
OpenERP Web Documentation
Release 6.1.1

OpenERP S.A.

October 19, 2016

Contents

1 Getting Started with OpenERP Web 3
1.1 Installing . 3
1.2 Launching . 3

2 Deploying OpenERP Web 5
2.1 In-depth configuration . 5
2.2 Deployment Options . 5

3 OpenERP Web as a widgets provider 7

4 Developing OpenERP Web Addons 9
4.1 Structure . 9
4.2 Namespacing . 10
4.3 Creating new standard roles . 11
4.4 Frequent development tasks . 13
4.5 Translations . 15
4.6 Utility behaviors . 17
4.7 Testing . 17

5 OpenERP Web Core and standard addons 19
5.1 Standard Views . 19
5.2 Internal API Doc . 23
5.3 Testing . 24

6 The OpenERP Web open-source project 25
6.1 Getting involved . 25
6.2 OpenERP Web over time . 30

7 Main differences with the 6.0 client 31

8 Indices and tables 33

i

ii

OpenERP Web Documentation, Release 6.1.1

Contents:

Contents 1

OpenERP Web Documentation, Release 6.1.1

2 Contents

CHAPTER 1

Getting Started with OpenERP Web

1.1 Installing

1.2 Launching

3

OpenERP Web Documentation, Release 6.1.1

4 Chapter 1. Getting Started with OpenERP Web

CHAPTER 2

Deploying OpenERP Web

2.1 In-depth configuration

SSL, basic proxy (link to relevant section), links to sections and example files for various servers and proxies, WSGI
integration/explanation (if any), ...

2.2 Deployment Options

2.2.1 Serving via WSGI

Apache mod_wsgi

NGinx mod_wsgi

uWSGI

Gunicorn

FastCGI, SCGI, or AJP

2.2.2 Behind a proxy

Apache mod_proxy

NGinx HttpProxy

5

OpenERP Web Documentation, Release 6.1.1

6 Chapter 2. Deploying OpenERP Web

CHAPTER 3

OpenERP Web as a widgets provider

• Using a readonly view as a widget

– Site example

– iGoogle example

– social site example e.g. Facebook app?

• Write-access widgets (e.g. contact form)

• Multiple widgets on the same page

• JSON-RPC2 API description for third-parties?

7

OpenERP Web Documentation, Release 6.1.1

8 Chapter 3. OpenERP Web as a widgets provider

CHAPTER 4

Developing OpenERP Web Addons

An OpenERP Web addon is simply a Python package with an openerp descriptor (a __openerp__.py file) which
follows a few structural and namespacing rules.

4.1 Structure

<addon name>
+-- __openerp__.py
+-- controllers/
+-- static/

+-- lib/
+-- src/

+-- css/
+-- img/
+-- js/
+-- xml/

+-- test/
+-- test/

__openerp__.py The addon’s descriptor, contains the following information:

name: str The addon name, in plain, readable english

version: str The addon version, following Semantic Versioning rules

depends: [str] A list of addons this addon needs to work correctly. base is an implied dependency if
the list is empty.

css: [str] An ordered list of CSS files this addon provides and needs. The file paths are relative to the
addon’s root. Because the Web Client may perform concatenations and other various optimizations on
CSS files, the order is important.

js: [str] An ordered list of Javascript files this addon provides and needs (including dependencies files).
As with CSS files, the order is important as the Web Client may perform contatenations and minimizations
of files.

active: bool Whether this addon should be enabled by default any time it is found, or whether it will be
enabled through other means (on a by-need or by-installation basis for instance).

controllers/ All of the Python controllers and JSON-RPC endpoints.

static/ The static files directory, may be served via a separate web server.

static/lib/ Third-party libraries used by the addon.

9

http://semver.org/

OpenERP Web Documentation, Release 6.1.1

static/src/{css,js,img,xml} Location for (respectively) the addon’s static CSS files, its JS files, its vari-
ous image resources as well as the template files

static/test Javascript tests files

test/ The directories in which all tests for the addon are located.

Some of these are guidelines (and not enforced by code), but it’s suggested that these be followed. Code which does
not fit into these categories can go wherever deemed suitable.

4.2 Namespacing

4.2.1 Python

Because addons are also Python packages, they’re inherently namespaced and nothing special needs to be done on that
front.

4.2.2 JavaScript

The JavaScript side of an addon has to live in the namespace openerp.$addon_name. For instance, everything
created by the addon base lives in openerp.base.

The root namespace of the addon is a function which takes a single parameter openerp, which is an OpenERP client
instance. Objects (as well as functions, registry instances, etc...) should be added on the correct namespace on that
object.

The root function will be called by the OpenERP Web client when initializing the addon.

// root namespace of the openerp.example addon
/** @namespace */
openerp.example = function (openerp) {

// basic initialization code (e.g. templates loading)
openerp.example.SomeClass = openerp.base.Class.extend(

/** @lends openerp.example.SomeClass# */{
/**
* Description for SomeClass's constructor here

*
* @constructs

*/
init: function () {

// SomeClass initialization code
}
// rest of SomeClass

});

// access an object in an other addon namespace to replace it
openerp.base.SearchView = openerp.base.SearchView.extend({

init: function () {
this._super.apply(this, arguments);
console.log('Search view initialized');

}
});

}

10 Chapter 4. Developing OpenERP Web Addons

OpenERP Web Documentation, Release 6.1.1

4.3 Creating new standard roles

4.3.1 Widget

This is the base class for all visual components. It provides a number of services for the management of a DOM
subtree:

• Rendering with QWeb

• Parenting-child relations

• Life-cycle management (including facilitating children destruction when a parent object is removed)

• DOM insertion, via jQuery-powered insertion methods. Insertion targets can be anything the corresponding
jQuery method accepts (generally selectors, DOM nodes and jQuery objects):

appendTo() Renders the widget and inserts it as the last child of the target, uses .appendTo()

prependTo() Renders the widget and inserts it as the first child of the target, uses .prependTo()

insertAfter() Renders the widget and inserts it as the preceding sibling of the target, uses .insertAfter()

insertBefore() Renders the widget and inserts it as the following sibling of the target, uses .insertBefore()

Widget() inherits from SessionAware(), so subclasses can easily access the RPC layers.

