

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Alternative Data Stores (alt-datastores, altds)

	etcd

	mongodb

https://wiki.opendaylight.org/view/Project_Proposals:Alt-datastores

opendaylight-etcd Performance

Size of KVs

How to convert a dump of snapshots/ and journal/ from CDS from a scale lab test to etcd KVs to guestimate expected size

cd ODL/git/netvirt/karaf/
mvn clean package
./target/assembly/bin/karaf
opendaylight-user@root>feature:install odl-netvirt-openstack
opendaylight-user@root>CTRL-C
trash target/assembly/snapshots/ target/assembly/journal
cp -Rscale-lab-dump/logsToMichaelAug28/controller-0/* target/assembly

 This project started as a personal POC by Michael Vorburger.ch to
evaluate the feasibility of using etcd as data store for YANG data in OpenDaylight (ODL),
instead of its current “home made” CDS based on Akka.

See this presentation given in 2018.09 at the ODL DDF during ONS Europe in Amsterdam [https://docs.google.com/presentation/d/160GrKDb9kR-M48FKale09A-VF2_HSu3po_s0M4UReyU] for some background.

The plan is contribute this to opendaylight.org, if and when successful.

How to build? [image: ../_images/opendaylight-etcd.svg]Build Status [https://travis-ci.org/vorburger/opendaylight-etcd]

	To get a more recent version of jetcd-core than the currently used 0.0.3, just
git clone https://github.com/coreos/jetcd.git ; cd jetcd ; mvn [-DskipTests] clean install
and change POMs in bom/, features/odl-mdsal-broker/ & features/odl-etcd-demo-restconf/.

	If you’re hitting an NPE in org.apache.maven.plugins:maven-javadoc-plugin:3.0.0:jar,
just use mvn -Dmaven.javadoc.skip=true -Dduplicate-finder.skip -DskipTests -Dcheckstyle.skip clean install to work around it; it’s possibly
related to not having JAVA_HOME environment variable (what’s weird is that this NPE
does not seem to happen with other OpenDaylight builds).

Architecture Design

A cluster of Etcd servers appears as a single logical server to clients like this.
Details about its internal clustering, Raft implementation etc. are transparent.

The EtcdDataStore implements DOMStore and internally uses a YANG DataTree, just like the sal-distributed-datastore (CDS) does.

On commit(), the put/merge/delete writes from DataTreeModification / DataTreeCandidate are sent to etcd.
Each DataTreeCandidateNode is stored as an individual sub key/value - without their respective child nodes.
This allows for fine-grained future updates and deletes.
Changes from DataTreeCandidate are sent atomically to etcd (using TXN, not PUT).

The data is stored in a compact binary serialization format (not e.g. XML or JSON).
The communication from the etcd client in ODL to the etcd server/s is similarly compact binary, not text-based over HTTP.

We watch etcd, and update our internal DataTree as and when we receive change events.
Changes from watch events are applied atomically to the DataTree.

To guarantee strong consistency, we (remote) check the current revision on etcd, for a every new transaction,
and await having received and processed watch events at least up to that current revision. This is what blocks reads.

If DataBroker offered an eventual consistency read API to applications, then it would be trivial to
offer (optionally) blazing fast reads (directly from the local DataTree), without any remoting.

We never do any GET on etcd to read data, but always serve directly from the DataTree.
There is no ser/der and tree-reconstruction overhead for reads (but there is when processing watch events).

This approach also guarantees that we have up-to-date data for validation.

Distributed Data Change Listeners also work as expected with this mechanism.

Deployment Considerations

etcd instances would typically best be localhost co-located with the ODL nodes.

Demos

Make sure you have at least 1 etcd server running:

sudo dnf install etcd
sudo systemctl start etcd
systemctl status etcd
ETCDCTL_API=3 etcdctl get --from-key ''

or even just start it directly, without systemd, in the foreground in another terminal tab:

cd /tmp
etcd

tree /tmp/default.etcd/
ETCDCTL_API=3 etcdctl get --from-key ''

TODO Document how to best easily start test cluster of 3 etcd servers locally…

If you used etcd before you may want to completely wipe it:

ETCDCTL_API=3 etcdctl del "" --from-key=true

Beware that ETCDCTL_API=3 etcdctl get --from-key '' outputs binary [https://github.com/etcd-io/etcd/issues/10102], so better use our own:

java -jar demo/target/*.jar read http://localhost:2379

RESTCONF

Here is how to run the asciinema POC v0.2 [https://asciinema.org/a/201859]:

