxc/OpenXCAccessory.

Firmware Reset Button

	The OpenXC-Modem and V2X Embedded SW supports a Firmware Reset Button to reset the embedded software to a known factory released version as needed.

	Users can activate this feature by holding the button, next to the USB port, for 5 seconds (to prevent accidental triggering) once software (vi_app) is in OPERATION stage.

	Users can also enable this feature by calling “fw_factory_reset_enable”.

	The Embedded Software will be reset to the factory released version and reboot.

Over-The-Air Auto Upgrade

	OpenXC-Modem and V2X supports Over-The-Air Auto Upgrade

1.1. Modem requires WiFi or GSM connection

1.2. V2X requires WiFi connection

1.2.1. WAN connection – upgrade file on AWS

1.2.2. LAN via “Open_AP” – upgrade file on Modem (Modem must have the latest FW)

1.3. During upgrade, some configurations will be backup to /root/OpenXCAccessory/backup such as wpa_supplicants, xc.conf, boardid, and toplogy

1.4. After upgrade, user will have the option to restore configuration:

1.4.1. All – restore all config wpa, id, topology, xc.conf

1.4.2. Yes – option to choose, wpa configs or id, topology, xc.conf

1.4.3. No – no restore will perform

	Users can control this feature by calling “web_scp_sw_latest_version_url”

The provided file from that url should contain the latest version and its associated upgraded package:

	version

	package

3. Modem & V2X SW will look for a newer version and perform upgrading as needed. If the upgrade fails, modem SW will
perform best attempt to restore previous working version

Filesystem Upgrade

The V2X and Modem Filesystem can be upgraded using the image referenced below. The upgrade process is performed using a Linux environment.

Requirement:

	PC with Linux OS (Ubuntu, Debian, or similar)

	Micro SD card reader

Procedures:

	Power on PC and boot into Linux OS

	Download Filesystem image file

	For V2X, use “V2X_fs_CLEAN_v2.1.1_020516.img.gz” and save to a directory

	For Modem, use “Modem_fs_CLEAN_v2.1.1_020516.img.gz” and save to a directory

	Open Terminal Window and type `sudo fdisk –l` and pay attention to what drive is mounted

	Remove Micro SD from V2X and insert into card reader

	Install card reader in Linux PC

	In Terminal Window, type `sudo fdisk –l`

	System should detect newly insert Micro SD /dev/sdX1 and /dev/sdX2, where X is your Micro SD drive with partition 1 (sdX1) and partition 2 (sdX2)

	Open another Terminal Window:

	Erase all contents from Micro SDcard `rm -r /media/john/rootfs/*` or format partition 1 with ext4 and label “rootfs”

	To copy image, type `sudo gunzip –c /YourDirectory/ V2X_fs_CLEAN_v2.1.1_020516.img.gz | dd of=/dev/sdX1 bs=8M`

WARNING: make sure image is copied to partition 1 of Micro SD. If your system doesn’t have gunzip, you will need to install with command ```apt-get -y install gzip```

	Safely Eject Micro SD from PC, install in device, and power it on.

Mirco SD Partition

The following procedure will guide you in how to partition a Micro SD card of any size to use for both V2X and Modem.

Requirement:

	PC with Linux OS (Ubuntu, Debian, or similar)

	Micro SD card reader

	New 16GB Micro SD (recommended)

Procedures:

	Power on PC and boot into Linux OS

	Open Terminal Window and type `sudo fdisk –l` and pay attention to what drive is mounted

	Remove Micro SD from V2X and insert into card reader

	Install card reader in Linux PC

	In Terminal Window, type `sudo fdisk –l`

	System should detect newly inserted Micro SD /dev/sdX where X is your Micro SD drive with factory partition 1 (sdX1)

	Umount Micro SD, type `umount /dev/sdX1`

	Start “fdisk” to partition Micro SD, type `sudo fdisk /dev/sdX`

In command console, type the following:

	`d` – delete partition
	Select correct partition to be deleted. Repeat this step if there is more than 1 partition

	`n` – create new partition #1

	`p` – create Primary partition #1

	`1` – create partition #1

	Press “Enter” – to use Default value 2048 for First Sector

	`+1024M` – Last Sector end at 1GB

	`n` – create new partition #2

	`p` – create Primary partition #2

	`2` – create partition #2

	Press “Enter” – to use Default value for First Sector

	Press “Enter” – to use Default value for Last Sector

	`w` – to write created partition to Micro SD

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20F.PNG]

	The newly created partition needs to be formatted, where Partition #1 use “ext4” and Partition #2 use “vfat”

