openrange Documentation
Release 0.0.1

Josh Tomlinson

March 20, 2015

Contents

1 BaseRange 1
1.1 Example e e e e e e e e e e e e 1
2 Range 3
2.1 enUMEration e 3
22 exClusion e e e 3
2.3 randomiteration e 4
2.4 repeat Meration v v v i i i e 4
3 datetime Ranges 5
3.1 DateRange e e e e e e e e e e e 5
3.2 DatetimeRange L e e e e e 5
33 TimeRange e 5
4 API 7
4.1 BaseRange L e e 7
42 Range e 8
43 datetime Ranges e 8
5 OpenRange 9
5.0 OVEIVIEW . . o o v i e 9
5.2 Indicesandtables L e e e e e e e e e e 10
Python Module Index 11

CHAPTER 1

BaseRange

BaseRange is an abstract base class that provides the common interface for all OpenRange objects. Like the built-
in range object, BaseRange is a subclass of Sequence and supports all of the common sequence operations. The
constructor for BaseRange uses the same arguments and defaults as the built-in range.

Subclasses of BaseRange need only define how to convert between the type of objects within the progression and
an underlying numeric type. To do so, these two abstract methods must be implemented:

@abstractmethod
def _item_to_num(self, item):
"""Convert the item to a numerical value."""

@abstractmethod
def _num_to_item(self, num):
"""Convert the value to an item in the progression."""

For example, to implement a range-like object that generates datetime.date objects, _item_to_num would
convert a datetime.date item to a numerical representation like seconds since the epoch. Conversly,
_num_to_1item would converts seconds since the epoch back to a datetime.date object.

Once these two methods are implemented, everything else is handled by BaseRange.

In some cases, the step type may differ from the items within the progression. In this case, a subclass should
implement the following conversion methods:

@abstractmethod
def _step_to_num(self, step):
"""Convert supplied step item to a numeric value."""

@abstractmethod
def _num_to_step(self, num):
"""Convert supplied numeric value to a step item."""

For the datetime.date example, the step would be implemented as a datetime.timedelta object. The
_step_to_num method would convert a datetime.timedelta object to seconds whereas _num_to_step
would convert seconds back to a datetime.timedelta object.

The default implementations of the step conversion methods assume the step is of the same type as start and
stop, and therefore fall back to calling the _item_to_numand _num_to_1item methods.

1.1 Example

Here’s a simple, yet full implementation of a range-like object that iterates over strings representing binary numbers.

http://docs.python.org/library/collections.html#collections.Sequence
http://docs.python.org/library/datetime.html#datetime.timedelta

openrange Documentation, Release 0.0.1

from openrange import BaseRange
class BinaryStrRange (BaseRange) :

def _item_to_num(self, item):
return int (str(item), 2)

def _num_to_item(self, num):
return "{n:b}".format (n=num)

for i in BinaryStrRange ("1000") :
print i,

prints:
0 1 10 11 100 101 110 111 1000

You can see how the two required methods, _item_to_num and _num_to_item convert between string and
integer values. You can also see the default value for start is 0 and step is 1, just like the built-in range.

Note: You may have noticed that the BaseRange implementation is not quite identical to the built-in range.
Unlike the built-in range, BaseRange implements iteration as inclusive of the st op value. The built-in range is

exclusive of the st op value because it is commonly used to generate integers for zero-based indexing of lists. The
typical usage of BaseRange will likely not be to generate integer types and so the decision was made to make the
iteration inclusive of the st op value.

Note: Like python 2’s built-in xrange and python 3’s built-in range object, BaseRange does its best to avoid
evaluating items in the progression until it has to. In cases where this is unavoidable, that method’s documentation

will say so.

2 Chapter 1. BaseRange

http://docs.python.org/library/functions.html#xrange
http://docs.python.org/library/functions.html#range

CHAPTER 2

Range

OpenRange comes with a generic numerical range-like class called Range. This class inherits BaseRange and
supports any numeric type (float, int, decimal.Decimal, etc.) for its start, stop, and step values.
Iterating over a Range object yields int and/or f1oat items depending on the values within the progression.

