

Table of contents

OpenParty is a web engine for multiplayer chat games, designed for speed and comfort.
This framework is proudly powered by Node.js and uses Angular.js, Express and Socket.io modules.

OpenParty is an open-source project hosted on GitHub [https://github.com/Lesterpig/openparty].
We’ll welcome all suggestions or pull requests (translations, new features, fixes...) !

User documentation

	Installation
	Softwares

	Get OpenParty

	Configuration

	Gameplays installation
	Example gameplays

	Usage
	Start and play !

	Auto-restart on fail

	Use nginx as a proxy

Developer documentation

	Contributing
	General rules

	How to contribute ?

	Definition files
	Mandatory keys

	Optional keys

	Public API
	Room

	Player

	Action

	Channel

	Role

	Sound

	Global objects

Installation

OpenParty is designed to work with Linux, Mac, and even Windows distributions. However, the framework provides a http server, and we strongly suggest you to host OpenParty servers in Linux distributions (Debian 7 preferred).

Note

The following instructions are designed to work for a Debian 7 installation.

Softwares

The framework comes with several (small) prerequisites to work properly.

	node.js

	npm

You just have to pick-up these modules from package repositories. Binary files are available [https://nodejs.org] for windows.

Here are the steps for a quick installation on a bare Debian 7:

$ su root
apt-get install -y curl git
curl -sL https://deb.nodesource.com/setup_0.12 | bash -
apt-get install -y nodejs
exit

Get OpenParty

You can use Git repository to get the latest version, or pick a stable release [https://github.com/Lesterpig/openparty/releases].

$ git clone https://github.com/Lesterpig/openparty.git
$ cd openparty
$ npm install
$ cp config/config_sample.js config/config.js

Updates and upgrades are easily resolved by git itself:

$ git pull

Configuration

For global parameters, you just have to edit the config/config.js file to fit your needs.

At this point, you don’t have any gameplay definitions stored on the server. Go to the next section to discover how to install gameplays.

Warning

You’ll have to restart the OpenParty server to apply the modifications.

Gameplays installation

One OpenParty web server can handle many different gameplays on the same processus. Gameplays are stored in the data directory (then, one subdirectory per gameplay).

openparty/
 config/
 data/
 gameplay1/
 definition.js
 ...
 gameplay2/
 definition.js
 ...
 ...
 docs/
 ...

The data directory is scanned at startup, and valid gameplay definitions (stored in definition.js files).

Example gameplays

For test purposes, we provide you several tiny gameplays.

$ git clone https://github.com/Lesterpig/openparty-examples data

Usage

Start and play !

$ npm start

You can now play with OpenParty and loaded gameplays in your web browser.

If you are running the server locally, you can test with http://localhost:3040. To stop the server, just kill it with CTRL+C keys.

Auto-restart on fail

You can use the forever module to automatically restart OpenParty on crash. More over, it’s an easy way to restart your application after an upgrade. Forever will run OpenParty silently in the background.

To install it:

$ su root
npm install -g forever

To start your application in the background:

$ forever start --killSignal=SIGINT app.js

To restart or stop it:

$ forever restart app.js
$ forever stop app.js

Use nginx as a proxy

Warning

You’ll need nginx v1.3.13 or higher to use it as a proxy for OpenParty.

Here is an example of a basic config file for nginx, assuming OpenParty is running on port 3040.

server {
 listen 80;

 server_name yourdomain.com;

 location / {
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy true;
 proxy_pass http://127.0.0.1:3040/;
 proxy_redirect off;
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";
 }
}

Contributing

We welcome every contribution! Don’t hesitate to submit issues and pull requests, we’ll analyze each problem and patch.

General rules

	Check if anyone has the same problem as you in the issues before posting a new one

	Write your code in english with 2-spaces indentation

	Test your patch before submit it (and not only with automated tests)

	Open one pull request per patch (to avoid mixed patchs)

	Try to rebase your commits into a single commit. We’ll do it for you, but you would help us a lot :)

	Each patch sould come with its own test cases. The coverage target is 100% !

How to contribute ?

You can do several things to help OpenParty, from minor fixes to major features. Here are some assignments you can execute to train yourself.

	Fork the repository and build it on your computer.

	Resolve CodeClimate [https://codeclimate.com/github/Lesterpig/openparty] issues, and open a pull request. It’s often small fixes like missing semicolons or undefined variables.

	Resolve “minor” issues on GitHub

	Add missing test cases, and update documentation if needed

	Ask for “major” work before starting anything that might break everything ;)

We also need translations of the framework. You can check this issue [https://github.com/Lesterpig/openparty/issues/19] for more information.

