
openATTIC Documentation
Release 3.7.4-201910132222

SUSE Linux GmbH

Oct 13, 2019

Contents

1 Trademarks 3

2 Prerequisites 5
2.1 Supported distributions . 5
2.2 Base Operating System Installation . 5
2.3 Post-installation Operating System Configuration . 6

3 Installation 7
3.1 Quick Start Guide . 7
3.2 Installation on openSUSE Leap . 10
3.3 Post-installation Configuration - (Manual deployment) . 11
3.4 Accessing the Web UI . 13
3.5 Configuring Authentication and Single Sign-On . 14
3.6 Troubleshooting . 16

4 User Manual 17
4.1 Introduction to the openATTIC Graphical User Interface . 17

5 Developer Documentation 19
5.1 Create Your own openATTIC git Fork on BitBucket . 19
5.2 Setting up a Development System with Vagrant . 20
5.3 Setting up a Development System . 23
5.4 Contributing Code to openATTIC . 27
5.5 openATTIC Contributing Guidelines . 29
5.6 openATTIC Architecture . 33
5.7 Working on the openATTIC documentation . 34
5.8 Customizing the openATTIC WebUI . 35
5.9 Background-Tasks . 36
5.10 Task Queue Module . 37
5.11 openATTIC Web UI Tests - Unit Tests . 40
5.12 openATTIC Web UI Tests - E2E Test Suite . 41
5.13 openATTIC REST API Tests - Gatling Test Suite . 46
5.14 Python Unit Tests . 49

6 Indices and Tables 51

i

ii

openATTIC Documentation, Release 3.7.4-201910132222

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

openATTIC is an Open Source Ceph and storage management solution for Linux, with a strong focus on storage
management in a datacenter environment.

The various resources of a Ceph cluster can be managed and monitored from a central web-based management inter-
face. It is no longer necessary to be intimately familiar with the inner workings of the individual Ceph components.
Any task can be carried out by either using openATTIC’s intuitive web interface or via the REST API.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public
License version 2 as published by the Free Software Foundation.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License for more details.

You should have received a copy of the GNU General Public License along with this program. If not, see <http:
//www.gnu.org/licenses/>.

Contents 1

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/

openATTIC Documentation, Release 3.7.4-201910132222

2 Contents

CHAPTER 1

Trademarks

“Apache HTTP Server”, “Apache”, and the Apache feather logo are trademarks of The Apache Software Foundation.

“Linux” is the registered trademark of Linus Torvalds in the U.S. and other countries.

“Red Hat Linux” and “CentOS” are trademarks of Red Hat, Inc. in the U.S. and other countries.

“openSUSE”, “SUSE” and the SUSE and openSUSE logo are trademarks of SUSE IP Development Limited or its
subsidiaries or affiliates.

All other names and trademarks used herein are the property of their respective owners.

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

3

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/

openATTIC Documentation, Release 3.7.4-201910132222

4 Chapter 1. Trademarks

CHAPTER 2

Prerequisites

openATTIC can be installed on Linux only. It is designed to run on commodity hardware, so you are not in any way
bound to a specific vendor or hardware model.

You need to make sure that your Linux distribution of choice supports the hardware you intend to use. Check the
respective hardware compatibility lists or consult your hardware vendor for details.

2.1 Supported distributions

Installable packages of openATTIC 3.7 are currently available for the following Linux distributions:

• openSUSE Leap 42.3 (via the openSUSE Build Service) - see Installation on openSUSE Leap for details.

Note: openATTIC has been designed to be installed on a 64-bit Linux operating system. Installation on 32-bit systems
is not supported.

2.2 Base Operating System Installation

The basic installation of the operating system (Linux distribution) depends on your requirements and preferences and
is beyond the scope of this document.

Consult the distribution’s installation documentation for details on how to perform the initial deployment.

We recommend performing a minimal installation that just installs the basic operating system (no GUI, no development
tools or other software not suitable on a production system).

5

openATTIC Documentation, Release 3.7.4-201910132222

2.3 Post-installation Operating System Configuration

After performing the base installation of your Linux distribution of choice, the following configuration changes should
be performed:

1. The system must be connected to a network and should be able to establish outgoing Internet connections, so
additional software and regular OS updates can be installed.

2. Make sure the output of hostname --fqdn is something that makes sense, e.g. srvopenattic01.
yourdomain.com instead of localhost.localdomain. If this doesn’t fit, edit /etc/hostname and
/etc/hosts to contain the correct names.

3. Install and configure an NTP daemon on every host, so the clocks on all these nodes are in sync.

4. HTTP access might be blocked by the default firewall configuration. Make sure to update the configuration in
order to enable HTTP access to the openATTIC API/Web UI.

Consult your Linux distribution’s documentation for further details on how to make these changes.

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

6 Chapter 2. Prerequisites

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/

CHAPTER 3

Installation

This section guides you through the necessary installation process of the openATTIC software.

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

3.1 Quick Start Guide

Since version 3.x, some Ceph management features of openATTIC depend on a Ceph cluster deployed and managed
via DeepSea. To be able to test the full feature set of openATTIC you’ll need to deploy a Ceph cluster, services and
openATTIC with this framework.

This “Quick Start Guide” will show you how to achieve this as fast as possible.

3.1.1 Requirements

• Three VMs or bare metal nodes - our recommendation would be to have at least five or six nodes.

• Ideally, all node host names should follow a fixed naming convention, e.g. ceph-nn.yourdomain.com

• Distribution: openSUSE-Leap42.3 (x86_64)

• Firewall must be disabled on all nodes

3.1.2 Setup a Ceph cluster with DeepSea

The way how to setup a Ceph cluster with DeepSea is well described in the upstream README and the DeepSea
Wiki.

