

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/openprocure/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/openprocure/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

 [image:]

Open Procure

Welcome!

[image: Join the chat at https://gitter.im/munirent/openprocure] [https://gitter.im/munirent/openprocure?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

Open Procure is an online open data repository of government purchasing information across the United States.

Our goal is to make municipal, county-level, state and federal purchasing easily accessible for everyone. It is where government officials, technologists, and active citizens can work together to make our purchasing processes more transparent.

See it live at http://openprocure.us/

How to contribute to this project

We welcome your help! There are several ways you can contribute:

	Use Open Procure [http://openprocure.us]! The more people use the information, the better.

	Search for new agency thresholds and add data to Open Procure

	Verify existing data and create a GitHub issue if you find a mistake [https://github.com/munirent/openprocure/issues]

	Propose changes to the site or data by creating a pull request [https://github.com/munirent/openprocure/pulls]

Visit our GitHub Issues [https://github.com/munirent/openprocure/issues] page to see a list of open actionable items to fix on the site.

We have a feature roadmap page [https://github.com/munirent/openprocure/wiki/Feature-Roadmap]. Feature/ideas can be added there.

:mount_fuji: Want to collaborate with others on a task? Add it to Task Mountain [http://www.taskmountain.com/] so other people can work on it!

[bookmark: search]

How to search for procurement thresholds

Procurement thresholds are not easily accessible through government websites, but the process can generally be expedited by using simple search terms or looking for navigation section headers such as "DOING BUSINESS WITH THE CITY" or PURCHASING RULES AND RESTRICTIONS Here are some tips on finding the proper thresholds:

	First, use some basic boolean operators in a simple Google search. For example, if you’re looking for the procurement thresholds for, say, Trenton, NJ, you’ll enter something like "procurement threshold" AND "trenton" AND "NJ." (note: the term ‘procurement’ may be substituted for ‘purchasing’ or ‘departmental spending,’ while ‘threshold’ could very likely be found entered as simply ‘limits’ or, less frequently, terms such as ‘petty cash fund’.) The same strategy is helpful if the governmental website in question has a strong in-site search bar.

	It may be likely that the precise thresholds for bidding and discretionary spending do not appear readily in a visiible spot on a government’s website in plain text. Often, you may need to search or browse to find a much longer document with a title along the lines of “Ethics Code” or “Financial Procedure Code.” Almost always, these documents will be in PDF.

	If you’ve found what appears to be a lengthy document of various government rules and codes, locating the procurement data can often be expedited by using your browser’s find text function (usually available by navigating in browser to Edit >> Find). Using the find term field, enter words such as “purchasing” or “thresholds” or “discretionary.” Pro-tip: Searching for the dollar symbol ($) is a handy trick for locating precise threshold data in many cases.

More to be added to this section.

[bookmark: add-data]

Adding data to Open Procure

Edit data/procurement.yaml directly on GitHub [https://github.com/munirent/openprocure/edit/master/data/procurement.yaml]. When you submit your changes, GitHub will automatically create a pull request. After the team merges it, the live website will be updated automatically. It takes about 1 min and you need to refresh your browser, but it is really that simple. No further action required.

Always include a link to source of the procurement thresholds you are adding to make future verification easy.

When adding a PDF as a link

Make sure you append the page number at the end. If I wanted to add a link to page 2 of this PDF [http://www.publishers.org.uk/_resources/assets/attachment/full/0/2091.pdf], I would add a #page=2 at the end of the URL. e.g. http://www.publishers.org.uk/_resources/assets/attachment/full/0/2091.pdf#page=2

Development

The website is hosted on GitHub pages. The static HTML pages are in the gh-pages branch.

The website is generated using the Middleman tool. The Middleman template is in the master branch.

To install

	Clone repository

	Install ruby and bundler for your system

	bundle install

To run in development

middleman

Open your browser to http://localhost:4567 or http://127.0.0.1:4567

Edit files and the page will automatically refresh.

To deploy changes

rake deploy

Or push to the master branch and let the auto-deploy do its thing.

License

To the extent possible under law, MuniRent [https://www.munirent.co] has waived all copyright and
related or neighboring rights to Open Procure. This work is published
from: United States.

See LICENSE.txt for more details.

jQuery Dynatable

A funner, semantic, HTML5+JSON, interactive table plugin.

See the full documentation with demos [http://www.dynatable.com].

Why?

The purpose of Dynatable is to provide a simple, extensible API, which
makes viewing and interacting with larger datasets easy. Dynatable
provides a framework for implementing the most common elements out of
the box, including sorting, searching and filtering. Above
all, I wanted a clean and elegant API that is fun to use.