Subclassing Widget

Widget() is subclassed in the standard manner (via the extend() method), and provides a number of abstract
properties and concrete methods (which you may or may not want to override). Creating a subclass looks like this:

var MyWidget = openerp.base.Widget.extend({
// QWeb template to use when rendering the object
template: "MyQWebTemplate",

init: function(parent) {
this._super(parent);
// insert code to execute before rendering, for object
// initialization

},
start: function() {

this._super();
// post-rendering initialization code, at this point
// ``this.$element`` has been initialized
this.$element.find(".my_button").click(/* an example of event binding * /);

// if ``start`` is asynchronous, return a promise object so callers
// know when the object is done initializing
return this.rpc(/* ... */)

}
});

The new class can then be used in the following manner:

// Create the instance
var my_widget = new MyWidget(this);
// Render and insert into DOM
my_widget.appendTo(".some-div");

4.3. Creating new standard roles 11

http://api.jquery.com/appendTo/
http://api.jquery.com/prependTo/
http://api.jquery.com/insertAfter/
http://api.jquery.com/insertBefore/

OpenERP Web Documentation, Release 6.1.1

After these two lines have executed (and any promise returned by appendTo has been resolved if needed), the widget
is ready to be used.

Note: the insertion methods will start the widget themselves, and will return the result of start().

If for some reason you do not want to call these methods, you will have to first call render() on the widget, then
insert it into your DOM and start it.

If the widget is not needed anymore (because it’s transient), simply terminate it:

my_widget.stop();

will unbind all DOM events, remove the widget’s content from the DOM and destroy all widget data.

4.3.2 Views

Views are the standard high-level component in OpenERP. A view type corresponds to a way to display a set of data
(coming from an OpenERP model).

In OpenERP Web, views are standard objects registered against a dedicated object registry, so the ViewManager()
knows where to find and how to call them.

Although not mandatory, it is recommended that views inherit from openerp.base.View(), which provides a
view useful services to its children.

Registering a view

This is the first task to perform when creating a view, and the simplest by far: simply call
openerp.base.views.add(name, object_path) to register the object of path object_path as the
view for the view name name.

The view name is the name you gave to your new view in the OpenERP server.

From that point onwards, OpenERP Web will be able to find your object and instantiate it.

Standard view behaviors

In the normal OpenERP Web flow, views have to implement a number of methods so view managers can correctly
communicate with them:

start() This method will always be called after creating the view (via its constructor), but not necessarily imme-
diately.

It is called with no arguments and should handle the heavy setup work, including remote call (to load the view’s
setup data from the server via e.g. fields_view_get, for instance).

start should return a promise object which must be resolved when the view’s setup is completed. This promise
is used by view managers to know when they can start interacting with the view.

do_hide() Called by the view manager when it wants to replace this view by an other one, but wants to keep this
view around to re-activate it later.

Should put the view in some sort of hibernation mode, and must hide its DOM elements.

do_show() Called when the view manager wants to re-display the view after having hidden it. The view should
refresh its data display upon receiving this notification

12 Chapter 4. Developing OpenERP Web Addons

http://api.jquery.com/deferred.promise/

OpenERP Web Documentation, Release 6.1.1

do_search(domain: Array, context: Object, group_by: Array) If the view is searchable,
this method is called to notify it of a search against it.

It should use the provided query data to perform a search and refresh its internal content (and display).

All views are searchable by default, but they can be made non-searchable by setting the property searchable
to false.

This can be done either on the view class itself (at the same level as defining e.g. the start method) or at the
instance level (in the class’s init), though you should generally set it on the class.

4.4 Frequent development tasks

There are a number of tasks which OpenERP Web developers do or will need to perform quite regularly. To make
these easier, we have written a few guides to help you get started:

4.4.1 Creating a new client action

Client actions are the client-side of OpenERP’s “Server Actions”: instead of allowing for semi-arbitrary code to be
executed in the server, they allow for execution of client-customized code.

On the server side, a client action is an action of type ir.actions.client, which has (at most) two properties:
a mandatory tag, which is an arbitrary string by which the client will identify the action, and an optional params
which is simply a map of keys and values sent to the client as-is (this way, client actions can be made generic and
reused in multiple contexts).

General Structure

In the OpenERP Web code, a client action only requires two pieces of information:

• Mapping the action’s tag to an OpenERP Web object

• The OpenERP Web object itself, which must inherit from openerp.web.Widget()

Our example will be the actual code for the widgets client action (a client action displaying a res.widget object,
used in the homepage dashboard of the web client):

// Registers the object 'openerp.web_dashboard.Widget' to the client
// action tag 'board.home.widgets'
openerp.web.client_actions.add(

'board.home.widgets', 'openerp.web_dashboard.Widget');
// This object inherits from View, but only Widget is required
openerp.web_dashboard.Widget = openerp.web.View.extend({

template: 'HomeWidget'
});

At this point, the generic Widget lifecycle takes over, the template is rendered, inserted in the client DOM, bound on
the object’s $element property and the object is started.