7

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/
https://github.com/SUSE/DeepSea
http://download.opensuse.org/distribution/leap/42.3/iso/openSUSE-Leap-42.3-DVD-x86_64.iso
https://github.com/SUSE/DeepSea/blob/master/README.md
https://github.com/SUSE/DeepSea/wiki
https://github.com/SUSE/DeepSea/wiki

openATTIC Documentation, Release 3.7.4-201910132222

In this quick walkthrough we’ll highlight the most important parts of the installation.

DeepSea uses salt to deploy, setup and manage the cluster. Therefore we have to define one of our nodes as the
“master” (management) node.

Note: DeepSea currently only supports Salt 2016.11.04, while openSUSE Leap ships with a newer version (2017.7.2)
by default. We therefore need to add a dedicated package repository that provides the older version and make sure that
the package management system does not update it to a newer version by accident.

1. Log into the “master” node and run the following commands to add the DeepSea/openATTIC repository, install
DeepSea and to start the salt-master service:

zypper addrepo http://download.opensuse.org/repositories/filesystems:/ceph:/
→˓luminous/openSUSE_Leap_42.3/filesystems:ceph:luminous.repo
zypper addrepo http://download.opensuse.org/repositories/
→˓systemsmanagement:saltstack:products/openSUSE_Leap_42.3/
→˓systemsmanagement:saltstack:products.repo
zypper addrepo http://download.opensuse.org/repositories/
→˓filesystems:openATTIC:3.x/openSUSE_Leap_42.3/filesystems:openATTIC:3.x.repo
zypper refresh
zypper install salt-2016.11.04
zypper install deepsea
systemctl enable salt-master.service
systemctl start salt-master.service

2. Next, install and configure the salt-minion service on all your nodes (including the “master” node) with
the following commands:

zypper addrepo http://download.opensuse.org/repositories/
→˓systemsmanagement:saltstack:products/openSUSE_Leap_42.3/
→˓systemsmanagement:saltstack:products.repo
zypper refresh
zypper install salt-minion-2016.11.04
zypper al 'salt*'

Configure all minions to connect to the master. If your Salt master is not reachable by the host name “salt”,
edit the file /etc/salt/minion or create a new file /etc/salt/minion.d/master.conf with the
following content:

master: host_name_of_salt_master

After you’ve changed the Salt minion configuration as mentioned above, start the Salt service on all Salt minions:

systemctl enable salt-minion.service
systemctl start salt-minion.service

3. Connect to your “master” node again:

Check that the file /srv/pillar/ceph/master_minion.sls on the Salt master points to your Salt
master and enable and start the Salt minion service on the master node:

systemctl enable salt-minion.service
systemctl start salt-minion.service

Now accept all Salt keys on the Salt master:

8 Chapter 3. Installation

https://github.com/saltstack/salt

openATTIC Documentation, Release 3.7.4-201910132222

salt-key --accept-all

Verify that the keys have been accepted:

salt-key --list accepted

In order to avoid conflicts with other minions managed by the Salt master, DeepSea needs to know which Salt minions
should be considered part of the Ceph cluster to be deployed.

This can be configured in file /srv/pillar/ceph/deepsea_minions.sls, by defining a naming pattern. By
default, DeepSea targets all minions that have a grain deepsea applied to them.

This can be accomplished by running the following Salt command on all Minions that should be part of your Ceph
cluster:

salt -L <list of minions> grains.append deepsea default

Alternatively, you can change deepsea_minions in deepsea_minions.sls to any valid Salt target definition.
See man deepsea-minions for details.

4. We can now start the Ceph cluster deployment from the “master” node:

Stage 0 - During this stage all required updates are applied and your systems may be rebooted:

deepsea stage run ceph.stage.0

Stage 1 - The discovery stage collects all nodes and their hardware configuration in your cluster:

deepsea stage run ceph.stage.1

Now you’ve to create a policy.cfg within /srv/pillar/ceph/proposals. This file describes the
layout of your cluster and how it should be deployed.

You can find some examples upstream as well as in the documentation included in the deepsea RPM package
at /usr/share/doc/packages/deepsea/examples.

For this deployment we’ve chosen the rolebased policy. Please change this file according to your environment.
See man 5 policy.cfg for details.

Stage 2 - The configuration stage parses the policy.cfg file and merges the included files into their final
form:

deepsea stage run ceph.stage.2

Stage 3 - The actual deployment will be done:

deepsea stage run ceph.stage.3

Stage 4 - This stage will deploy all of the defined services within the policy.cfg:

deepsea stage run ceph.stage.4

Congratulations, you’re done! You can now reach the openATTIC Web-UI on “http://<your-master-
node>.<yourdomain>

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

3.1. Quick Start Guide 9

https://github.com/SUSE/DeepSea/tree/master/doc/examples
https://github.com/SUSE/DeepSea/blob/master/doc/examples/policy.cfg-rolebased
http:/

openATTIC Documentation, Release 3.7.4-201910132222

See this blog post for details.

3.2 Installation on openSUSE Leap

openATTIC is available for installation on openSUSE Leap 42.3 from the openSUSE Build Service.

The software is delivered in the form of RPM packages via a dedicated zypper repository named
filesystems:openATTIC:3.x.

Note: Before proceeding with the openATTIC installation, make sure that you have followed the steps outlined in
Base Operating System Installation.

3.2.1 Zypper Repository Configuration

From a web browser, the installation of openATTIC on SLES or Leap can be performed via “1 Click Install” from the
openSUSE download site.

From the command line, you can run the following command to enable the openATTIC package repository.