Oh, you are also invited to build gameplay definitions; see next chapter!

Definition files

Gameplay definitions are hosted under data/<gameplayName>/definition.js. This file must be a node.js module: it means that it must return a javascript object. These two structures are valid:

module.exports = {

 element: "value",
 another: "bar"

}

module.exports = function() {

 this.element = "value";
 this.another = "bar";

}

This file is the entry point of your gameplay definition: you can create many javascript files in the gameplay directory if you need it! There is no restriction of size or compute time.

Note

You must provide valid keys in your definition file: it will be parsed at startup and invalid files will be rejected.

You can view a list of checked keys here [https://github.com/Lesterpig/openparty/blob/master/lib/attrs.js].

Mandatory keys

	
'name'

	String

The name of the gameplay. It will be displayed in room properties.

	
'minPlayers'

	Number

The minimum/default number of players per room.

	
'maxPlayers'

	Number

	
'start'

	function (room, callback) {}

Called when the start command is emitted by the room creator. The callback must be called with null to confirm the room start. If callback is called with another value, a message would be printed in game chat.

Optional keys

	
'version'

	String

The current version of this gameplay.

	
'opVersion'

	String

The required version of OpenParty. Must be in semver format.

Examples:

"0.1.*"
">=0.1"
"<1.0.0"

	
'description'

	String

A short description of the gameplay, displayed in room list.

	
'stages'

	Object

An object containing all available stages for this gameplay. This object can be dynamically updated by your gameplay. A stage is just a period of time and contains only two functions: start and end.

The key used to define a stage is saved in room.currentStage variable, and a room is always in a specific stage.

	
'start'

	function (room, cb) {}

Called by the engine when a stage is started. cb must be called with two parameters: the first one is an error indicator, and the second is the duration of the stage (seconds). A duration can be -1 for infinite.

	
'end'

	function (room) {}

Called when a stage ends.

Example of stages object

stages: {
 "default": {
 start: function(room, cb) {
 cb(null, 5);
 },
 end: function(room) {}
 }
}

	
'firstStage'

	String

The first stage to start.

	
'css'

	Array[String]

You can include custom css files in the web browser. Just place your css files in a data/<gameplayName>/css folder and specify their names in the css array.

css: ["file1.css", "file2.css"]

	
'parameters'

	Array[Object]

Used to define specific parameters for room. Players can interract with these parameters to customize their gameplay experience.

Warning

This feature is currently in development.

Example of parameter:

{
 name: "The name of the parameter",
 type: Number, // the type
 value: 1, // default value
 help: "An help text for this parameter"
}

	
'init'

	function (room) {}

Called just after room creation.

	
'processMessage'

	function (channel, message, player) {}

Called for each message sent by players.

You must return the message to broadcast it, modified or not. Return false to ignore the message.

	
'onDisconnect'

	function (room, player) {}

	
'onReconnect'

	function (room, player) {}

	
'reconnectDelay'

	Integer

After a disconnection, a player has this delay (in second) to reconnect. Use -1 to disable reconnection. Defaults to one minute.

	
'sounds'

	Array[Sound]

An array of Sound objects to be preloaded automatically at start. Please provide only tiny sounds to avoid large bandwidth usage.

Public API

You can access and modify these objects through your definition.js file.

Room

	
class Room()

	This object is frequently an argument for definition.js files.
You can check a full list of features in lib/rooms.js.

Rooms are created (and destroyed) for you by the framework. You just have to interract with it.

	
Room.id

	String

A unique identifier for the room.

	
Room.players

	Array[Socket]

Contains players that is in this room.

Warning

This is an array of socket objects, not player! It’s very important: to access the player objects, write something like this:

var player0 = room.players[0].player;

The first element of this array is the room creator.

	
Room.name

	String

The current name of the room.

	
Room.size

	Number

The number of available seats. If the room is started, it should be the total number of players.

	
Room.started

	Boolean

If the room is started (not in waiting stage).

	
Room.currentStage

	String

The name of the active stage, or null if not started.

	
Room.broadcast([channel,]event[, data])

	

	Arguments:	
	event (string) – Send an event to players browsers

	channel (string) – Send the event to this channel. If null, send to everyone in the room.

	data – Data to send through the event

Here is some examples of available events:

	chatMessage({sender: String, message: String}): print a new message in game log

	clearChat(): clear the game log

	setGameInfo(String): change the content of the box in the left-top on the game-screen

	preloadSound(Sound): preload a sound in player browsers to avoid further latency

	playSound(Sound)

	stopSound(Sound)

	
Room.playerInfo([channel,]player, value)

	Send more information about a player.
Client-side, it will be displayed in players list.