	Some Linux distributions do not come with preinstalled “dosfstools” which are required for “vfat”. To install, type `apt-get –y install dosfstools`
	This command should work for Ubuntu and Debian. Please search on how to install “dosfstools” for other Linux distros

	`sudo mkfs.ext4 -L rootfs /dev/sdX1` - format Partition #1 with ext4 and label “rootfs”

	`sudo mkfs.vfat -F 32 -n DATALOG /dev/sdX2` – format Partition #2 with vfat and label “DATALOG”

	Note - you may need to unmount SDcard if an error occurs when trying to format `umount /dev/sdX1`

	Safely Eject Micro SD from PC and install to device and power it on.

Kernel Upgrade

In order to successfully upgrade the kernel, you will need the following two cables:

	USB-A to micro-B cable

	USB to Serial UART (FTDI TTL-232R-3V3), which can be purchased here [http://www.amazon.com/GearMo%C2%AE-3-3v-Header-like-TTL-232R-3V3/dp/B004LBXO2A].

Upgrade Procedure

	Power device Off.

	Remove top cover by unscrewing the 4 screws on bottom of device.

	Connect micro-B side of USB-A to micro-B cable to device.

	Connect USB-A side of cable to PC.

	Connect FTDI cable to device.

	You will need to install the FTDI driver when connecting the cable to a PC for the first time. The FTDI driver can be downloaded from here [https://github.com/openxc/openxc-accessories/blob/master/tools/FTDI_Cable_Windows_Driver.zip].

	When connecting the FTDI cable to the V2X device, make sure the Black cable on the serial connector connects to the GND pin on the V2X device. This is to ensure proper polarity.

	Connect the USB-A side of the FTDI cable to your PC and allow the FTDI driver to complete the installation.

	Driver installation will assign a new COMx port, in addition to the USB COM port.

	Open TeraTerm and connect to the previously assigned (serial debug) COMx port with a 115200 baud rate.

	Instructions for downloading TeraTerm can be found here [https://github.com/openxc/openxc-accessories/tree/master/tools/ModemConnect/Documents].

	Power device On.

	Stop “autoboot” by pressing any key on your keyboard.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20A.PNG]

	Type “nand erase.chip” and hit Enter.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20B.PNG]

	Type “reset” and hit Enter.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20C.PNG]

	The Device Manager should have registered a new device under Ports (COM & LPT) named “AT91 USB to Serial Converter”.

	Install or update provided driver “atm6124_cdc_signed.zip” if device did not register or install correctly.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20D.PNG]

	Install executable file “sam-ba_2.15.exe”.

	Extract KERNEL file.

	For the V2X device, download “sama5d3_xplained-v2.1_V2X_011316.zip” to Desktop.

	For the Modem device, download “sama5d3_xplained-v2.0_TEST_2_Modem.zip” to Desktop.

	Run “demo_linux_nandflash.bat” from extracted folder above.

	Select “Run” on any warning popups.

	Power V2X device Off then back On after the Kernel finishes flashing to nandflash.

	Terminal 1 will stop scrolling and Terminal 2 will automatically close.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%20E.PNG]
Congratulations, you have successfully upgraded the V2X kernel.

System Overview

General Overview

The following section describes the high level software design for the OpenXC-Modem and V2X devices. The picture below shows the communication links between devices.

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%201.PNG]
The OpenXC Embedded Software initiates connections shown in Figure 1.
The devices (VI, V2X, Modem, Phone, RSU, AP and Cloud) can be configured as follows:

	Topology 1: VI + Modem + Phone + Cloud

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2021.PNG]

	Topology 2: VI + V2X + RSU + Phone + Cloud

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2031.PNG]

	Topology 3: VI + Modem + V2X + RSU + Phone + Cloud

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%2041.PNG]

Application Overview

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Figure%206.PNG]
The Modem, V2X and RSU devices are designed as communication sources connecting through sockets and queues.

Tasks are handled in separate threads to handle concurrent activities and exchange data safely. The threads are designed to be stoppable, using the following techniques as applicable:

	System exception to detect connection errors, or connection termination.

	Timeout exception to detect lost connection, especially in receiving/listening thread.

	External control flag to terminate execution loop.

The exchange of data from the sources to apps can be enabled or disable based on the configuration parameters described in the next section. The devices are connected through either Bluetooth, WIFi or 802.11p as shown in Figure 1.

	The Bluetooth interface uses 2 independent RFCOMM socket (Send & Recv) threads and associated data buffer queues.