For openSUSE Leap 42.3 run the following as root:

zypper addrepo http://download.opensuse.org/repositories/filesystems:/ceph:/
→˓luminous/openSUSE_Leap_42.3/filesystems:ceph:luminous.repo
zypper addrepo http://download.opensuse.org/repositories/filesystems:openATTIC:3.x/
→˓openSUSE_Leap_42.3/filesystems:openATTIC:3.x.repo
zypper refresh

Note: If you’re interested in testing the latest state of the master branch (which is our development branch) please
add the following repositories to your system:

zypper addrepo http://download.opensuse.org/repositories/filesystems:/ceph:/
→˓luminous/openSUSE_Leap_42.3/filesystems:ceph:luminous.repo
zypper addrepo http://download.openattic.org/rpm/openattic-nightly-master-openSUSE_
→˓Leap_42.3-x86_64/ openattic_repo
rpm --import http://download.openattic.org/A7D3EAFA.txt
zypper refresh
zypper dist-upgrade

3.2.2 Package Installation

To install the openATTIC base packages on SUSE Linux, run the following command:

zypper install openattic

Proceed with the installation by following the steps outlined in Post-installation Configuration - (Manual deployment).

10 Chapter 3. Installation

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/
https://build.opensuse.org
http://software.opensuse.org/package/openattic

openATTIC Documentation, Release 3.7.4-201910132222

3.3 Post-installation Configuration - (Manual deployment)

If you want to use openATTIC without DeepSea or if you’ve deployed oA and DeepSea independently you have to
configure a few things manually. Also be aware of that only a subset of the management functionality is available
without DeepSea, e.g. the NFS Ganesha or iSCSI target configuration.

3.3.1 Enabling Basic Ceph Support in openATTIC

openATTIC depends on Ceph’s librados Python bindings for performing many Ceph management and monitoring
tasks, e.g. the management of Ceph Pools or RADOS block devices.

Note: Ceph support in openATTIC is currently developed against Ceph 12.1.0 aka “Luminous”. Older Ceph versions
may not work as expected. If your Linux distribution ships an older version of Ceph (as most currently do), please
either use the upstream Ceph package repositories or find an alternative package repository for your distribution that
provides a version of Ceph that meets the requirements. Note that this applies to both the version of the Ceph tools
installed on the openATTIC node as well as the version running on your Ceph cluster.

To set up openATTIC with Ceph you first have to copy the Ceph administrator keyring and configuration from your
Ceph admin node to your local openATTIC system.

From your Ceph admin node, you can perform this step by using ceph-deploy (assuming that you can perform
SSH logins from the admin node into the openATTIC host):

ceph-deploy admin openattic.yourdomain.com

On the openATTIC node, you should then have the following files:

/etc/ceph/ceph.client.admin.keyring
/etc/ceph/ceph.conf

Note: Please ensure that these files are actually readable by the openATTIC system user (openattic by default).
This could be done by making them readable by the openattic user group:

chgrp openattic /etc/ceph/ceph.conf /etc/ceph/ceph.client.admin.keyring
chmod g+r /etc/ceph/ceph.conf /etc/ceph/ceph.client.admin.keyring

Alternatively, you can copy these files manually.

Note: openATTIC partially supports managing multiple Ceph clusters, provided they have different names and
FSIDs. You can add another cluster by copying the cluster’s admin keyring and configuration into /etc/ceph using
a different cluster name, e.g. development instead of the default name ceph:

/etc/ceph/development.client.admin.keyring
/etc/ceph/development.conf

It is also possible to configure a Ceph cluster’s configuration and keyring file in the settings file /etc/sysconfig/
openattic.

CEPH_CLUSTERS is a string setting containing paths to ceph.conf files. Multiple clusters can be added by seper-
ating them with a ; sign like so:

3.3. Post-installation Configuration - (Manual deployment) 11

http://docs.ceph.com/docs/master/rados/api/python/
http://docs.ceph.com/docs/master/install/get-packages/

openATTIC Documentation, Release 3.7.4-201910132222

CEPH_CLUSTERS="/etc/ceph/ceph.conf;/home/user/ceph/build/ceph.conf"

For each Ceph cluster, one can set the path to the keyring file by adding CEPH_KEYRING_ appended by the uppercase
cluster fsid as follows:

CEPH_KEYRING_123ABCDE_4567_ABCD_1234_567890ABCDEF="/home/user/ceph/build/keyring"

It is also possible to define a specific user name for each cluster, by adding CEPH_KEYRING_USER_ appended by
the uppercase cluster fsid, like so:

CEPH_KEYRING_USER_123ABCDE_4567_ABCD_1234_567890ABCDEF="client.openattic"

The last step is to recreate your openATTIC configuration:

oaconfig install

3.3.2 DeepSea integration in openATTIC

DeepSea is a Ceph installation and management framework developed by SUSE which is based on the Salt Open
automation and orchestration software. It highly automates the deployment, configuration and management of an
entire Ceph cluster and all of its components.

Some openATTIC features like iSCSI target and Ceph object gateway (RGW) management depend on communicating
with DeepSea via the Salt REST API.

To enable the REST API of DeepSea you would have to issue the following command on the Salt master node:

salt-call state.apply ceph.salt-api

By default, openATTIC assumes that Salt master hostname is salt, API port is 8000 and API username is admin.
If you need to change any of this default values, you should configure it in either /etc/default/openattic for
Debian-based distributions or in /etc/sysconfig/openattic for RedHat-based distributions as well as SUSE
Linux.