Quickstart

To install Dynatable:

	Download the latest release [http://jspkg.com/packages/dynatable]

Support

IRC: Join us at #dynatable on freenode IRC [https://webchat.freenode.net/?channels=dynatable]

Bugs and Feature Requests: Search and open a Github Issue [https://github.com/alfajango/jquery-dynatable/issues]

Debugging: Fork and edit this template on JSFiddle [http://jsfiddle.net/ty3b7/]

Questions: Ask a question tagged with dynatable on
StackOverflow [http://stackoverflow.com/questions/tagged/dynatable]

TODO:

	~~Change unfilters and filters to readers and writers.~~

	~~Clean up defaults that are functions, by abstracting into internal
named functions which can be re-used.~~

	Change default sort functions to underscore-namespaced functions so as
not to conflict with record attributes called e.g. search.

	Update sort function implementation to be analogous to search function
implementation (whereby if a sort function matching attribute name is
present, it will be used for that attribute by default).

	Namespace pushstate query parameters by dynatable instance id to
simplify refreshQueryString function and prevent conflicts between
multiple pushState-enabled instances on one page.

	~~Refactor using prototype to abstract dynatable-global functions to
improve memory efficiency for multiple instances on one page.~~

	Implement configurable sorting algorithm (see
JS Merge Sort [http://en.literateprograms.org/Merge_sort_%28JavaScript%29] and Sorting Table [http://blog.vjeux.com/2010/javascript/javascript-sorting-table.html]).

	~~Change from Object.create method to constructor pattern to improve
performances (see
benchmark [http://jsperf.com/object-create-vs-constructor-vs-object-literal/7]).~~

	~~Use for loops instead of $.each where possible to improve
performance.~~

	~~Use strings and/or document fragments for writing to DOM, instead of
jQuery, by default to improve writing performance.~~

	Use templated strings to write pagination and other inputs.

	Make class names for input elements configurable.

	Use Chrome profiler to find any performance bottlenecks and fix.

	Simplify API by separating internal-only and accessible model
functions.

	Move sorts and queries functions objects to defaults to make easier to
customize and add to on instantiation (like filters and unfilters)

	Try using CSS-only for ProcessingIndicator.position to avoid querying
rendered DOM styling and speed up all operations that position the
indicator (see CSS absolute
centering [http://codepen.io/shshaw/full/gEiDt]).

	Add data-dynatable-attr=”name” support for reading records from
arbitrary markup (so that you don’t need to write a custom rowReader
function when starting with e.g. a stylized list).

	Make sort function first lookup settings.sortTypes[attr], then look
directly for sort sorts.functions[attr], and then finally
sorts.guessType only if neither of the first two exist.

	Add global remove/cleanup function (opposite of init) to allow
removing dynatable via JS.

	Support for Zepto?

Tests

Currently the testing process consists of opening the Dynatable
documentation [http://os.alfajango.com/dynatable]
(source code
here [https://github.com/alfajango/alfajango.github.com/blob/master/_posts/2012-01-09-dynatable.md]) in
each browser and making sure every example works. This is fine for the
initial release, since it serves the dual purpose of helping us write
the documentation and having a written functional use-case at once.
However, one of the top priorities now is to automate each use-case in
the docs as a test case within an automated test suite.

If anyone out there thinks this sounds like fun, please contact me or
even go ahead and create an issue/pull request. Otherwise, it will be at
the top of my priority list until I can get to it.

Contributing

Please see the Contributing Guidelines [https://github.com/JangoSteve/jquery-dynatable/blob/master/CONTRIBUTING.md].

Author

Steve Schwartz -
JangoSteve on Github [https://github.com/JangoSteve],
@jangosteve on Twitter [https://twitter.com/jangosteve]

[image: Alfa Jango logo]
Alfa Jango Open Source [http://os.alfajango.com] -
@alfajango on Twitter [https://twitter.com/alfajango]

Copyright and License

Copyright 2014 Alfa Jango LLC.

Dual licensed, released under the Free Software Foundation’s
GNU Affero General Public License (AGPL), or see license
information [http://www.dynatable.com/license] for proprietary or
commercial applications.

Miscellaneous

Refactor performance benchmarks

For version 0.1.0, Dynatable went through a refactor to use prototypal
inheritence as a more memory-efficient foundation. Here are some
off-the-cuff benchmarks I set up when doing this.

The performance increase was modest, according to these benchmarks, but
more importantly, the code became a bit cleaner and easier to work with.

http://jsperf.com/dynatable-prototypal-refactor

http://jsperf.com/dynatable-refactor/3

Currently, there’s still a bit of performance improvement to be gained
by further grouping DOM reads and writes (though they’re already mostly
grouped together), and by using JS string concatenation instead of
jQuery to build the HTML for rendering step.

The new string concatenation has started to roll out in v0.2.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