Configure the etcd connection URL (TODO this is a hack which will change to be a real configuration file later):

mkdir karaf/target/assembly/../../jetcd-launcher-maven-plugin/
echo http://localhost:2379 >karaf/target/assembly/../../jetcd-launcher-maven-plugin/endpoint

Now start ODL and make sure it’s happy:

./karaf/target/assembly/bin/karaf
opendaylight-user@root>feature:list -i
opendaylight-user@root>diag

Note how there is no karaf/target/assembly/etc/org.opendaylight.controller.cluster.datastore.cfg now, thus “proving” that we don’t run the existing ODL datastore anymore. You can now use RESTCONF as usual - but it runs on etcd! Open apidoc/explorer [http://localhost:8181/apidoc/explorer/index.html] (admin/admin), and watch the logs (tail -f karaf/target/assembly/data/log/karaf.log) to understand what happens when you e.g. do:

http -a admin:admin GET http://localhost:8181/restconf/config/opendaylight-etcd-test:HelloWorldContainer
echo '<HelloWorldContainer xmlns="urn:opendaylight:etcd:test"><name>hello, world</name></HelloWorldContainer>' >put.xml
http -v -a admin:admin PUT :8181/restconf/config/opendaylight-etcd-test:HelloWorldContainer @put.xml
http -a admin:admin GET :8181/restconf/config/opendaylight-etcd-test:HelloWorldContainer
java -jar demo/target/*.jar read http://localhost:2379
http -a admin:admin DELETE :8181/restconf/config/opendaylight-etcd-test:HelloWorldContainer
http -a admin:admin GET :8181/restconf/config/opendaylight-etcd-test:HelloWorldContainer

Standalone

Here is how to run the asciinema POC v0.1 [https://asciinema.org/a/DShFpWOXFmaQV3AD5n8nHeHX6]:

Now run this project’s demo:

java -jar demo/target/*.jar write http://localhost:4001

or if you started etcd directly without systemd then:

java -jar demo/target/*.jar write http://localhost:2379

and have a closer look at the logs this will print to understand what happened, and read it via:

java -jar demo/target/*.jar read http://localhost:2379

FAQ

About this project

	What is the status of this project? As of late July 2018, it’s a Proof of Concept (POC) with the EtcdDBTest illustrating, successfully, that the ODL MD SAL DataBroker API can be implemented on top of the etcd data store.

	What’s the point of this? The main goal is to have the option in ODL to completely avoid the home grown Raft/clustering code, and completely avoid Akka. This will ease maintenance.

	Is this project going to automagically solve all sorts of performance issues you may face in ODL today? Nope. Increasing ODL performance (compared to CDS) is not a goal of this project.

	How can I access the data in etcd? Through ODL APIs (or RESTCONF, etc.) via the code in this project - as always. It is an explicit non-goal of this project to allow “direct” access to the YANG data in etcd. It is stored in an internal binary format, which may change. It requires the YANG model schema to really make sense. Don’t read it directly. What you could do however is run a lightweight standalone “ODL” [https://github.com/vorburger/opendaylight-simple] process which uses this project.

	How can you try this out? Much work still needs to be done! ;-) This e.g. includes, roughly in order: much more unit and integration tests (notably around concurrency), some re-factorings required in ODL to remove code copy/paste here during the POC, work to make it easy to install instead of the current implementation, packaging work to make this available as a Karaf feature, then much real world testing through CSITs, etc.

	How can you help? Please see the TODO.md and start contributing!

About some typical objections

	But how will we upgrade the code from today’s clustering solution to an etcd based datastore? The idea is that ultimately this will simply be a new alternative feature installation, and require absolutely no change to any existing application code.

	But how will we migrate the data from today to tomorrow during customer upgrades? Replay based upgrades start with a fresh new empty datastore, so this is a non-issue. (A non replay based upgrade procedures would have to export the datastore content using DAEXIM, and re-import a dump into an instance with an etcd datastore.)

	But how can we “shard” with this? Supporting several “shards” and/or multiple etcd stores (for sharding, not clustering) is an explicit non-goal of v1 of this project.