	The WiFi interface uses 2 independent INET socket (Send & Recv) threads and associated data buffer queues.

	The 802.11p interface uses 2 independent UDP broadcast socket (UdpSend & UdpRecv) threads and associated data buffer queues.

Modem Overview

	Source: VI
	VI through Bluetooth socket

	Applications
	VI stream recording

	GSM “Network Server Upload” task is handled in a separate stoppable thread

	GPS “Acquire Current Position” task is handled in a separate stoppable thread

	Environmental Monitor tasks (Battery level, Charger status, FW reset button …) are handled in separate stoppable threads.

	Mobile App Thread

	V2X connection thread (Topology 3)

V2X Overview

	Sources:
	VI through Bluetooth socket (Topology 2)

	VI through modem over WiFI (Topology 3)

	RSU through UDP broadcast over 802.11p

	Self-identification announcement via UDP broadcast over 802.11p

	Applications
	VI stream recording

	RSU stream recording

	Environmental Monitor tasks (Battery level, Charger status, FW reset button …) are handled in separate stoppable threads.

	Mobile App Thread (Topology 2)

	VI data upload

	RSU data upload

RSU Overview

	Source:
	Garage Simulator, sends garage data through UDP broadcast over 802.11p

	Application
	RSU data recording. Collects vehicle announcement and VI data if enabled)

Configuration

Configuration File

The following section describes the configuration file for the OpenXC Software.

	/root/OpenXCAccessory/common

	Option Name
	Unit
	Default Value
	Description

	openxc_vi_mac
	XX:XX:XX:XX:XX:XX
	None
	Vehicle Interface Dongle MAC

	openxc_vi_enable
	boolean (0 .. 1)
	1/0 for MODEM/V2X
	Enabling Vehicle Interface communication

	openxc_md_enable
	boolean (0 .. 1)
	1/0 for MODEM/V2X
	Enabling V2X-MD Interface communication (10)

	openxc_vi_trace_snapshot_duration
	seconds
	10
	Vehicle data stream trace recording snapshot duration

	openxc_vi_trace_idle_duration
	seconds
	110
	Idle duration between subsequent Vehicle data trace recording snapshot

	openxc_vi_trace_truncate_size
	bytes
	0
	Vehicle data trace snapshot truncate size where 0 means no truncate

	openxc_vi_trace_filter_script
	
	None
	Vehicle data trace filtering executable script where the script is required to accept stdin input stream and generate stdout output (1)

	openxc_vi_trace_number_of_backup
	integer
	0
	Number of vehicle data trace will be backed up in provided micro SD card (2) where O means no back up is needed

	openxc_vi_trace_backup_overwrite_enable
	boolean (0 .. 1)
	1
	Enabling to overwrite backup files when the SD disk is full

	web_scp_userid
	
	anonymous
	Remote server scp userid

	v2x_lan_scp_userid
	
	root
	Remote server(Modem) scp userid for V2X in Topology 3

	web_scp_pem
	
	None Remote server SSL Enscripted Private key PEM
	

	web_scp_apn
	
	apn
	Remote server Access Point Name as per details provided with the SIM card contract

	web_scp_config_download_enable
	boolean (0 .. 1)
	0
	Enabling congifuration file download from remote server

	web_scp_config_url
	
	ip:file
	Configuration file URL on the remote server

(<IP>:[<directory>/]<filename>)
(3)

	web_scp_vi_target_url
	
	ip:file
	Remote server target file URL in this format

(<IP>:[<directory>/]<filename>)
(4)

	web_scp_target_overwrite_enable
	boolean (0 .. 1)
	1
	Enabling to overwrite remote server target file (5)

	web_scp_vi_trace_upload_enable
	boolean (0 .. 1)
	0
	Enabling vehicle data records to be uploaded into remote server

	web_scp_vi_trace_upload_interval
	seconds
	3600
	Interval to upload vehicle data stream into a remote server (6)

	web_scp_sw_latest_version_url
	
	None
	Auto upgrade version URL

(<IP>:[<directory>/]<filename>)
where None means Auto Upgrade is disable

	v2x_lan_scp_sw_latest_version_url
	
	20.0.0.1:/tmp/upgrade.ver
	Auto upgrade version URL

(<IP>:[<directory>/]<filename>)

	fw_factory_reset_enable
	boolean (0 .. 1)
	1
	Enabling Firmware Factory Reset Button support

	power_saving_mode
	
	Normal
	Power saving profile where value is (performance / normal / saving)

	led_brightness
	
	128
	LED brightness level where level is (0 .. 255) (7)

	gps_log_interval
	seconds
	10
	Interval to log GPS Acquire Current Position into /var/log/xcmodem.gps if applicable

	gps_enable
	boolean (0 .. 1)
	1/0
	for MODEM/V2X Enabling GPS module (8)

	gsm_enable
	boolean (0 .. 1)
	1/0
	for MODEM/V2X Enabling GSM module (9)

	openxc_v2x_trace_snapshot_duration*
	seconds
	
	RSU data stream trace recording snapshot duration for topology 3.