Available settings are:

SALT_API_HOST="salt"
SALT_API_PORT="8000"
SALT_API_USERNAME="admin"
SALT_API_PASSWORD="admin"

Caution: Do not use spaces before or after the equal signs

3.3.3 Ceph Object Gateway management features

If you want to enable the Ceph Object Gateway management features, and you are using DeepSea, you just have to
guarantee that the Salt REST API is correctly configured (see DeepSea integration in openATTIC). In case you are not
using DeepSea, you have to configure the Rados Gateway manually by editing either /etc/default/openattic
for Debian-based distributions or /etc/sysconfig/openattic for RedHat-based distributions as well as SUSE
Linux.

This is an example for the manually configured Rados Gateway credentials:

12 Chapter 3. Installation

https://github.com/SUSE/DeepSea
https://saltstack.com/salt-open-source/

openATTIC Documentation, Release 3.7.4-201910132222

RGW_API_HOST="ceph-1"
RGW_API_PORT=80
RGW_API_SCHEME="http"
RGW_API_ACCESS_KEY="VFEG733GBY0DJCIV6NK0"
RGW_API_SECRET_KEY="lJzPbZYZTv8FzmJS5eiiZPHxlT2LMGOMW8ZAeOAq"

Note: If your Rados Gateway admin resource isn’t configured to use the default value admin (e.g. http://host:
80/admin), you will need to also set the RGW_API_ADMIN_RESOURCE option appropriately.

You can obtain these credentials by issuing the radosgw-admin command like so:

radosgw-admin user info --uid=admin

3.3.4 openATTIC Base Configuration

After all the required packages have been installed, you need to perform the actual openATTIC configuration, by
running oaconfig:

oaconfig install

oaconfig install will start and enable a number of services, initialize the openATTIC database and scan the
system for.

3.3.5 Changing the Default User Password

By default, oaconfig creates a local adminstrative user account openattic, with the same password.

As a security precaution, we strongly recommend to change this password immediately:

oaconfig changepassword openattic
Changing password for user 'openattic'
Password: <enter password>
Password (again): <re-enter password>
Password changed successfully for user 'openattic'

Now, your openATTIC storage system can be managed via the user interface.

See Accessing the Web UI for instructions on how to access the web user interface.

If you don’t want to manage your users locally, consult the chapter Configuring Authentication and Single Sign-On for
alternative methods for authentication and authorization.

3.4 Accessing the Web UI

After openATTIC has been installed, it can be managed using the web-based user interface.

Open a web browser and navigate to http://openattic.yourdomain.com/openattic

The default login username and password is openattic.

See the User Manual for further information.

3.4. Accessing the Web UI 13

http://host:80/admin
http://host:80/admin
http://openattic.yourdomain.com/openattic

openATTIC Documentation, Release 3.7.4-201910132222

3.5 Configuring Authentication and Single Sign-On

When logging in, each user passes through two phases: Authentication and Authorization. The authentication phase
employs mechanisms to ensure the users are who they say they are. The authorization phase then checks if that user is
allowed access.

“Authentication is the mechanism of associating an incoming request with a set of identifying credentials, such as the
user the request came from, or the token that it was signed with (Tom Christie).”

The openATTIC authentication is based on the Django REST framework authentication methods.

Currently openATTIC supports the following authentication methods of the Django REST framework:

• BasicAuthentication

• TokenAuthentication

• SessionAuthentication

Read more about the Django REST framework authentication methods here: Django REST framework - Authentica-
tion

3.5.1 Authentication

openATTIC supports three authentication providers:

1. Its internal database. If a user is known to the database and they entered their password correctly, authentication
is passed.

2. Using Pluggable Authentication Modules to delegate authentication of username and password to the Linux
operating system. If PAM accepts the credentials, a database user without any permissions is created and
authentication is passed.

3. Using Kerberos tickets via mod_auth_kerb. Apache will verify the Kerberos ticket and tell openATTIC the
username the ticket is valid for, if any. openATTIC will then create a database user without any permissions and
pass authentication.

3.5.2 Authorization

Once users have been authenticated, the authorization phase makes sure that users are only granted access to the
openATTIC GUI if they posess the necessary permissions.

Authorization is always checked against the openATTIC user database. In order to pass authorization, a user account
must be marked active and a staff member.

Users created by the PAM and Kerberos authentication backends will automatically be marked active, but will not be
staff members. Otherwise, every user in your domain would automatically gain access to openATTIC, which is usually
not desired.

However, usually there is a distinct group of users which are designated openATTIC administrators and therefore
should be allowed to access all openATTIC systems, without needing to be configured on every single one.

In order to achieve that, openATTIC allows the name of a system group to be configured. During the authorization
phase, if a user is active but not a staff member, openATTIC will then check if the user is a member of the configured
user group, and if so, make them a staff member automatically.

14 Chapter 3. Installation

https://tomchristie.github.io/rest-framework-2-docs/api-guide/authentication
https://tomchristie.github.io/rest-framework-2-docs/api-guide/authentication
http://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
http://modauthkerb.sourceforge.net/

openATTIC Documentation, Release 3.7.4-201910132222

3.5.3 Configuring Domain Authentication and Single Sign-On

To configure authentication via a domain and to use Single Sign-On via Kerberos, a few steps are required.

1. Configuring openATTIC

As part of the domain join process, the oaconfig script creates a file named /etc/openattic/domain.
ini which contains all the relevant settings in Python’s ConfigParser format.

The [domain] section contains the kerberos realm and Windows workgroup name.

The [pam] section allows you to enable password-based domain account authentication, and allows you to
change the name of the PAM service to be queried using the service parameter. Note that by default, the
PAM backend changes user names to upper case before passing them on to PAM – change the is_kerberos
parameter to no if this is not desired.

Likewise, the [kerberos] section allows you to enable ticket-based domain account authentication.

