

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Content Model

Open Source Guides help individuals, communities, and companies embrace open source software. It explains not only how to accomplish a task, but why you’d want to, and how that task fits into the larger story of consuming, contributing to, and producing open source software.

This content was originally created and curated by GitHub, and covers topics that are very relevant to GitHub users, but it is not specific to GitHub products.

For content that is specific to GitHub products, see:

	help.github.com [https://help.github.com] - gets existing users unstuck and back to work.

	guides.github.com [https://guides.github.com] - tutorials about a larger idea or product feature for new users.

Everything written in the guides should fall into one of the following categories:

	Concept guides dive deep into a specific topic (for example, “Building a community” or “Measuring success”). They may contain visuals and anecdotes to illustrate their point. While meant to be read from beginning to end, they have a table of contents to help the reader quickly skim the content and find a relevant subsection.

	An FAQ tackles a complex topic where a reader is likely coming in with specific questions (for example, “The legal side of open source” or “Leadership & governance”). Whereas concept guides aim to teach the entire concept, an FAQ respects a reader’s desire to jump around, get the information they need, and leave. The table of contents is especially important in an FAQ, because the page isn’t meant to be read from beginning to end. FAQs might also be longer than a concept guide, because of the jump-around navigation.

Design elements

If you’re writing a concept guide, here are some smaller design elements that enrich the content experience. We use them to draw the reader’s attention and break up walls of text; therefore, they should all get some sort of visual treatment.

Pull quote

We use quotes in the guide to illustrate a point through an anecdote. Pull quotes should highlight real people and their experiences.

Image

Images help visually illustrate a point. Some images are instructive, such as a graph. Other images are visual, such as a webpage screenshot. We should have lots of these.

Data vignette

Whereas pull quotes and images help ground ideas in something specific and concrete, data vignettes help connect ideas to bigger systems.

Data vignettes are limited so as not to overwhelm, but contain just enough information to help readers understand why they should pay attention to a certain idea.

Historical vignette

Historical vignettes are fun anecdotes that keep a reader’s attention. They make community members the heroes of the story, and help pass down cultural knowledge.

List

We use bulleted lists to keep articles approachable and skim-able, and to group examples and checklists. However, avoid:

	Articles consisting almost entirely of lists; lists should enhance narrative rather than serve as the main attraction.

	Exhaustive or canonical lists; follows from above. If such a list is relevant, link to one maintained elsewhere.

	Lists consisting of only links; a guide is not an awesome list. Check out how we link to the main awesome list in a list, for example [https://opensource.guide/how-to-contribute/#you-dont-just-have-to-work-on-software-projects].

Personas

1. Individual developer (first-timer)

Characteristics

	Moderately experienced developer

	Feels some sense of ownership over the project (“I want to share this with the world”)

	Sees self as ultimate decisionmaker

	Still building community reputation

	Has never open sourced a project before

Primary goals

	Wants people to notice their project

	Wants people to actually use the project and give feedback

Frustrations/pain points

	Doesn’t know how to find an audience

2. Individual developer (multiple projects)

Characteristics

	Experienced developer

	Feels some sense of ownership over the project (“I want to share this with the world”)

	Sees self as ultimate decisionmaker

	Has a decent community reputation

	Has open sourced a project before. May manage multiple projects

	Likely manages projects on their own time (volunteer work)

Primary goals

	Manage personal time so project demands don’t become overwhelming

	Find other contributors or maintainers to help with the project

Frustrations/pain points

	Feeling burned out, exhausted from open source work

3. Community developer

Characteristics

	Experienced developer

	Wants to share ownership of the project (“I want to build this with others”)

	Sees community, not self, as ultimate decisionmaker

	Has a decent audience/reputation

	Has open sourced personal projects before

	Likely manages projects on their own time (volunteer work)

Primary goals

	Get people to participate, contribute back to the project

	Make sure everybody involved with the project is happy and has a good experience

Frustrations/pain points

	Managing a community is exhausting, especially when it’s volunteer work

4. Corporate entity

Characteristics

	Team of employees working at the same company. Primarily engineering, but likely multiple stakeholders across functions

	Likely feels some sense of ownership over the project (“We are open sourcing this project to the community”)