If the client action takes parameters, these parameters are passed in as a second positional parameter to the constructor:

init: function (parent, params) {
// execute the Widget's init
this._super(parent);
// board.home.widgets only takes a single param, the identifier of the
// res.widget object it should display. Store it for later

4.4. Frequent development tasks 13

OpenERP Web Documentation, Release 6.1.1

this.widget_id = params.widget_id;
}

More complex initialization (DOM manipulations, RPC requests, ...) should be performed in the start() method.

Note: As required by Widget‘s contract, if start executes any asynchronous code it should return a $.Deferred
so callers know when it’s ready for interaction.

Although generally speaking client actions are not really interacted with.

start: function () {
return $.when(

this._super(),
// Simply read the res.widget object this action should display
new openerp.web.DataSet(this, 'res.widget').read_ids(

[this.widget_id], ['title'], this.on_widget_loaded));
}

The client action can then behave exactly as it wishes to within its root (this.$element). In this case, it performs
further renderings once its widget’s content is retrieved:

on_widget_loaded: function (widgets) {
var widget = widgets[0];
var url = _.sprintf(

'/web_dashboard/widgets/content?session_id=%s&widget_id=%d',
this.session.session_id, widget.id);

this.$element.html(QWeb.render('HomeWidget.content', {
widget: widget,
url: url

}));
}

4.4.2 Adding a sidebar to a view

Initialization

Each view has the responsibility to create its sidebar (or not) if and only if the sidebar flag is set in its options.

In that case, it should use the sidebar_id value (from its options) to initialize the sidebar at the right position in the
DOM:

if (this.options.sidebar && this.options.sidebar_id) {
this.sidebar = new openerp.web.Sidebar(this, this.options.sidebar_id);
this.sidebar.start();

}

Because the sidebar is an old-style widget, it must be started after being initialized.

Sidebar communication protocol

In order to behave correctly, a sidebar needs informations from its parent view.

This information is extracted via a very basic protocol consisting of a property and two methods:

14 Chapter 4. Developing OpenERP Web Addons

OpenERP Web Documentation, Release 6.1.1

dataset
the view’s dataset, used to fetch the currently active model and provide it to remote action handlers as part of
the basic context

get_selected_ids()
Used to query the parent view for the set of currently available record identifiers. Used to setup the basic
context’s active_id and active_ids keys.

Warning: get_selected_ids() must return at least one id

Returns an array of at least one id

Return type Array<Number>

sidebar_context()
Queries the view for additional context data to provide to the sidebar.

View() provides a default NOOP implementation, which simply resolves to an empty object.

Returns a promise yielding an object on success, this object is mergeed into the sidebar’s own
context

Return type $.Deferred<Object>

Programmatic folding and unfolding

The sidebar object starts folded. It provides three methods to handle its folding status:

do_toggle()
Toggles the status of the sidebar

do_fold()
Forces the sidebar closed if it’s currently open

do_unfold()
Forces the sidebar open if it’s currently closed

4.5 Translations

OpenERP Web should provide most of the tools needed to correctly translate your addons via the tool of your choice
(OpenERP itself uses Launchpad’s own translation tool.

4.5.1 Making strings translatable

QWeb

QWeb automatically marks all text nodes (any text which is not in an XML attribute and not part of an XML tag) as
translatable, and handles the replacement for you. There is nothing special to do to mark template text as translatable

JavaScript

OpenERP Web provides two functions to translate human-readable strings in javascript code. These functions should
be “imported” in your module by aliasing them to their bare name:

4.5. Translations 15

https://help.launchpad.net/Translations

OpenERP Web Documentation, Release 6.1.1

var _t = openerp.web._t,
_tl = openerp.web._tl;

importing those functions under any other name is not guaranteed to work.

Note: only import them if necessary, and only the necessary one(s), no need to clutter your module’s namespace for
nothing

openerp.web._t(s)
Base translation function, eager, works much like gettext(3)

Return type String

openerp.web._lt(s)
Lazy equivalent to _t(), this function will postpone fetching the translation to its argument until the last
possible moment.

To use in contexts evaluated before the translation database can be fetched, usually your module’s toplevel and
the attributes of classes defined in it (class attributes, not instance attributes set in the constructor).

Return type LazyString

Text formatting & translations

A difficulty when translating is integrating data (from the code) into the translated string. In OpenERP Web addons,
this should be done by wrapping the text to translate in an sprintf(3) call. For OpenERP Web, sprintf(3) is
provided by underscore.string.

As much as possible, you should use the “named argument” form of sprintf:

var translated_string = _.str.sprintf(
_t("[%(first_record)d to %(last_record)d] of %(records_count)d"), {

first_record: first + 1,
last_record: last,
records_count: total

}));

named arguments make the string to translate much clearer for translators, and allows them to “move” sections around
based on the requirements of their language (not all language order text like english).

Named arguments are specified using the following pattern: %($name)$type where

$name the name of the argument, this is the key in the object/dictionary provided as second parameter to sprintf

$type a type/format specifier, see the list for all possible types.

Note: positional arguments are acceptable if the translated string has a single argument and its content is easy to
guess from the text around it. Named arguments should still be preferred.