The primary purpose of Range is for testing BaseRange, but it can also be used to show some of the additional
features that BaseRange provides that don’t exist in the built-in range. These features are highlighted in the
sections below.

2.1 enumeration

An enumerate method is available for generating tuples of the form (count, item) for items within the pro-
gression. The method is similar to python’s built-in enumerate method, including the optional start argument.

>>> from openrange.rng import Range
>>> for i1 in Range(-1.0, 1, .5).enumerate():
print str(i),

(0, -1) (1, -0.5) (2, 0.0) (3, 0.5) (4, 1.0)

>>> for i in Range (-1, 1, .5).enumerate(start=5):
print str(i),

(5, -1) (6, -0.5) (7, 0.0) (8, 0.5) (9, 1.0)

2.2 exclusion

BaseRange subclasses allow iteration over a progression with the ability to exclude certain items. This is possible
using the excluding method supplied with a list of items to exclude. The items in the iterable should be of the same
type as the object’s start and stop arguments.

>>> from openrange.rng import Range
>>> for i in Range(-1.0, 1, .5).excluding([0, 1, 10]):
print str (i),

-1 -0.5 0.5

http://docs.python.org/library/functions.html#enumerate

openrange Documentation, Release 0.0.1

2.3 random iteration

Another feature of BaseRange subclasses is the ability to iterate over items in the progression in a random order
using the random method.

>>> from openrange.rng import Range
>>> for i in Range(-1.0, 1, .5).random():
print str(i),

1.0 0.5 -1.0 -0.5 0.0

2.4 repeat iteration

For cases where iterating of the progression multiple times is useful, the repeat method can be used. By default, it
will generate the items in the progression 2 times. The optional t imes argument can be used to repeat the items more
than twice.

>>> from openrange.rng import Range
>>> for i1 in Range (-1, 1, .5).repeat():
print str(i),

-1 -0.50.00.51.0 -1 -0.50.0 0.51.0

>>> for i in Range (-1, 1, .5).repeat (times=3):
print str(i),

-1 -0.50.00.51.0 -1 -0.50.00.51.0-1 -0.50.00.51.0

4 Chapter 2. Range

CHAPTER 3

datetime Ranges

OpenRange comes with 3 additional example range-like implementations based on types defined in python’s
datetime module. These objects are highlighted in the following sections.

3.1 DateRange

DateRange generates datet ime . date objects between given start and stop datetime.date objects. The
step value is provided as a datetime.timedelta object. Here are some examples:

coming soon. ..

3.2 DatetimeRange

DatetimeRange generates datetime.datetime objects between given start and stop
datetime.datetime objects. The step value is provided as a datetime.timedelta object. Here
are some examples:

coming soon...

3.3 TimeRange

TimeRange generates datetime.t ime objects between given start and stop datetime.time objects. The
step value is provided as a datet ime.timedelta object. Here are some examples:

coming soon...

http://docs.python.org/library/datetime.html#module-datetime

openrange Documentation, Release 0.0.1

6 Chapter 3. datetime Ranges

CHAPTER 4

API

4.1 BaseRange

Create custom arithmetic progression classes.

class openrange.base.BaseRange (*args)
Bases: _abcoll.Sequence

Abstract base class for custom arithmetic progressions.

Subclasses need only define how to convert between the type of objects within the progression and an underlying
numeric type. To do so, these abstract methods must be implemented:

_item_to_num(self, item) _num_to_item(self, num)

In some cases, the step type may differ from the items within the progression. In this case, a subclass should
implement the following conversion methods:

_step_to_num(self, step) _num_to_step(self, num)

The default implementations of these step conversion methods assume the start, stop, and step are of the same
type and therefore call the abstract _item_to_num() and _num_to_item() methods.

count (item)
Returns the number of times item appears in the progression.

enumerate (start=0)
Generates tuples for each item in the progression.