In order to make use of the domain group membership check, add a section named [authz] and set the group
parameter to the name of your group in lower case, like so:

[authz]
group = yourgroup

To verify the group name, you can try the following on the shell:

$ getent group yourgroup
yourgroup:x:30174:user1,user2,user3

2. Configuring Apache

Please take a look at the openATTIC configuration file (/etc/apache2/conf.d/openattic on De-
bian/Ubuntu). At the bottom, this file contains a configuration section for Kerberos. Uncomment the section,
and adapt the settings to your domain.

In order to activate the new configuration, run:

apt-get install libapache2-mod-auth-kerb
a2enmod auth_kerb
a2enmod authnz_ldap
service apache2 restart

3. Logging in with Internet Explorer should work already. Mozilla Firefox requires you to configure the name of
the domain in about:config under network.negotiate-auth.trusted-uris.

3.5.4 Troubleshooting Authentication Issues

Kerberos and LDAP are complex technologies, so it’s likely that some errors occur.

Before proceeding, please double-check that NTP is installed and configured and make sure that hostname --fqdn
returns a fully qualified domain name as outlined in the installation instructions.

Below is a list of common error messages and their usual meanings.

• Client not found in Kerberos database while getting initial credentials

Possible reason: The KDC doesn’t know the service (i.e., your domain join failed).

• Generic preauthentication failure while getting initial credentials

Possible reason: /etc/krb5.keytab is outdated. Update it using the following commands:

3.5. Configuring Authentication and Single Sign-On 15

https://docs.python.org/2/library/configparser.html

openATTIC Documentation, Release 3.7.4-201910132222

net ads keytab flush
net ads keytab create
net ads keytab add HTTP

• gss_acquire_cred() failed: Unspecified GSS failure. Minor code may
provide more information (,)

Possible reason: Apache is not allowed to read /etc/krb5.keytab, or wrong KrbServiceName in /
etc/apache2/conf.d/openattic.

3.6 Troubleshooting

In case of errors, the openATTIC WebUI will display popup notifications (“Toasties”) that provide a brief explanation
of the error that occured. For most errors, the openATTIC backend will raise a “500 - Internal Server Error” HTTP
error, writing a more detailed Python traceback message to the openATTIC logfile.

3.6.1 openATTIC log files

The main log file to consult in case of errors is the file /var/log/openattic/openattic.log. This log file
is written by the openATTIC Django application and should provide a detailed error message including the traceback
that explains which Python module the error originated in.

Other logfiles worth checking in case of errors include the Apache HTTP server’s error log. Its location depends on the
Linux distribution that openATTIC has been installed on - please consult the distribution’s documentation for details.

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

16 Chapter 3. Installation

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/

CHAPTER 4

User Manual

4.1 Introduction to the openATTIC Graphical User Interface

The openATTIC web interface is based on the AngularJS JavaScript framework combined with the Bootstrap
HTML/CSS framework, to provide a modern look and feel.

This manual describes how to use the openATTIC web user interface (GUI) for performing storage management tasks
like creating Ceph pools and RBD images, configuring iSCSI targets, NFS shares, as well as system management tasks
like the configuration of users and API credentials, and the integrated monitoring system.

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

4.1.1 Administration Guide

Introducing the openATTIC Graphical User Interface

The openATTIC web interface is based on the AngularJS JavaScript framework combined with the Bootstrap
HTML/CSS framework, to provide a modern look and feel.

4.1.2 How to Perform Common Tasks

Note: This part of the openATTIC documentation has not been created yet.

17

https://angularjs.org/
https://getbootstrap.com
https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/
https://angularjs.org/
https://getbootstrap.com

openATTIC Documentation, Release 3.7.4-201910132222

Note: The openATTIC project has entered maintenance mode. New feature development has been discontin-
ued in favor of enhancing the upstream Ceph Dashboard.

See this blog post for details.

18 Chapter 4. User Manual

https://www.openattic.org/posts/the-openattic-project-enters-maintenance-mode/

CHAPTER 5

Developer Documentation

openATTIC consists of a set of components built on different frameworks, which work together to provide a compre-
hensive Ceph storage management platform.

This document describes the architecture and components of openATTIC and provides instructions on how to set up a
development environment and work on the various components included in the openATTIC code base.

If you would like to contribute to the openATTIC project, you need to prepare a development environment first.

Follow the outlined steps to Create Your own openATTIC git Fork on BitBucket.

Next, follow the instructions on Setting up a Development System with Vagrant or Setting up a Development System.
Then code away, implementing whatever changes you want to make.

If you’re looking for inspiration or some easy development tasks to get started with, we’ve created a list of low hanging
fruit tasks that are limited in scope and should be fairly easy to tackle.

See Contributing Code to openATTIC for details on how to submit your changes to the upstream developers. Follow
the openATTIC Contributing Guidelines to make sure your patches will be accepted.

If your changes modify documented behaviour or implement new functionality, the documentation should be updated
as well. See Working on the openATTIC documentation for instructions on how to update the documentation.

5.1 Create Your own openATTIC git Fork on BitBucket

The openATTIC source code is managed using the git distributed version control system.

Git offers you a full-fledged version control, where you can commit and manage your source code locally and also
exchange your modifications with other developers by pushing and pulling change sets across repositories.

If you’re new to git, take a look at the git documentation web site. This will teach you the basics of how to get started.

The openATTIC source code repository is publicly hosted in a git Repository on BitBucket.

A “fork” is a remote git clone of a repository. Every openATTIC developer makes code modifications on a local
copy (clone) of his fork before they are merged into the main repository via pull requests. See Contributing Code to
openATTIC for instructions on how to get your code contributions included in the openATTIC main repository.