Warning: you should never use string concatenation as it robs the translator of context and make result in a
completely incorrect translation

16 Chapter 4. Developing OpenERP Web Addons

http://epeli.github.com/underscore.string/
http://www.diveintojavascript.com/projects/javascript-sprintf

OpenERP Web Documentation, Release 6.1.1

Extracting strings

Once strings have been marked for translation, they need to be extracted into POT (Portable Object Template) files,
from which most translation tools can build a database.

This can be done via the provided gen_translations.sh.

It can be called either as gen_translations.sh -a or by providing two parameters, a path to the addons and
the complete path in which to put the extracted POT file.

-a
Extracts translations from all standard OpenERP Web addons (addons bundled with OpenERP Web itself) and
puts the extracted templates into the right directory for Rosetta to handle them

4.6 Utility behaviors

4.6.1 JavaScript

• All javascript objects inheriting from openerp.base.BasicConroller() will have all methods starting
with on_ or do_ bound to their this. This means they don’t have to be manually bound (via _.bind or
$.proxy) in order to be useable as bound event handlers (event handlers keeping their object as this rather
than taking whatever this object they were called with).

Beware that this is only valid for methods starting with do_ and on_, any other method will have to be bound
manually.

4.7 Testing

4.7.1 Python

OpenERP Web uses unittest2 for its testing needs. We selected unittest2 rather than unittest for the following reasons:

• autodiscovery (similar to nose, via the unit2 CLI utility) and pluggable test discovery.

• new and improved assertions (with improvements in type-specific inequality reportings) including pluggable
custom types equality assertions

• neveral new APIs, most notably assertRaises context manager, cleanup function registration, test skipping and
class- and module-level setup and teardown

• finally, unittest2 is a backport of Python 3’s unittest. We might as well get used to it.

To run tests on addons (from the root directory of OpenERP Web) is as simple as typing PYTHONPATH=. unit2
discover -s addons 1. To test an addon which does not live in the addons directory, simply replace addons
by the directory in which your own addon lives.

1 the -s parameter tells unit2 to start trying to find tests in the provided directory (here we’re testing addons). However a side-effect of that is
to set the PYTHONPATH there as well, so it will fail to find (and import) openerpweb.

The -t parameter lets us set the PYTHONPATH independently, but it doesn’t accept multiple values and here we really want to have both . and
addons on the PYTHONPATH.

The solution is to set the PYTHONPATH to . on start, and the start-directory to addons. This results in a correct PYTHONPATH within
unit2.

4.6. Utility behaviors 17

https://help.launchpad.net/Translations
http://www.voidspace.org.uk/python/articles/unittest2.shtml
http://docs.python.org/library/unittest.html
http://www.voidspace.org.uk/python/articles/unittest2.shtml#test-discovery
http://www.voidspace.org.uk/python/articles/unittest2.shtml#load-tests
http://www.voidspace.org.uk/python/articles/unittest2.shtml#new-assert-methods
http://www.voidspace.org.uk/python/articles/unittest2.shtml#add-new-type-specific-functions
http://www.voidspace.org.uk/python/articles/unittest2.shtml#add-new-type-specific-functions
http://www.voidspace.org.uk/python/articles/unittest2.shtml#assertraises
http://www.voidspace.org.uk/python/articles/unittest2.shtml#cleanup-functions-with-addcleanup
http://www.voidspace.org.uk/python/articles/unittest2.shtml#test-skipping
http://www.voidspace.org.uk/python/articles/unittest2.shtml#class-and-module-level-fixtures

OpenERP Web Documentation, Release 6.1.1

Note: unittest2 is entirely compatible with nose (or the other way around). If you want to use nose as your test
runner (due to its addons for instance) you can simply install it and run nosetests addons instead of the unit2
command, the result should be exactly the same.

4.7.2 Python

• Addons lifecycle (loading, execution, events, ...)

– Python-side

– JS-side

• Handling static files

• Overridding a Python controller (object?)

• Overridding a Javascript controller (object?)

• Extending templates .. how do you handle deploying static files via e.g. a separate lighttpd?

• Python public APIs

• QWeb templates description?

• OpenERP Web modules (from OpenERP modules)

18 Chapter 4. Developing OpenERP Web Addons

http://somethingaboutorange.com/mrl/projects/nose/1.0.0/

CHAPTER 5

OpenERP Web Core and standard addons

• General organization and core ideas (design philosophies)

• Internal documentation, autodoc, Python and JS domains

• QWeb code documentation/description

• Documentation of the OpenERP APIs and choices taken based on that?

• Style guide and coding conventions (PEP8? More)

• Test frameworks in JS?

5.1 Standard Views

5.1.1 Search View

The OpenERP search view really is a sub-view, used in support of views acting on collections of records (list view or
graph view, for instance).

Its main goal is to collect information from its widgets (themselves collecting information from the users) and make
those available to the rest of the client.

The search view’s root is SearchView(). This object should never need to be created or managed directly, its
lifecycle should be driven by the ViewManager().

The search view defines a number of internal and external protocols to communicate with the objects around and
within it. Most of these protocols are informal, and types available for inheritance are more mixins than mandatory.

Events

on_loaded

Fires when the search view receives its view data (the result of fields_view_get). Hooking up before
the event allows for altering view data before it can be used.

