

Welcome to OpenTrainCommunity’s documentation!

Overview

	Overview of the OpenTrain project

Website

	General Info

	Opening the django shell on the server

	Installing the website

Data analysis

	Our data
	Adding new data

	Database tables schema

	Connecting to the db directly

	Accessing the data using redash

	Visual Data Views

Mobile App

	Code

	API for Android

This Documentation

	Updating the documentation
	Simple instructions

	Difficult instructions

Overview of the OpenTrain project

tl; dr - We apply technology to enhance democracy and to empower Israeli citizens. This is our zionism.

This project aims to make Israel Railways punctuality data accessible, simple and understandable for everyone.
Israel Railways is a state-owned company, and we believe that as citizens, it is our right to be able to understand how well this service is functioning.

Unfortunately, not much data is put forth by the Israel Railways company as publicly accessible information.
We have received punctuality data from the Israel Railways company directly and are in the process of transforming, analysing and displaying that data at http://otrain.org, in a simple and understandable way.

We are a group of volunteers - programmers, designers, data analysts and content writers – that get together every week to achieve that goal.

General Info

Website: http://otrain.org

Website code: https://github.com/hasadna/OpenTrainCommunity

Hosting is at DigitalOcean. The user is: hasadna.opentrain@gmail.com

Server API (client is Angular): http://otrain.org/api/docs/

Opening the django shell on the server

Do the following:

	ssh to the server (ask us for instructions).

	cd /home/opentrain/work/OpenTrainCommunity/simple/train

	opentrain@otdata: ~/work/OpenTrainCommunity/simple/train$ python manage.py shell_plus

Installing the website

Follow the instructione here:

https://github.com/hasadna/OpenTrainCommunity

Our data

We take the raw Israel Railways data we receive and do minimal processing - mainly structuring it and marking invalid data as such. Each data point in our database has a pointer to a specific line in one of the raw files we’ve received from Israel Railways. That way, if and when some question arises about the data, we can always pinpoint the exact source of that data.

	Raw Excel data received from Israel Railways:

	http://otrain.org/files/xl-feb-2016/times/

	http://otrain.org/files/xl-april-2016/

	Dump of our database: http://otrain.org/files/dumps

	Our database in csv format: http://otrain.org/files/dumps-csv

Adding new data

	Put the data in ~/public_html/files/ on the server in an appropriate folder (follow the standard there).

	While under ‘workon train2’ virtualenv and in the ~/work/OpenTrainCommunity/train2 folder, run:

python manage.py parsexl /home/opentrain/public_html/files/xl-2016-nov/xl-2016-nov.xlsx

Make sure to change to your excel file. You should get something similar to:

[28/11/2016 17:30:20] INFO [utils_2015:137] Creating routes
[28/11/2016 17:31:14] INFO [utils_2015:141] # of valid trips = 9592
[28/11/2016 17:31:14] INFO [utils_2015:142] # of invalid trips = 136
[28/11/2016 17:31:14] INFO [utils_2015:146] Reason: sample has different planned and stopped count = 29
[28/11/2016 17:31:14] INFO [utils_2015:146] Reason: missing actual_arrival count = 27
[28/11/2016 17:31:14] INFO [utils_2015:146] Reason: missing actual_departure count = 57
[28/11/2016 17:31:14] INFO [utils_2015:146] Reason: first stop is not is_source count = 21
[28/11/2016 17:31:14] INFO [utils_2015:146] Reason: last stop is not is_dest count = 2

Database tables schema

	data_sample

	represents arrival, departure at a station, time as part of a trip

	id

	automatic ID by DB

	index

	the index of the stop in the trip 1

	gtfs_stop_id

	the station GTFS id

	stop_id

	the station id, a foreign key to the data_stops table

	valid

	data sanity check

	invalid_reason

	description of invalid reason, if invalid

	is_source

	whether it the first passengers stop (there may be non-passenger stops before)

	is_dest

	whether it the last passengers stop

	actual_arrival

	time of arrival

	actual_arrival_fixed

	is field actual_arrival missing, if so - used exp_arrival

	exp_arrival

	the planned time

	delay_arrival

	the delta of actual_arrival – exp_arrival

	actual_departure

	time of departure

	actual_departure_fixed

	is field actual_departure missing, if so - used exp_departure

	exp_departure

	planned departure

	delay_departure

	the delta of actual_departure – exp_departure

	filename

	source of data (for debugging purposes)

	line_number

	the line in that file (for debugging purposes)

	sheet_idx

	the sheet in that file (for debugging purposes)

	trip_id

	the id of the trip <train, date> (train = route id)