	But etcd doesn’t seem to have a pure in-memory mode, so what about operational vs config? So in ODL the operational data store, contrary to the configuration, does not have to survive “restarts”. But perhaps it’s OK if it does anyway. If not, it would certainly be easily possible to explicitly wipe the content of the operational data store sub tree in etcd on the start of the ODL cluster (not of a single ODL node, and not of the etcd cluster; which is going to have a separate lifecycle). Perhaps longer term, having an option to keep certain sub-tress only in-memory and not persisted to disk could be brought up with the etcd community as a possible feature request, purely as a performance optimization. For short and even medium term for ODL etcd adopters, this should not be a blocking issue.

	But what about the EntityOwnershipService, EOS? It should be possible to implement it on to of etcd’s Lock API, but this is still TBD. Help most welcome!

	But what about remote RPCs? Dunno. Needs more thought and POC, discussions… TBD.

	But I love ODL’s current datastore! This project, if successful, will be an alternative to and existing in parallel with the current implementation likely for a long time.

About alternatives

	Why not XYZ as a KV DB? There are a number of other Key Value DBs. Some of the code from this project likely is a good basis for you to write adapters from YANG to other KV DBs. Have fun!

	Why not just replace the Akka persistence LevelDB plugin currently used in CDS to something else like MongoDB? : Not sure that I see how an architecture where you keep Akka and would replace LevelDB (a node local single user embedded KV) to a remote multi user DB makes much sense. Using something like MongoDB as a data store like this project does for etcd perhaps makes more sense; see question above. You can, of course, just use MongoDB or whatever else you like (JDBC if you must, anything you fancy…) INSTEAD of a YANG-based data store, if that meets your requirements.

About etcd

	What is etcd? etcd [https://coreos.com/etcd/] is a distributed key value store [https://en.wikipedia.org/wiki/Key-value_database] that provides a reliable way to store data across a cluster of machines. Communication between etcd machines is handled via the Raft consensus algorithm.

	Why etcd? Among many other users, etcd is the database used in Kubernetes (and its distributions such as OpenShift). It makes sense to align ODL to this. With the Core OS acquisition, Red Hat has etcd expertise.

	I read somewhere online [https://coreos.com/etcd/docs/latest/learning/api_guarantees.html] that “etcd clients may have issues with operations that time out (network disruption for example) and will not send an abort respond”. How do we plan on dealing with this? This will cause a timeout at the GRPC layer [https://grpc.io] internally, which will lead to a failure on the MD SAL (commit) operation, which will be propagated to the ODL application client - as it should; all good.

	I heard that “On network split (AKA split brain) read request may be served mistakenly by the minority split.” How do we plan on dealing with this? According to this documentation [https://github.com/coreos/etcd/blob/master/Documentation/op-guide/failures], “there is no ‘split-brain’ in etcd”.

	But, but, but… Please consult with the opensource etcd community, or obtain professional support, for further doubts about and issues with etcd - just like you would say in OpenStack if you had a problem with its MariaDB (mysql) database. Relying on a well established and here-to-stay persistence engine, instead of building, debugging and maintaining a home grown one, is really the main point of this project! ;-)

History

This project originally included a more generic “DOM-to-KV” abstraction layer, with the idea of also supporting other KV stores than etcd. That code was moved out into https://github.com/vorburger/dom2kv and removed from this repo in 154bd8aace51395c7d58f6e2905b2101187fd5b8.

	[X] make EtcdWatcher continuously read DataTree state… does it need a revision?

	[X] shall watch filter out our own operations, or do we not apply and only watch?

	[X] remove initialLoad(), or just make private and call from constructor?

	[X] study jetcd Txn and make class Etcd put() etc. transactional

	[X] Watcher’s updates must be applied properly transactionally instead of each individually

	[X] extend 1 byte O/C prefix to 2 bytes DO and DC ? Or just watch the ENTIRE tree root?

	[X] fix still failing tests… it must await the latest revision?

	[X] EtcdDOMDataBrokerWiring needs to refactor and move from testutils/ into ds/ to become runtime *Wiring

	[X] update README to document architecture better

	[] publicize etc.

	[X] jetcd PR engage

	[X] etcd crashing https://github.com/coreos/etcd/issues/10012

	[X] demo https://asciinema.org/a/DShFpWOXFmaQV3AD5n8nHeHX6

	[X] start up must block first write usage until initial content loaded, just like read

	[] testPutInvalidDueToMissingMandatory ?