	openxc_v2x_trace_idle_duration*
	seconds
	
	Idle duration between subsequent RSU data trace recording snapshot for topology 3

	xcmodem_ip_addr
	IP address
	20.0.0.1
	IP address for the Modem when it acts as an AP

	openxc_xcV2Xrsu_trace_snapshot_duration
	seconds
	
	Duration control for RSU snapshot in V2X and RSU

	openxc_xcV2Xrsu_trace_idle_duration
	seconds
	
	Interval control between RSU snapshots

	web_scp_xcV2Xrsu_target_url
	URL
	
	URL for uploading RSU logs

	web_scp_rxcV2Xsu_trace_upload_interval
	seconds
	
	Interval control between successive web uploads

	web_scp_xcV2Xrsu_trace_upload_enable
	seconds
	
	Enable/Disable control for web upload of RSU log

	openxc_xcV2Xrsu_msg_send_interval*
	seconds
	
	Control for interval between RSU identification message broadcast

	chd_txpower
	
	2 dBm
	Transmit power for cohda radio

	chd_radio
	(‘a’..’b’)
	a
	Radio to be used for the Cohda module

	chd_antenna
	(1..3)
	3
	Antenna(s) to be used for radio

	chd_chan_no
	
10 MHz channel

(172, 174, 176,

180, 182, 184)

20MHz channel

(175, 181) All

channels SCH

	184
	802.11p Channel

	chd_modulation
	
MK2MCS_R12BPSK

MK2MCS_R34BPSK

MK2MCS_R12QPSK

MK2MCS_R34QPSK

MK2MCS_R12QAM16

MK2MCS_R34QAM16

MK2MCS_R23QAM64

MK2MCS_R34QAM64

MK2MCS_DEFAULT

MK2MCS_TRC

	MK2MCS_R12QPSK
	Modulation scheme for cohda

	chd_ch_update_enable
	Boolean(0..1)
	0
	Flag to update the cohda channel parameters from the config parameters during the application run

	For optimal RSU trace recording in topology 3, trace time interval should be set as 1:2:1 ratio. Default value is 20:40:20. Where:

	RSU device set “openxc_xcV2Xrsu_msg_send_interval = 20”

	Modem device set “openxc_v2x_trace_snapshot_duration = 40” and “openxc_v2x_trace_idle_duration = 20”

Notes

	An executable shell script like the following:

#!/bin/bash
egrep “transmission|ignition”

will generate a trace file such as:

{“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.624450}
{“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.664466}
{“name”:”ignition_status”,”value”:”accessory”,”timestamp”:1427334376.700860}
{“name”:”transmission_gear_position”,”value”:”neutral”,”timestamp”:1427334376.724524}
{“name”:”torque_at_transmission”,”value”:10.200000,”timestamp”:1427334376.734772}
{“name”:”transmission_gear_position”,”value”:”first”,”timestamp”:1427334376.765584}
{“name”:”ignition_status”,”value”:”run”,”timestamp”:1427334376.786151}
...

	Raw vehicle trace snapshot will be saved as /mnt/data/trace_raw_<no>.json

*/mnt/data is mounted to the first recognized formatted partition on the inserted micro SD card

	A unique configuration template will be created at the remote server during the device registration process, e.g: <IP>:[<directory>/]<hostname>.<filename>

*To be used instead of provided <IP>:[<directory>/]<filename>, where <filename> is xconfig.conf by design

	Uploading file will be named as <IP>:[<directory>/]<hostname>[.<timestamp>].<filename> at remote server where <filename> is trace.json by design

	If overwrite flag is disabled, YYMMDDhhmmss timestamp will be added to target file name.

	User should be aware of additional time due to trace file conversion and server connection establishment.

	LED brightness default is 255|128|0 for performance|normal|saving of power_saving_mode respectively

	Default value is based upon board type. This option is not valid for V2X as the V2X accessory does not support GPS.

	Default value is based upon board type. This option is not valid for V2X as the V2X does not support GSM.

	Default value is based upon board type. Need to be enable on both MODEM and V2X to operate V2X-Modem interface.