	1

	Note that there are gaps in the indexes since the original indexing includes operational stops.

	data_trip

	collection of samples representing a unique trip from source to destination

	id

	the trip id, a non generated primary key (timestamp & train nr)

	train_num

	train num as given by the train

	date

	date of trip

	valid

	data sanity check

	invalid_reason

	description of invalid reason, if invalid

	x_week_day_local

	day of week (0 to 6) (first sample in the trip)

	x_hour_local

	expected hour of departure (first sample in the trip)

	route_id

	foreign key to the route table

	x_avg_delay_arrival

	average delay over all samples in the trip

	x_cache_version

	cache version being used for this table, used for table updates

	x_max2_delay_arrival

	second largest delay among the route’s samples

	x_max_delay_arrival

	largest delay among the route’s samples

	x_before_last_delay_arrival

	delay at route’s second to last sample

	x_last_delay_arrival

	delay at route’s last sample

	2

	Service is a collection of trips of the same route and same hours. E.g. all trains from Beer Sheva to Nahariya at 8 am.

	data_route

	list of stops for a repeating route

	id

	automatic ID by DB

	stop_ids

	json list of stop ids

	data_stop

	static info about stops in the rail network

	id

	automatic ID by DB

	gtfs_stop_id

	gtfs (General Transit Feed Specification) station id

	english

	english name

	hebrews

	hebrew names (json list)

	lat

	latitude

	lon

	longitude

Connecting to the db directly

This requires installing postgres and using psql, a postgres sql client.:

psql -h 104.131.88.144 --user guest --dbname train2

The password is guest

Accessing the data using redash

You can use the redash website to run SQLs [http://i.imgur.com/XZmYzUq.png/] and preview [http://i.imgur.com/bajy0JX.png/] the result.

You can share the results with others.

Pretty cool tool! Check it out:

http://hasadna.redashapp.com

Note that it requires signing in so it can save your queries and for the sharing features.

Visual Data Views

TrainArrivalbyYear-Quarter [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/TrainArrivalbyYear-Quarter]

MostTendingStations2014 [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/MostTendingStations2014]

TrainArrival-ByStationYear [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/TrainArrival-ByStationYear]

DelaysRateByDayHour [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/DelaysRateByDayHour]

StationsTainAccuracy2015-v1 [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/StationsTainAccuracy2015-v1]

StationsTainAccuracy2015-v2 [https://public.tableau.com/profile/alik8327#!/vizhome/Otrain-StationsAnalysisDemo/StationsTainAccuracy2015-v2]

Code

https://github.com/hasadna/OpenTrainApp

API for Android

Get all networks (GET):
http://gtfs.otrain.org/api/data/bssids

Add new network (POST):
http://gtfs.otrain.org/api/data/bssids/add/

{
 bssid: "ab:cd:ef:gh:ij:kl
 name: "Hashalom"
 stop_id: “37350”
}

Admin interface for manual update:
http://gtfs.otrain.org/admin/

Stop list:
http://gtfs.otrain.org/api/gtfs/stops/?format=json

Today’s gtfs trips:
http://gtfs.otrain.org/api/gtfs/trips/date/today/?format=json

Specific day’s gtfs trips:
http://gtfs.otrain.org/api/gtfs/trips/date/2015-09-10/?format=json

Updating the documentation

Simple instructions

Simply commit and push the code to github.

You can actually edit [http://i.imgur.com/pilQZSL.png/] and preview [http://i.imgur.com/AGQfbDQ.png/] changes directly in github!

The changes will be uploaded to readthedocs automatically through webHooks.

Difficult instructions

If you want to see the resulting html before you commit (usually you don’t need to):

	Run:

pip install sphinx

	Make the updates you want to the .rst files, and then run:

make html

	Open the index.html file in the browser to see the result.

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to OpenTrainCommunity’s documentation!

 		
 Overview of the OpenTrain project

 		
 General Info

 		
 Opening the django shell on the server

 		
 Installing the website

 		
 Our data

 		
 Adding new data

 		
 Database tables schema

 		
 Connecting to the db directly

 		
 Accessing the data using redash

 		
 Visual Data Views

 		
 Code

 		
 API for Android

 		
 Updating the documentation

 		
 Simple instructions

 		
 Difficult instructions

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