	[] fix InterruptedException and reactivate LogCaptureRule

	[] add txn.if(…) in EtcdKV.EtcdTxn https://github.com/coreos/etcd/issues/7062

	[X] optimize RevAwaiter

	[] TEST if DataTree “collapses” several overlapping changes, because “Modifications to the same key multiple times in the same transaction are forbidden”

	[] build a JUnitRule for EtcdLauncher, like https://github.com/vorburger/MariaDB4j/pull/139 did for MariaDB4j

	[] ODL repo and carry on there

	[X] git filter out the (un-used) dom2kv/ sub-project into a separate repo [https://github.com/vorburger/dom2kv]

	[] apply existing mdsal ds tests to this new impl (upstream refactoring?)

	[] instead EtcdDataStore extends InMemoryDOMDataStore, discuss an upstream artifact for what is shared
“you should just need an InMemoryDataTree. Pattern after ShardDataTree instead.”
https://git.opendaylight.org/gerrit/#/c/73208/

	[] instead org.opendaylight.etcd.ds.stream.copypaste, make it visible on ODL upstream

	[] instead of org.opendaylight.etcd.utils, move to jetcd upstream

	[] merge VS put

	[] why does testRealConflict() fail when run standalone, but pass when run with other tests?

	[] review ModificationType APPEARED/DISAPPEARED handling in EtcdDataStore.. is that right? For all cases, sub-lists etc. TDD.

	[] get rid of jetcd/ artifact (as jetcd already ships an OSGi bundle and Karaf feature, now; just not released…)

	[X] Karaf feature odl-etcd-datastore, NOT using https://github.com/coreos/jetcd/pull/269 (do not only support opendaylight-simple)

	[] odl-daexim-onetcd

	[] typical KV size? Back up ODL scale lab, DAEXIM export CDS, odl-daexim-onetcd re-import

	[] CDS TX rate how to? grep metric-capture-enabled, CommonConfig / MeteringBehavior in sal-clustering-commons. Measure DAEXIM bulk-import through-put.

	[] jetcd TXs/sec Test https://github.com/etcd-io/jetcd/issues/367. Compare CDS & etcd.

	[] test the semantics of DTCL vs ClusteredDTCL

	[] remote RPCs? Still Akka. https://pantheon.tech/opendaylight-rpcs-or-what-could-possibly-go-wrong-with-adding-this-one-cool-feature/

	[] EntityOwnershipService EOS ? https://coreos.com/blog/transactional-memory-with-etcd3.html

	[] MUCH clean-up and other MANY TODOs ;)

	[] Charset https://github.com/etcd-io/jetcd/issues/342

	[] add infrautils.metrics Meters & Timers to implementation

	[] etcd alarms should be logged via slf4j errors in ODL (just for convenience, just in case etcd is not monitored correctly)

	[] io.etcd.jetcd.Maintenance ?

	[] make etcd clustering tests (start several EtcdLauncher, not just clients)

	[] write a PortForwarder util, and use it to write tests simulating network disconnects

	[] jetcd Java client retry and failover, like Go client, see https://etcd.readthedocs.io/en/latest/client-architecture.html

	[] jetcd could optimize and always send to leader, dynamically adapt, to prevents extra hop from ODL to etcd follower to leader, see https://etcd.readthedocs.io/en/latest/faq.html#do-clients-have-to-send-requests-to-the-etcd-leader

	[] compaction could cause e.g. WatchOption.Builder.withRevision(long) to return ErrCompacted.. must handle?

	[] safe keys in a much more compact form; basically do compression, by keeping a dictionary (persisted in etcd) of all PathArgument

	[] compare performance of this VS CDS? But DO realize that real app performance issues are NOT because of slow datastore anyway..

	[] PerformanceMain: Disable logging, write separate keys

	[] properly performance profile the code, using e.g. https://wiki.opendaylight.org/view/HowToProfilePerformance

	[] etcd new feature to keep certain sub-tress purely in-memory instead of persisted on disk (for operational VS configuration datastore); how does K8S do this?

	[] add to https://github.com/coreos/etcd/blob/master/Documentation/production-users.md ;) (AKA https://coreos.com/etcd/docs/latest/production-users.html)

	[] {LOW-PRIO} refactor code to make generic non-etcd specific kv layer, pluggable for other KV stores

	[] {LOW-PRIO} is is worth adapting to others, see https://jepsen.io/analyses, say.. Redis? Couch DB? Infinispan?

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