Power-Saving Mode Profile

To illustrate ability to support different power saving modes, OpenXC-Modem Embedded Software implements simple profiles
(aka performance, normal and saving) for certain functions as shown in the following table:

[image: https://github.com/openxc/openxc-accessories/raw/master/docs/pictures/Table%2091.PNG]

LEDs

The Modem has 5 LED indicator lights. Battery LED has 2 colors (RED and GREEN) while the others are single color. OpenXC Modem Embedded SW controls the LEDs via gpio (/sys/class/leds/XXX).

	After power up, all LEDs except the Battery LED will blink fast.

	During software upgrades (Over-The-Air or Manufacturing Firmware Reset), all LEDs will blink slow.

	Run xcmodem.py to change LEDs according to the following table.

	LED
	Color Mode
	Function
	Keyword
	State

	Bat_grn_led
	
OFF

ON

FAST BLINK

	
VBAT < 3.55V

VBAT >= 3.55V

Charging

	charger
	
NOT_CHARGE/CHARGE_DONE

PRE_CHARGE/FAST_CHARGE

	Bat_red_led
	
OFF

ON

FAST BLINK

	
VBAT > 3.65V

VBAT <= 3.65V

Charging

	charger
	
NOT_CHARGE/CHARGE_DONE

PRE_CHARGE/FAST_CHARGE

	GSM_led
	
OFF

ON

FAST BLINK

SLOW BLINK

	
IDLE or PPP lost

GSM is ready

PPP data transferring

SIM not inserted

	gsm_app
	
IDLE / LOST

PENDING

OPERATION

PENDING

	GPS_led*
	
OFF

ON

FAST BLINK

SLOW BLINK

	
Not start

GPS Unit power up

Valid GPSAPC

Locking for valid GPSAPC

	gps_app
	
IDLE

CONNECT

OPERATION

LOCKING

	BT_led
	
OFF

ON

FAST BLINK

SLOW BLINK

	
IDLE

VI Dongle Connect

VI Dongle Pairing

VI Dongle Discovery

	vi_app
	
IDLE / LOST

OPERATION

DISCOVERED

ADDR_INQUIRY/ADDR_ASSIGNED/DISCOVERED

	Wifi_led**
	
OFF

ON

FAST BLINK

SLOW BLINK

	
Not Connected

Connected

Data Transmitting

Device N/A

	na
	
IDLE

PENDING

OPERATION

NO WIFI DEVICE DETECTED***

	80211_led
	
OFF

FAST BLINK

	
Not Connected

Data Transmittin

	na
	
IDLE

OPERATION

Note

.* V2X and RSU use “gps” as “wifi” led.

.** V2X and RSU use “wifi” led for 802.11p led.

.*** TI WiFi module occasionally doesn’t come up during boot-up and may need manual power cycle.

Brightness Control

LED brightness is controlled by Power-saving-mode profile. However, users can overwrite the brightness level using “led_brightness” (in xcmodem.conf). The brightness level can be adjusted from 0 (dim) to 255 (bright).

Design Sources

	Electrical

	Mechanical

	Assembly

Electrical

Mechanical

Assembly

License Disclosure

The OpenXC Accessories project is an open source project, and in turn
depends on a few other open source projects. If you are building from source, or
have downloaded a pre-compiled binary firmware, the result may contain source
code covered by the following licenses:

Accessories [https://github.com/openxc/openxc-accessories]

Copyright (c) 2017 Ford Motor Company
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of the <organization> nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL <COPYRIGHT HOLDER> BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Index

 _static/up.png

_static/up-pressed.png

_static/logo.png
OpenXX

_images/logo.png
OpenXX

_static/comment-close.png

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		OpenXC Accessories

 		Getting Started

 		Install

 		Android

 		Windows

 		Directory Structure

 		Scripts

 		Main Functions

 		Config Scripts

 		Python Scripts

 		WiFi Setup

 		Cohda Setup

 		Firmware Update

 		Firmware Git Pull

 		Firmware Reset Button

 		Over-The-Air Auto Upgrade

 		Filesystem Upgrade

 		Mirco SD Partition

 		Kernel Upgrade

 		Upgrade Procedure

 		System Overview

 		General Overview

 		Application Overview

 		Modem Overview

 		V2X Overview

 		RSU Overview

 		Configuration

 		Configuration File

 		Notes

 		Power-Saving Mode Profile

 		LEDs

 		Brightness Control

 		Design Sources

 		Electrical

 		Mechanical

 		Assembly

 		License Disclosure

_static/file.png

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/down.png