By the time on_loaded is done, the search view is guaranteed to be fully set up and ready to use.

on_search

Event triggered after a user asked for a search. The search view fires this event after collecting all input
data (contexts, domains and group_by contexts). Note that the search view does not merge those (or
otherwise evaluate them), they are returned as provided by the various inputs within the view.

19

OpenERP Web Documentation, Release 6.1.1

on_clear

Triggered after a user asked for a form clearing.

Input management

An important concept in the search view is that of input. It is both an informal protocol and an abstract type that can
be inherited from.

Inputs are widgets which can contain user data (a char widget for instance, or a selection box). They are capable of
action and of reaction: registration

This is an input action. Inputs have to register themselves to the main view (which
they receive as a constructor argument). This is performed by pushing themselves on the
openerp.base.SearchView.inputs array.

get_context

An input reaction. When it needs to collect contexts, the view calls get_context() on all its inputs.

Inputs can react in the following manners:

• Return a context (an object), this is the “normal” response if the input holds a value.

• Return a value that evaluates as false (generally null). This value indicates the input does not
contain any value and will not affect the results of the search.

• Raise openerp.base.search.Invalid() to indicate that it holds a value but this value can
not be used in the search (because it is incorrectly formatted or nonsensical). Raising Invalid()
is guaranteed to cancel the search process.

Invalid() takes three mandatory arguments: an identifier (a name for instance), the invalid value,
and a validation message indicating the issue.

get_domain

The second input reaction, the possible behaviors of inputs are the same as for get_context.

The openerp.base.search.Input() type implements registration on its own, but its implementations of
get_context and get_domain simply raise errors and must be overridden.

One last action is for filters, as an activation order has to be kept on them for some controls (to establish the correct
grouping sequence, for instance).

To that end, filters can call openerp.base.Search.do_toggle_filter(), providing themselves as first
argument.

Filters calling do_toggle_filter() also need to implement a method called is_enabled(), which the search
view will use to know the current status of the filter.

The search view automatically triggers a search after calls to do_toggle_filter().

Life cycle

The search view has a pretty simple and linear life cycle, in three main steps:

init()

Nothing interesting happens here

start()

20 Chapter 5. OpenERP Web Core and standard addons

OpenERP Web Documentation, Release 6.1.1

Called by the main view’s creator, this is the main initialization step for the list view.

It begins with a remote call to fetch the view’s descriptors (fields_view_get).

Once the remote call is complete, the on_loaded even happens, holding three main operations:

make_widgets()

Builds and returns the top-level widgets of the search view. Because it returns an array of
widget lines (a 2-dimensional matrix of widgets) it should be called recursively by container
widgets (openerp.base.search.Group() for instance).

render()

Called by the search view on all top-level widgets. Container widgets should recursively call
this method on their own children widgets.

Widgets are provided with a mapping of {name: value} holding default values for the
search view. They can freely pick their initial values from there, but must pass the mapping to
their children widgets if they have any.

start()

The last operation of the search view startup is to initialize all its widgets in order. This is again
done recursively (the search view starts its children, which have to start their own children).

stop()

Used before discarding a search view, allows the search view to disable its events and pass the message to
its own widgets, gracefully shutting down the whole view.

Widgets

In a search view, the widget is simply a unit of display.

All widgets must be able to react to three events, which will be called in this order:

render()

Called with a map of default values. The widget must return a String, which is its HTML representa-
tion. That string can be empty (if the widget should not be represented).

Widgets are responsible for asking their children for rendering, and for passing along the default values.

start()

Called without arguments. At this point, the widget has been fully rendered and can set its events up, if
any.

The widget is responsible for starting its children, if it has any.

stop()

Gives the widget the opportunity to unbind its events, remove itself from the DOM and perform any other
cleanup task it may have.

Even if the widget does not do anything itself, it is responsible for shutting down its children.

An abstract type is available and can be inherited from, to simplify the implementation of those tasks:

5.1. Standard Views 21

OpenERP Web Documentation, Release 6.1.1

Inputs

The search namespace (openerp.base.search) provides two more abstract types, used to implement input wid-
gets:

• openerp.base.search.Input() is the most basic input type, it only implements input registration.

If inherited from, descendant classes should not call its implementations of get_context() and
get_domain().

• openerp.base.search.Field() is used to implement more “field” widgets (which allow the user to
input potentially complex values).

It provides various services for its subclasses:

– Sets up the field attributes, using attributes from the field and the view node.

– It fills the widget with Filter() if the field has any child filter.

– It automatically generates an identifier based on the field type and the field name, using make_id().

– It sets up a basic (overridable) template attribute, combined with the previous tasks, this makes sub-
classes of Field() render themselves “for free”.

– It provides basic implementations of get_context and get_domain, both hinging on the subclasses
implementing get_value() (which should return a correct, converted Javascript value):

get_context()

Checks if the field has a non-null and non-empty (String) value, and that the field has a
context attr.

If both conditions are fullfilled, returns the context.

get_domain()

Only requires that the field has a non-null and non-empty value.

If the field has a filter_domain, returns it immediately. Otherwise, builds a context using
the field’s name, the field operator and the field value, and returns it.

5.1.2 List View

OpenERP Web’s list views don’t actually exist as such in OpenERP itself: a list view is an OpenERP tree view in the
view_mode form.

The overall purpose of a list view is to display collections of objects in two main forms: per-object, where each object
is a row in and of itself, and grouped, where multiple objects are represented with a single row providing an aggregated
view of all grouped objects.

These two forms can be mixed within a single list view, if needed.