	Company plays a clear role in decisionmaking

	May not have open sourced a project before

	Projects are managed by paid employees

	Cares about fostering a healthy community, but does not necessarily want to share ownership in a formal capacity

Primary goals

	Improve brand and reputation

	Attract new technical talent for recruiting (make sure people hear about it)

	Grow a platform (get people to use it)

Frustrations/pain points

	Balancing community + corporate needs

	(For community: being a good corporate citizen, respecting cultural norms)

	(For corporate: adhering to company policies)

	Making sure people know about the project

Style Guide

From the GitHub Manual of Style, which this style guide inherits from:

Words are an important part of how software works. Just as we have a style guide for our code, we have a style guide for our tone and our voice. Even though there may be dozens of people creating a product, it should still sound like we speak in one consistent voice.

In other words, the way we write is just as important as the way we design. Consider these things when writing copy.

Where possible, automated tests enforce style rules.

Content principles

All written content should follow these principles:

	Approachability: Don’t assume reader has prior knowledge

	Brevity: Keep it simple, link to outside content for deeper dives

	Curation: Amplify community best practices vs. any individual’s point of view

Content should maintain a light-hearted, but wise (think classy, not overly excited) tone. Open source is fun! Readers should feel inspired, not discouraged, by the tone of your writing, and they should trust you to help them get started.

Mentions

When referring to people that use GitHub, use @mentions of their username instead of their full name.

	:smile: As @jessfraz put it…

	:cry: As Jess Frazelle [https://github.com/jessfraz] put it…

When referring to a project on GitHub, link to the repository so others can dive deeper, if they choose.

	:smile: @maxogden took a similar approach to Dat [https://github.com/datproject/dat]…

	:cry: @maxogden took a similar approach to Dat…

Capitalization

“Guides” is capitalized when referring to the “Open Source Guides”, but not when saying “the guide” or “this guide”.

	:smile: Welcome to Open Source Guides!

	:smile: The guide is meant to..

	:cry: The goal of this Guide is to…

More guidance

Understand our content model and audience

Translations

Thanks for your interest in helping translating the guides!

Starting a translation

Before you start working on a translation, look through the open pull requests [https://github.com/github/opensource.guide/pulls] to see if anyone else is already working on one for your language.

If there’s not, then today is your day to lead this effort! Here’s how to start:

	Fork this repository [https://github.com/github/opensource.guide/fork]

	Create a new branch for your translation work e.g. es.

	Copy _data/locales/en.yml to your target language file e.g. _data/locales/es.yml and translate all the strings.

	Create a new directory in _articles/ for your language e.g. _articles/es/, copy each guide from _articles/ into that folder and translate the content in each guide, except for the field names in the front matter between the ---s at the top of each file, e.g., title: should remain unchanged. Remove the toc: fields (they are only used for English).

	Copy index.html to your target language index file e.g. [_articles/es/index.html](https://github.com/github/opensource.guide/blob/master/_articles/es/index.html) and update the lang: and add the permalink: fields. Example: lang: es and permalink: /es/. All other fields’ values must remain unchanged.

	Run script/test and make sure there are no failures with your translation files. Note that you may need to fix broken links.

	Send a pull request.

Completing an initial translation of the whole site is a fairly large task. One way to break that task up is to work with other translators through pull requests on your fork. Example: pull requests on fork for German translation [https://github.com/katrinleinweber/opensource.guide/pulls?q=is%3Apr+is%3Aclosed] and corresponding initial pull request for German translation [https://github.com/github/opensource.guide/pull/577] on this repository.

Updating a translation

Corrections

If you notice spelling or grammar errors, typos, or opportunities for better phrasing, open a pull request with your suggested fix. If you see a problem that you aren’t sure of or don’t have time to fix, open an issue.

Broken links

When tests find broken links, try to fix them across all translations. Ideally, only update the linked URLs [https://github.com/github/opensource.guide/pull/880/files], so that translation changes will definitely not be necessary.

Article updates

We’re collecting tips [https://github.com/github/opensource.guide/issues/1119] on how to check if a translation should be updated to account for improvements made to the English source articles.

New articles

New articles are rare! When we have one, we’ll probably do some form [https://github.com/github/opensource.guide/issues/1120] of a call for translations.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