19

https://wiki.openattic.org/display/OP/Low+hanging+fruit+tasks
https://wiki.openattic.org/display/OP/Low+hanging+fruit+tasks
https://www.git-scm.com/
https://www.git-scm.com/documentation
https://bitbucket.org/openattic/openattic/

openATTIC Documentation, Release 3.7.4-201910132222

The quickest way to create a local clone of the main openATTIC git repository is to simply run the following command:

$ git clone https://bitbucket.org/openattic/openattic

However, if you would like to collaborate with the openATTIC developers, you should consider creating a user account
on BitBucket and create a “Fork”. We require real user names over pseudonyms when working with contributors.

Once you are logged into BitBucket, go to the openATTIC main repository and click Fork on the left side under
ACTIONS. Now you should have your own openATTIC fork on BitBucket, which will be used to create a local copy
(clone). You can find your repository’s SSH or HTTPS URL in the top right corner of the repository overview page.
Use this URL with git clone to create your local development clone.

Take a look at the BitBucket Documentation for further instructions on how to use BitBucket and how to work with
repositories.

If you would like to contribute code to openATTIC, please make sure to read Contributing Code to openATTIC for
instructions specfic to our project.

5.2 Setting up a Development System with Vagrant

Setting up a development system using Vagrant is by far the easiest way to start developing on openATTIC. However,
we also provide instructions for setting up a classical development environment in Setting up a Development System.

5.2.1 WebUI preparation

To be able to run the WebUI with this setup you will have to change the default value of the API URL from “/openat-
tic/api/” to “/api/”.

More information on how to do this can be found at WebUI local configuration.

5.2.2 Vagrant Installation

Our Vagrant setup uses either a VirtualBox or a KVM/libvirt VM as base image. You will need to install at least one
of them.

For example, KVM/libvirt can be installed on Ubuntu by running:

sudo apt-get install qemu-kvm

Please follow the official documentation for installing Vagrant.

After installing Vagrant, install the vagrant-cachier plugin for caching packages that are downloaded while
setting up the development environment:

vagrant plugin install vagrant-cachier

The vagrant-libvirt plugin is required when using KVM on Linux:

vagrant plugin install vagrant-libvirt

If you’re using VirtualBox on your host operating system, the vagrant-vbguest plugin enables guest support for
some VirtualBox features like shared folders:

vagrant plugin install vagrant-vbguest

20 Chapter 5. Developer Documentation

https://bitbucket.org/account/signup/
https://bitbucket.org/openattic/openattic
https://confluence.atlassian.com/bitbucket/bitbucket-cloud-documentation-home-221448814.html
https://www.vagrantup.com/
https://www.vagrantup.com/docs/installation/

openATTIC Documentation, Release 3.7.4-201910132222

Note: If you experience an error while trying to install vagrant-libvirt, you might need to install the
libvirt-dev and gcc package.

5.2.3 Network preparation

In order to enable internet access for your Vagrant box you need to enable IP forwarding and NAT on your host system:

echo 1 > /proc/sys/net/ipv4/ip_forward
iptables -t nat -A POSTROUTING -s 192.168.10.0/24 \! -d 192.168.10.0/24 -j MASQUERADE

5.2.4 Starting the Virtual Machine

The openATTIC source code repository contains a Vagrant configuration file that performs the necessary steps to get
you started. Follow the instructions outlined in Create Your own openATTIC git Fork on BitBucket on how to create
your own fork and local git repository.

Navigate to the vagrant subdirectory of your local git clone and run this command to start your VM:

vagrant up

or, in case you are using KVM/libvirt, you need to specify the libvirt provider:

vagrant up --provider libvirt

This command will perform all steps to provide a running VM for developing openATTIC. After the completion of
vagrant up, ssh into the VM:

vagrant ssh

In your VM, start openATTIC by running these commands. Notice, your local repository is available in the virtual
machine at ~/openattic:

. env/bin/activate
python openattic/backend/manage.py runserver 0.0.0.0:8000

Then, start your browser an open the URL as shown in the last lines of the log output of vagrant up.

Note: If you experience an error while trying to run vagrant up --provider libvirt, you might need to
restart libvirtd service.

5.2.5 Choosing a different Linux distribution

Per default, the VM is based on OpenSUSE, but developing openATTIC based on an other Vagrant box is also possible
by setting the environment variable DISTRO. These distributions are available:

• DISTRO=jessie (for Debian 8 “Jessie”)

• DISTRO=trusty (for Ubuntu 14.04 LTS “Trusty Thar”)

• DISTRO=xenial (for Ubuntu 16.04 LTS “Xenial Xerus”)

5.2. Setting up a Development System with Vagrant 21

https://www.vagrantup.com/docs/boxes.html

openATTIC Documentation, Release 3.7.4-201910132222

• DISTRO=malachite (for openSUSE 42.1 “Malachite”)

For example, to run a Xenial VM, run:

DISTRO=xenial vagrant up

or using KVM/libvirt:

DISTRO=xenial vagrant up --provider libvirt

Note: On a Windows host system using Windows Powershell, the environment variable can be defined as follows:

$env:DISTRO="xenial"
vagrant up

5.2.6 Debugging openATTIC with PyCharm Professional

With a running Vagrant VM, you can now debug the openATTIC Python backend using PyCharm.

First, configure a Vagrant Remote Interpreter pointing to /home/vagrant/env/bin/python on your VM. Then,
add /home/vagrant/openattic/backend to the Python interpreter paths. You will be asked to activate a few
PyCharm extensions, like a Django support or the remote interpreter tools.

Finally, add the openATTIC Django Server as a Pycharm Django server in the Run Configurations using your config-
ured remote interpreter and host 0.0.0.0.