The root of a list view is openerp.base.ListView(), which may need to be overridden (partially or fully) to
control list behavior in non-view cases (when using a list view as sub-component of a form widget for instance).

Creation and Initialization

As with most OpenERP Web views, the list view’s init() takes quite a number of arguments.

While most of them are the standard view constructor arguments (view_manager, session, element_id,
dataset and an optional view_id), the list view adds a number of options for basic customization (without having
to override methods or templates):

22 Chapter 5. OpenERP Web Core and standard addons

OpenERP Web Documentation, Release 6.1.1

selectable (default: true) Indicates that the list view should allow records to be selected individually. Displays
selection check boxes to the left of all record rows, and allows for the triggering of the selection event.

deletable (default: true) Indicates that the list view should allow records to be removed individually. Displays
a deletion button to the right of all record rows, and allows for the triggering of the deletion event.

header (default: true) Indicates that list columns should bear a header sporting their name (for non-action
columns).

addable (default: "New") Indicates that a record addition/creation button should be displayed in the list’s header,
along with its label. Also allows for the triggering of the record addition event.

sortable (default: true) Indicates that the list view can be sorted per-column (by clicking on its column headers).

reorderable (default: true) Indicates that the list view records can be reordered (and re-sequenced) by drag
and drop.

Events

Addition

The addition event is used to add a record to an existing list view. The default behavior is to switch to the form view,
on a new record.

Addition behavior can be overridden by replacing the do_add_record() method.

Selection

The selection event is triggered when a given record is selected in the list view.

It can be overridden by replacing the do_select() method.

The default behavior is simply to hide or display the list-wise deletion button depending on whether there are selected
records or not.

Deletion

The deletion event is triggered when the user tries to remove 1..n records from the list view, either individually or
globally (via the header button).

Deletion can be overridden by replacing the do_delete() method. By default, this method calls unlink() in
order to remove the records entirely.

Note: the list-wise deletion button (next to the record addition button) simply proxies to do_delete() after
obtaining all selected record ids, but it is possible to override it alone by replacing do_delete_selected().

5.2 Internal API Doc

5.2.1 Python

These classes should be moved to other sections of the doc as needed, probably.

5.2. Internal API Doc 23

OpenERP Web Documentation, Release 6.1.1

5.3 Testing

5.3.1 Python

Testing for the OpenERP Web core is similar to testing addons: the tests live in openerpweb.tests, unittest2 is
the testing framework and tests can be run via either unittest2 (unit2 discover) or via nose (nosetests).

Tests for the OpenERP Web core can also be run using setup.py test.

24 Chapter 5. OpenERP Web Core and standard addons

http://www.voidspace.org.uk/python/articles/unittest2.shtml
http://somethingaboutorange.com/mrl/projects/nose/1.0.0/

CHAPTER 6

The OpenERP Web open-source project

6.1 Getting involved

6.1.1 Translations

6.1.2 Bug reporting

6.1.3 Source code repository

6.1.4 Merge proposals

6.1.5 Coding issues and coding conventions

Javascript coding

These are a number of guidelines for javascript code. More than coding conventions, these are warnings against
potentially harmful or sub-par constructs.

Ideally, you should be able to configure your editor or IDE to warn you against these kinds of issues.

Use var for all declarations

In javascript (as opposed to Python), assigning to a variable which does not already exist and is not explicitly declared
(via var) will implicitly create a global variable. This is bad for a number of reasons:

• It leaks information outside function scopes

• It keeps memory of previous run, with potentially buggy behaviors

• It may conflict with other functions with the same issue

• It makes code harder to statically check (via e.g. IDE inspectors)

Note: It is perfectly possible to use var in for loops:

for (var i = 0; i < some_array.length; ++i) {
// code here

}

25

OpenERP Web Documentation, Release 6.1.1

this is not an issue

All local and global variables should be declared via var.

Note: generally speaking, you should not need globals in OpenERP Web: you can just declare a variable local to
your top-level function. This way, if your widget/addon is instantiated several times on the same page (because it’s
used in embedded mode) each instance will have its own internal but global-to-its-objects data.

Do not leave trailing commas in object literals

While it is legal to leave trailing commas in Python dictionaries, e.g.

foo = {
'a': 1,
'b': 2,

}

and it’s valid in ECMAScript 5 and most browsers support it in Javascript, you should never use trailing commas in
Javascript object literals:

• Internet Explorer does not support trailing commas (at least until and including Internet Explorer 8), and trailing
comma will cause hard-to-debug errors in it

• JSON does not accept trailing comma (it is a syntax error), and using them in object literals puts you at risks of
using them in literal JSON strings as well (though there are few reasons to write JSON by hand)

Never use for ... in to iterate on arrays

Iterating over an object with for. . . in is a bit tricky already, it is far more complex than in Python (where it Just
Works™) due to the interaction of various Javascript features, but to iterate on arrays it becomes downright deadly and
errorneous: for...in really iterates over an object‘s properties.

With an array, this has the following consequences:

• It does not necessarily iterate in numerical order, nor does it iterate in any kind of set order. The order is
implementation-dependent and may vary from one run to the next depending on a number of reasons and im-
plementation details.

• If properties are added to an array, to Array.prototype or to Object.prototype (the latter two should
not happen in well-behaved javascript code, but you never know...) those properties will be iterated over by
for...in. While Object.hasOwnProperty will guard against iterating prototype properties, they will
not guard against properties set on the array instance itself (as memoizers for instance).

Note that this includes setting negative keys on arrays.