The tuples yielded take the form (count, item). Count starts at O unless an optional keyword argument
‘start’ is supplied with an alternate start value.

excluding (iterable)
Iterate over progression excluding items in supplied iterable.

index (item)
Returns the index of the first item matching the supplied item.

random ()
Generate the items in the progression in a random order.

repeat (times=2)
Iterate over the progression multiple times in sequence.

reverse ()
Reverses the range in place.

openrange Documentation, Release 0.0.1

start
The start item for this range.

step
The step item for this range.

stop
The stop item for this range.

4.2 Range

class openrange. rng.Range (*args)
Bases: openrange.base.BaseRange

Inclusive numerical range.

4.3 datetime Ranges

class openrange.dt .DateRange (start, stop, step)
Bases: openrange.base.BaseRange

Date object progression.

class openrange.dt . DatetimeRange (start, stop, step)

Bases: openrange.base.BaseRange
Datetime object progression.

class openrange.dt . TimeRange (start, stop, step)
Bases: openrange.base.BaseRange

Time object progression.

Chapter 4. API

CHAPTER 5

OpenRange

OpenRange provides a simple interface for building custom range-like objects for any type that can be represented
numerically.

5.1 Overview

Python’s built-in range is great for generating a list of integers and when iterating over the indices of a sequence.
There are times, however, when you’d like a similar interface for non-integer types.

The idea behind OpenRange is to provide a base class that allows for quick implementation of arithmetic progressions
for any type that can be represented numerically. For example, you might be interested in a range-like interface for
iterating over a datetime.date objects using datetime.timedelta as the step. OpenRange provides an
example implementation that does just that:

import datetime
from openrange.dt import DateRange

start_date = datetime.date.today ()
end_date = start_date + datetime.timedelta (days=365)
two_weeks = datetime.timedelta (days=14)

yield datetime.date objects for every 2 weeks, starting today, for a year
for dt_date in DateRange (start_date, end_date, two_weeks):
... profit
OpenRange makes implementing these types of classes very simple by providing an easy-to-use abstract base class

called BaseRange. See the full Documentation for more info.

5.1.1 Installation

OpenRange is easy to install using pip.

S pip install openrange

5.1.2 Support

OpenRange is tested against:

e python2.7,3.2,3.3,3.4

http://docs.python.org/library/functions.html#range
http://docs.python.org/library/datetime.html#datetime.date
http://docs.python.org/library/datetime.html#datetime.timedelta

openrange Documentation, Release 0.0.1

* pypy and pypy3

Primary development and testing were for python 2. 7.

5.1.3 Contribute

Contribution is welcome from those who propose new features, have ideas for improvement, or submit bug fixes.
Here’s a checklist for contributing to this project:

* Open or respond to an issue to discuss a feature or bug
* Fork the repo on GitHub and start making changes

* Write test(s) for the bug or feature

* Add yourself to CONTRIBUTORS.rst

* Send a pull request

5.2 Indices and tables

* genindex
* modindex

e search

10 Chapter 5. OpenRange

Python Module Index

o

openrange.base, 7
openrange.dt, 8
openrange.rng, 8

11

openrange Documentation, Release 0.0.1

12 Python Module Index

Index

B

BaseRange (class in openrange.base), 7

C

count() (openrange.base.BaseRange method), 7

D

DateRange (class in openrange.dt), 8
DatetimeRange (class in openrange.dt), 8

E

enumerate() (openrange.base.BaseRange method), 7

excluding() (openrange.base.BaseRange method), 7

index() (openrange.base.BaseRange method), 7

O

openrange.base (module), 7
openrange.dt (module), 8
openrange.rng (module), 8

R

random() (openrange.base.BaseRange method), 7
Range (class in openrange.rng), 8

repeat() (openrange.base.BaseRange method), 7
reverse() (openrange.base.BaseRange method), 7

S

start (openrange.base.BaseRange attribute), 7
step (openrange.base.BaseRange attribute), 8
stop (openrange.base.BaseRange attribute), 8

T

TimeRange (class in openrange.dt), 8

13

	BaseRange
	Example

	Range
	enumeration
	exclusion
	random iteration
	repeat iteration

	datetime Ranges
	DateRange
	DatetimeRange
	TimeRange

	API
	BaseRange
	Range
	datetime Ranges

	OpenRange
	Overview
	Indices and tables

	Python Module Index