5.2.7 Debugging openATTIC with PyCharm Community

Please follow the instructions from the official documentation

5.2.8 Perform an openATTIC Base Configuration

It is not possible to execute oaconfig install in a Vagrant VM, you have to execute the following commands
instead.

. env/bin/activate
cd openattic/backend
which systemctl && sudo systemctl reload dbus || sudo service dbus reload
sudo /home/vagrant/env/bin/python /home/vagrant/openattic/backend/manage.py
→˓runsystemd &
python manage.py install --pre-install
python manage.py install --post-install

5.2.9 Troubleshooting

openATTIC systemd

If the openATTIC systemd is not running on your VM, you can start it by executing:

sudo env/bin/python openattic/backend/manage.py runsystemd

22 Chapter 5. Developer Documentation

https://www.jetbrains.com/help/pycharm/2016.2/configuring-remote-interpreters-via-vagrant.html
https://www.jetbrains.com/help/pycharm/2016.2/remote-debugging.html#6

openATTIC Documentation, Release 3.7.4-201910132222

in your VM.

‘vagrant destroy‘ fails due to a permission problem

To fix this error:

/home/<user>/.vagrant.d/gems/gems/fog-libvirt-0.0.3/lib/fog/libvirt/requests/compute/
→˓volume_action.rb:6:in `delete': Call to virStorageVolDelete failed: Cannot delete '/
→˓var/lib/libvirt/images/vagrant_default.img': Insufficient permissions
→˓(Libvirt::Error)

Run this command or change the owner of /var/lib/libvirt/images:

chmod 777 /var/lib/libvirt/images

‘vagrant destroy‘ fails due to wrong provider

You may also encounter the error that Vagrant tells you to vagrant destroy, but it doesn’t seem to work. In that case
you may be experiencing this issue.

A workaround for this is to specify your provider as default provider in the Vagrantfile like so:

ENV['VAGRANT_DEFAULT_PROVIDER'] = 'libvirt'

‘vagrant up‘ fails on “Waiting for domain to get an IP address. . . ”

It looks like this problem has something to do with the libvirt library and specific mainboards. We haven’t found the
cause of this problem, but using a different libvirt driver at least works around it.

Using qemu instead of kvm as driver does the trick. But kvm is and will be enabled by default, because qemu runs
slower than kvm. You have to adapt the driver yourself in the Vagrantfile like so:

Vagrant.configure(2) do |config|
config.vm.provider :libvirt do |lv|

lv.driver = 'qemu'
end

end

If you want to know more about this problem or even want to contribute to it, visit our bug tracker on issue OP-1455.

5.3 Setting up a Development System

In order to begin coding on openATTIC, you need to set up a development system, by performing the following steps.
The instructions below assume a Debian “Jessie” or Ubuntu “Trusty” Linux environment. The package names and
path names likely differ on other Linux distributions.

If you don’t want to bother with performing the following steps manually, take a look at Setting up a Development
System with Vagrant, which automates the process of setting up a development environment in a virtual machine to
keep it separated from your local system.

5.3.1 Installing the Development Tools

openATTIC requires a bunch of tools and software to be installed and configured, which is handled automatically by
the Debian packages. While you could of course configure these things manually, doing so would involve a lot of
manual work which isn’t really necessary. Set up the system just as described in Installation, but do not yet execute
oaconfig install.

5.3. Setting up a Development System 23

https://github.com/vagrant-libvirt/vagrant-libvirt/issues/561
https://tracker.openattic.org/browse/OP-1455

openATTIC Documentation, Release 3.7.4-201910132222

We recommend installing a nightly build for development systems, which is based on the latest commit in the
default branch.

1. Set the installed packages on hold to prevent Apt from updating them:

apt-mark hold 'openattic-.*'

2. Install Git:

apt-get install git

3. Install Node.js and the Node Package Manager npm:

apt-get install nodejs npm
ln -s /usr/bin/nodejs /usr/bin/node

Note: We currently support Node.js v6.11.x

4. Go to the /srv directory, and create a local clone of your openATTIC fork there, using the current master
branch as the basis:

cd /srv
git clone https://bitbucket.org/<Your user name>/openattic.git
git checkout master

5. Customize the Apache configuration by editing /etc/apache2/conf-available/openattic.conf:

• Replace the path /usr/share/openattic with /srv/openattic/backend

• Add the following directive:

<Directory /srv/openattic>
Require all granted

</Directory>

• Adapt the WSGIScriptAlias paths to your local clone:

WSGIScriptAlias /openattic/serverstats /srv/openattic/backend/serverstats.wsgi
WSGIScriptAlias /openattic /srv/openattic/backend/openattic.wsgi

6. In file /etc/default/openattic, change the OADIR variable to point to the local git clone:

OADIR="/srv/openattic/backend"

7. Now build the Web UI:

cd /srv/openattic/webui
npm run build

If you intend to make changes to the web interface, it may be useful to run npm run dev as a background
task, which watches the project directory for any changed files and triggers an automatic rebuild of the web
interface code (including the eslint output), if required.

Note: Webpack will not include the eslint output for angular, because the provided configuration is there to
help you develop the UI.

24 Chapter 5. Developer Documentation

openATTIC Documentation, Release 3.7.4-201910132222

Note: If you modify any npm package or webpack configuration you will have to stop the background task and
run it again. After doing so, the modification will be reflected.

8. Run oaconfig install and start openATTIC by running oaconfig start.

The openATTIC web interface should now be accessible from a local web browser via <http://localhost/openattic/>_ .
The default username and password is “openattic”.

You can now start coding by making modifications to the files in /srv/openattic. The openATTIC daemons,
GUI and the oaconfig tool will automatically adapt to the new directory and use the code located therein.