For this reason, for...in should never be used on array objects. Instead, you should use either a normal for
or (even better, unless you have profiled the code and found a hotspot) one of Underscore’s array iteration methods
(_.each, _.map, _.filter, etc...).

Underscore is guaranteed to be bundled and available in OpenERP Web scopes.

Use hasOwnProperty when iterating on an object with for ... in

for...in is Javascript’s built-in facility for iterating over and object’s properties.

26 Chapter 6. The OpenERP Web open-source project

http://documentcloud.github.com/underscore/#each
http://documentcloud.github.com/underscore/#map
http://documentcloud.github.com/underscore/#select

OpenERP Web Documentation, Release 6.1.1

It is also fairly tricky to use: it iterates over all non-builtin properties of your objects 1, which includes methods of an
object’s class.

As a result, when iterating over an object with for...in the first line of the body should generally be a call to
Object.hasOwnProperty. This call will check whether the property was set directly on the object or comes from the
object’s class:

for(var key in ob) {
if (!ob.hasOwnProperty(key)) {

// comes from ob's class
continue;

}
// do stuff with key

}

Since properties can be added directly to e.g. Object.prototype (even though it’s usually considered bad style),
you should not assume you ever know which properties for...in is going to iterate over.

An alternative is to use Underscore’s iteration methods, which generally work over objects as well as arrays:

Instead of

for (var key in ob) {
if (!ob.hasOwnProperty(key)) { continue; }
var value = ob[key];
// Do stuff with key and value

}

you could write:

_.each(ob, function (value, key) {
// do stuff with key and value

});

and not worry about the details of the iteration: underscore should do the right thing for you on its own 2.

6.1.6 Writing documentation

The OpenERP Web project documentation uses Sphinx for the literate documentation (this document for instance),
the development guides (for Python and Javascript alike) and the Python API documentation (via autodoc).

For the Javascript API, documentation should be written using the JsDoc Toolkit.

Guides and main documentation

The meat and most important part of all documentation. Should be written in plain English, using reStructuredText
and taking advantage of Sphinx’s extensions, especially cross-references.

1 More precisely, it iterates over all enumerable properties. It just happens that built-in properties (such as String.indexOf or
Object.toString) are set to non-enumerable.

The enumerability of a property can be checked using Object.propertyIsEnumeable.
Before ECMAScript 5, it was not possible for user-defined properties to be non-enumerable in a portable manner. ECMAScript 5 introduced

Object.defineProperty which lets user code create non-enumerable properties (and more, read-only properties for instance, or implicit getters and
setters). However, support for these is not fully complete at this point, and they are not being used in OpenERP Web code anyway.

2 While using underscore is generally the preferred method (simpler, more reliable and easier to write than a correct for...in iteration), it is
also probably slower (due to the overhead of calling a bunch of functions).

As a result, if you profile some code and find out that an underscore method adds unacceptable overhead in a tight loop, you may want to replace
it with a for...in (or a regular for statement for arrays).

6.1. Getting involved 27

https://developer.mozilla.org/en/JavaScript/Reference/Statements/for...in#Description
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/hasOwnProperty
http://sphinx.pocoo.org/index.html
http://sphinx.pocoo.org/ext/autodoc.html?highlight=autodoc#sphinx.ext.autodoc
http://code.google.com/p/jsdoc-toolkit/
http://docutils.sourceforge.net/rst.html
http://sphinx.pocoo.org/markup/index.html
http://sphinx.pocoo.org/markup/inline.html#xref-syntax
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/propertyIsEnumerable
https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Object/defineProperty

OpenERP Web Documentation, Release 6.1.1

Python API Documentation

All public objects in Python code should have a docstring written in RST, using Sphinx’s Python domain 3:

• Functions and methods documentation should be in their own docstring, using Sphinx’s info fields

For parameters types, built-in and stdlib types should be using the combined syntax:

:param dict foo: what the purpose of foo is

unless a more extensive explanation needs to be given (e.g. the specification that the input should be a list of
3-tuple needs to use :type: even though all types involved are built-ins). Any other type should be specified
in full using the :type: field

:param foo: what the purpose of foo is
:type foo: some.addon.Class

Mentions of other methods (including within the same class), modules or types in descriptions (of anything,
including parameters) should be cross-referenced.

• Classes should likewise be documented using their own docstring, and should include the documentation of
their construction (__init__ and __new__), using the info fields as well.

• Attributes (class and instance) should be documented in their class’s docstring via the .. attribute::
directive, following the class’s own documentation.

• The relation between modules and module-level attributes is similar: modules should be documented in
their own docstring, public module attributes should be documented in the module’s docstring using the ..
data:: directive.

Javascript API documentation

Javascript API documentation uses JsDoc, a javascript documentation toolkit with a syntax similar to (and inspired
by) JavaDoc’s.

Due to limitations of JsDoc, the coding patterns in OpenERP Web and the Sphinx integration, there are a few pecu-
liarities to be aware of when writing javascript API documentation:

• Namespaces and classes must be explicitly marked up even if they are not documented, or JsDoc will not
understand what they are and will not generate documentation for their content.

As a result, the bare minimum for a namespace is:

/** @namespace */
foo.bar.baz = {};

while for a class it is:

/** @class */
foo.bar.baz.Qux = [...]

• Because the OpenERP Web project uses John Resig’s Class implementation instead of direct prototypal inher-
itance 4, JsDoc fails to infer class scopes (and constructors or super classes, for that matter) and has to be told
explicitly.