	Arguments:	
	player (Player|Socket) – The player to update

	value (string) – The new value to display (html allowed)

	channel (string) – Send the event to this channel. If null, send to everyone in the room.

	
Room.message([channel,]message)

	Send a chat message to players (system message)

	Arguments:	
	message (string) – The message to send (html allowed)

	channel (string) – Send the event to this channel. If null, send to everyone in the room.

	
Room.nextStage(stage[, callback])

	End the current stage and start another one

	Arguments:	
	stage (string) – The new stage name

	callback (function) –

	
Room.endStage()

	End the current stage, without starting another one

	
Room.setStageDuration(duration)

	Change current stage duration

	Arguments:	
	duration (number) – duration in seconds

	
Room.getRemainingTime()

	

	Returns:	Milliseconds before next stage. Can be “Infinity”

	
Room.resolveUsername(username)

	
Get player object from username

	Arguments:	
	username (string) –

	Returns:	Socket associated to this username, or null

Player

	
class Player()

	One player object is created and associated for each user at room startup.

	
Player.roles

	Object[Role]

Roles of this user. You should not modify this object directly.

	
Player.channels

	Object[Channels]

Subscribed channels for this user, overrides Player.roles ones. You should not modify this object directly.

	
Player.actions

	Object[Actions]

Subscribed actions for this user, overrides Player.roles ones. You should not modify this object directly.

	
Player.socket

	Socket

	
Player.room

	Room

	
Player.username

	String

	
Player.setRole(role, value)

	Add, update or remove a role for a player. Actions and channels attached to the role are silently added for the player.

	Arguments:	
	role (String) – The name of the role (should be consistent)

	value (Role) – Role data, or null to remove the role

	
Player.setAction(name, value)

	Add, update or remove an action for a player

	Arguments:	
	name (String) – The name of the action (should be consistent)

	value (Action) – Action data, or null to remove the action

	
Player.setChannel(name, value)

	Add, update or remove a channel for a player

	Arguments:	
	role (String) – The name of the channel (should be consistent)

	value (Channel) – Channel data, or null to remove the player

	
Player.sendAvailableActions()

	Call this function to update one’s available actions (after updating some properties for instance).

	
Player.emit(event, data)

	Emit an event for one player only

	
Player.message(m)

	Send a chat message for one player only

Action

	
class Action()

	This object contains all mandatory data to build dynamic forms for players ingame.

	
Action.isAvailable

	function(player) {}

Must return true if the action is available for the player.

	
Action.type

	String

	button

	select

	
Action.options

	Object

Contains additionnal information for specific actions.

	submit: String (for all): the submit message printed on the button

	choices: String | Function | Array (for select): the list of available choices for select actions. If the value is players, default choices is players’ usernames.

	
Action.execute

	function(player[, choice])

Called during action execution by a player. You don’t need to check the availability, OpenParty does it for you :)

Examples:

var action1 = {
 isAvailable: function(player) {
 return true;
 },
 type: "button",
 options: {
 submit: "BOUM",
 },
 execute: function(player) {
 player.room.message("EVERYTHING IS EXPLODED!");
 }
};

var action2 = {
 isAvailable: function(player) {
 return true;
 },
 type: "select",
 options: {
 choices: ["One", "Two"],
 submit: "Choose",
 },
 execute: function(player, choice) {
 player.room.message(choice);
 }
};

var action3 = {
 isAvailable: function(player) {
 return player.room.currentStage === "stageA";
 },
 type: "select",
 options: {
 choices: function() { return [1,2,3]; },
 submit: "Choose",
 },
 execute: function(player, choice) {
 player.room.message("general", choice);
 }
};

Channel

	
class Channel()

	A very simple object for channel management. A channel is a virtual chat room: players can read and/or speak in that channel.

By default, each player is in general channel (read and write accesses). You can remove this behavior by executing the following code:

room.players.forEach(function(p) {
 p.player.setChannel("general", null);
});

Each player is also in a private channel (read-only). The name of the channel is

player-<username>

with <username> replaced by the effective username of the user. This feature is just an helper for gamemaster features or private messages (for instance).

	
Channel.r

	Boolean

Determines read access

	
Channel.w

	Boolean

Determines write access

	
Channel.n

	String

The channel name. Players will see this name on their game screens.

	
Channel.p

	Number

The channel priority. Highest priority element is in the top in channels list, and selected by default. It is an optional parameter.

Example of read-only channel:

var channel = {r: true, w: false, n: "My Channel", p: 10};

Role

	
class Role()

	A role is a combination of some channels and some actions. Because in roleplay games, some players could share the same channels and actions...

	
Role.channels

	Object[Channel]

	
Role.actiond

	Object[Action]

Example:

var role = {

 channels: {
 "channelA": {...},
 "channelB": {...}
 },

 actions: {
 "actionA": {...},
 "actionB": {...}
 }

}

Sound

	
class Sound()

	A sound is a minimal object containing several information for browsers.

	
Sound.id

	String

A unique identifier for the sound.

	
Sound.path

	String

Relative, or absolute path of the sound. You should store your sounds in /public directory.

	
Sound.distant

	Boolean

Is it an absolute path, or not ? Defaults to false.

	
Sound.loop

	Boolean

Define if the sound should be restarted at the end or not.

	
Sound.volume

	Number

A number between 0 and 1 for setting sound volume.

Global objects

Some usefull objects are loaded as global variables by OpenParty.

	
GET_RANDOM(from, to)

	

	Arguments:	
	from (number) –

	to (number) –

	Returns:	A random integer between from (included) and to (included).

	
__app

	The sockpress app for OpenParty. You can use it to add custom routes if required. Check the documentation [https://github.com/Lesterpig/sockpress].

Index

 Symbols
 | _
 | A
 | C
 | G
 | P
 | R
 | S

Symbols

 	
 	'css' (global variable or constant)

 	'description' (global variable or constant)

 	'end' (global variable or constant)

 	'firstStage' (global variable or constant)

 	'init' (global variable or constant)

 	'maxPlayers' (global variable or constant)

 	'minPlayers' (global variable or constant)

 	'name' (global variable or constant)

 	'onDisconnect' (global variable or constant)

 	
 	'onReconnect' (global variable or constant)

 	'opVersion' (global variable or constant)

 	'parameters' (global variable or constant)

 	'processMessage' (global variable or constant)

 	'reconnectDelay' (global variable or constant)

 	'sounds' (global variable or constant)

 	'stages' (global variable or constant)

 	'start' (global variable or constant), [1]

 	'version' (global variable or constant)

_

 	
 	__app (global variable or constant)

A

 	
 	Action() (class)

 	Action.execute (Action attribute)

 	
 	Action.isAvailable (Action attribute)

 	Action.options (Action attribute)

 	Action.type (Action attribute)

C

 	
 	Channel() (class)

 	Channel.n (Channel attribute)

 	
 	Channel.p (Channel attribute)

 	Channel.r (Channel attribute)

 	Channel.w (Channel attribute)

G

 	
 	GET_RANDOM() (built-in function)

P

 	
 	Player() (class)

 	Player.actions (Player attribute)

 	Player.channels (Player attribute)

 	Player.emit() (Player method)

 	Player.message() (Player method)

 	Player.roles (Player attribute)

 	
 	Player.room (Player attribute)

 	Player.sendAvailableActions() (Player method)

 	Player.setAction() (Player method)

 	Player.setChannel() (Player method)

 	Player.setRole() (Player method)

 	Player.socket (Player attribute)

 	Player.username (Player attribute)

R

 	
 	Role() (class)

 	Role.actiond (Role attribute)

 	Role.channels (Role attribute)

 	Room() (class)

 	Room.broadcast() (Room method)

 	Room.currentStage (Room attribute)

 	Room.endStage() (Room method)

 	Room.getRemainingTime() (Room method)

 	Room.id (Room attribute)

 	
 	Room.message() (Room method)

 	Room.name (Room attribute)

 	Room.nextStage() (Room method)

 	Room.playerInfo() (Room method)

 	Room.players (Room attribute)

 	Room.resolveUsername() (Room method)

 	Room.setStageDuration() (Room method)

 	Room.size (Room attribute)

 	Room.started (Room attribute)

S

 	
 	Sound() (class)

 	Sound.distant (Sound attribute)

 	Sound.id (Sound attribute)

 	
 	Sound.loop (Sound attribute)

 	Sound.path (Sound attribute)

 	Sound.volume (Sound attribute)

 _static/comment.png

nav.xhtml

 Table of Contents

 		Table of contents

 		Installation

 		Softwares

 		Get OpenParty

 		Configuration

 		Gameplays installation

 		Example gameplays

 		Usage

 		Start and play !

 		Auto-restart on fail

 		Use nginx as a proxy

 		Contributing

 		General rules

 		How to contribute ?

 		Definition files

 		Mandatory keys

 		Optional keys

 		Public API

 		Room

 		Player

 		Action

 		Channel

 		Role

 		Sound

 		Global objects

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