See Documenting a Class for the complete rundown.

3 Because Python is the default domain, the py: markup prefix is optional and should be left out.
4 Resig’s Class still uses prototypes under the hood, it doesn’t reimplement its own object system although it does add several helpers such as

the _super() instance method.

28 Chapter 6. The OpenERP Web open-source project

http://sphinx.pocoo.org/domains.html#the-python-domain
http://sphinx.pocoo.org/domains.html#info-field-lists
http://sphinx.pocoo.org/domains.html#info-field-lists
http://code.google.com/p/jsdoc-toolkit/
http://ejohn.org/blog/simple-javascript-inheritance/

OpenERP Web Documentation, Release 6.1.1

• Much like the JavaDoc, JsDoc does not include a full markup language. Instead, comments are simply marked
up in HTML.

This has a number of inconvenients:

– Complex documentation comments become nigh-unreadable to read in text editors (as opposed to IDEs,
which may handle rendering documentation comments on the fly)

– Though cross-references are supported by JsDoc (via @link and @see), they only work within the JsDoc

– More general impossibility to integrate correctly with Sphinx, and e.g. reference JavaScript objects from
a tutorial, or have all the documentation live at the same place.

As a result, JsDoc comments should be marked up using RST, not HTML. They may use Sphinx’s cross-
references as well.

Documenting a Class

The first task when documenting a class using JsDoc is to mark that class, so JsDoc knows it can be used to instantiate
objects (and, more importantly as far as it’s concerned, should be documented with methods and attributes and stuff).

This is generally done through the @class tag, but this tag has a significant limitation: it “believes” the constructor
and the class are one and the same 5. This will work for constructor-less classes, but because OpenERP Web uses
Resig’s class the constructor is not the class itself but its init() method.

Because this pattern is common in modern javascript code bases, JsDoc supports it: it is possible to mark an arbitrary
instance method as the class specification by using the @constructs tag.

Warning: @constructs is a class specification in and of itself, it completely replaces the class documentation.
Using both a class documentation (even without @class itself) and a constructor documentation is an error in
JsDoc and will result in incorrect behavior and broken documentation.

The second issue is that Resig’s class uses an object literal to specify instance methods, and because JsDoc does not
know anything about Resig’s class, it does not know about the role of the object literal.

As with constructors, though, JsDoc provides a pluggable way to tell it about methods: the @lends tag. It specifies
that the object literal “lends” its properties to the class being built.

@lends must be specified right before the opening brace of the object literal (between the opening paren of the
#extend call and the brace), and takes the full qualified name of the class being created as a parameter, followed by
the character # or by .prototype. This latter part tells JsDoc these are instance methods, not class (static) methods..

Finally, specifying a class’s superclass is done through the @extends tag, which takes a fully qualified class name
as a parameter.

Here are a class without a constructor, and a class with one, so that everything is clear (these are straight from the
OpenERP Web source, with the descriptions and irrelevant atttributes stripped):

/**
* <Insert description here, not below>

*
* @class

* @extends openerp.base.search.Field

*/
openerp.base.search.CharField = openerp.base.search.Field.extend(

/** @lends openerp.base.search.CharField# */ {

5 Which is the case in normal Javascript semantics. Likewise, the .prototype / # pattern we will see later on is due to JsDoc defaulting to
the only behavior it can rely on: “normal” Javascript prototype-based type creation.

6.1. Getting involved 29

OpenERP Web Documentation, Release 6.1.1

// methods here
});

openerp.base.search.Widget = openerp.base.Controller.extend(
/** @lends openerp.base.search.Widget# */{
/**
* <Insert description here, not below>

*
* @constructs

* @extends openerp.base.Controller

*
* @param view the ancestor view of this widget

*/
init: function (view) {

// construction of the instance
},
// bunch of other methods

});

6.2 OpenERP Web over time

6.2.1 Release process

OpenSUSE packaging: http://blog.lowkster.com/2011/04/packaging-python-packages-in-opensuse.html

6.2.2 Roadmap

6.2.3 Release notes

30 Chapter 6. The OpenERP Web open-source project

http://blog.lowkster.com/2011/04/packaging-python-packages-in-opensuse.html

CHAPTER 7

Main differences with the 6.0 client

31

OpenERP Web Documentation, Release 6.1.1

32 Chapter 7. Main differences with the 6.0 client

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

33

OpenERP Web Documentation, Release 6.1.1

34 Chapter 8. Indices and tables

Index

Symbols
-a

gen_translations.sh command line option, 17

D
dataset (None attribute), 14
do_fold() (built-in function), 15
do_toggle() (built-in function), 15
do_unfold() (built-in function), 15

G
gen_translations.sh command line option

-a, 17
get_selected_ids() (built-in function), 15

O
openerp.web._lt() (openerp.web method), 16
openerp.web._t() (openerp.web method), 16

S
sidebar_context() (built-in function), 15

35

	Getting Started with OpenERP Web
	Installing
	Launching

	Deploying OpenERP Web
	In-depth configuration
	Deployment Options

	OpenERP Web as a widgets provider
	Developing OpenERP Web Addons
	Structure
	Namespacing
	Creating new standard roles
	Frequent development tasks
	Translations
	Utility behaviors
	Testing

	OpenERP Web Core and standard addons
	Standard Views
	Internal API Doc
	Testing

	The OpenERP Web open-source project
	Getting involved
	OpenERP Web over time

	Main differences with the 6.0 client
	Indices and tables