See chapters Contributing Code to openATTIC and openATTIC Contributing Guidelines for further details on how to
prepare your code contributions for upstream inclusion.

5.3.2 How to run the frontend in a local server

If you wish to run a frontend server on your local machine, while keeping the backend on a different machine, you
can do it by simply creating an extra configuration file and replacing the build command shown in Installing the
Development Tools with npm start.

We already provide you with a sample configuration file, that can be found at ‘’webui/webpack.config.json.sample’‘,
so you just need to copy the contents of that file to a new one named ‘’webpack.config.json” and update the value of
the target property so it reflects the hostname of your backend.

After creating the config file you can run the command and an instance of webpack dev server will start running on
the background.

One big difference of this server is that it will keep all the compiled code in memory, allowing for a faster development
process. It also comes with a live reload functionallity that will reload your browser automatically each time it detects
a change in your code. And last, but not least, it will provide you with a proxy to your remote backend so you will not
have CORS problems.

You can access openATTIC at http://localhost:8080/openattic/.

5.3.3 How to use eslint in your developer environment

Our eslint configuration gives you useful hints and tips how to provide angularJS code that is highly main-
tainable and forward-thinking. To see the hints and tips you have to install eslint and the plugin for angularJS
globally:

npm install -g eslint eslint-config-angular eslint-plugin-angular

To simply use it from the command line you can do the following:

% cd <clone>/webui
% eslint <path>

Or with vim without Syntastic:

:!eslint %

For all IDEs eslint can be installed as a plugin, if not already enabled.

5.3. Setting up a Development System 25

http://localhost/openattic/
http://localhost:8080/openattic/
http://eslint.org/docs/user-guide/command-line-interface
http://www.vim.org/
https://github.com/vim-syntastic/syntastic

openATTIC Documentation, Release 3.7.4-201910132222

5.3.4 How to get the authentication token for your own user

If you like to use the openATTIC TokenAuthentication (Configuring Authentication and Single Sign-On) in your own
scripts in order to achieve automatization for example, you need to find out your own authentication token at first.

Here are two examples how you can get your authentication token via the REST API:

Curl:

curl --data "username=username&password=password"
http://<openattic-host>/openattic/api/api-token-auth/

Python requests:

import requests

requests.post("http://<openattic-host>/openattic/api/api-token-auth/",
data={"username": "<username>", "password": "<password>"})

Examples for additional scripts can be found here:

• Snapshot Python script with authtoken

• Cronjob Snapshot Script for openATTIC

5.3.5 WebUI local configuration

Our frontend application reads most of its default values from a global configuration file found in webui/app/
config.js.

If you ever need to permanently change one of those values you can just open the file, change it and save the modifi-
cation. This way everyone will have access to that same value.

But in situations where the changes you intent to apply only makes sense to your development environment, e.g. when
using our vagrant setup (Setting up a Development System with Vagrant), you will have to take an extra step. You will
have to create a local configuration file that will overwrite all the values of the preexisting file. To do that, simply create
a new file, webui/app/config.local.js, with the content of webui/app/config.local.js.sample.
Finally you have to rebuild the frontend. After that you, and only you, will see your custom configuration applied.

5.3.6 Backend local configuration

Same as to the frontend application, the backend part reads most of its default values from a global configuration file
found in backend/settings.py.

If you want to customize those settings equal to the frontend application, then simply create the file backend/
settings_local.conf and put the key/value pairs you want to override into this file.:

SALT_API_HOST='deepsea-1.xyz.net'
SALT_API_EAUTH='sharedsecret'
SALT_API_SHARED_SECRET='173a59b3-5abf-4a78-808a-253fe9ae3d94'

RGW_API_HOST="deepsea-1.xyz.net"
RGW_API_ADMIN_RESOURCE="admin"
RGW_API_USER_ID="admin"
RGW_API_ACCESS_KEY="PK258BAY1G1KEM7UH2Y3"
RGW_API_SECRET_KEY="rsOV874KLsaUBKLQzJ1oYdzyo7OXV4OAWoGDOdvE"

(continues on next page)

26 Chapter 5. Developer Documentation

http://blog.openattic.org/posts/snapshot-python-script-with-authtoken/
http://blog.openattic.org/posts/cron-snapshot-script-for-openattic/

openATTIC Documentation, Release 3.7.4-201910132222

(continued from previous page)

GRAFANA_API_HOST="deepsea-1.xyz.net"
GRAFANA_API_PORT="3000"
GRAFANA_API_USERNAME="admin"
GRAFANA_API_PASSWORD="admin"

The local configuration will be applied when you restart the webserver and openATTIC systemd daemon.

5.4 Contributing Code to openATTIC

This is an introduction on how to contribute code or patches to the openATTIC project. If you intend to submit your
code upstream, please also review and consider the guidelines outlined in chapter openATTIC Contributing Guidelines.

5.4.1 Keeping Your Local Repository in Sync

If you have followed the instructions in Create Your own openATTIC git Fork on BitBucket, you should already have
a local openATTIC instance that is based on the current master branch.

You should update your repository configuration so that you will always pull from the upstream openATTIC repository
and push to your openATTIC fork by default. This ensures that your fork is always up to date, by tracking the upstream
development.

It is pretty common to name the upstream remote repository upstream and your personal fork origin.

If you’ve cloned your local repo from your personal fork already, it should already be named origin - you can verify
this with the following command:

$ git remote -v
origin git@bitbucket.org:<username>/openattic.git (fetch)
origin git@bitbucket.org:<username>/openattic.git (push)

If the name differs, you can use git remote rename <old> <new>.

Now add the upstream repository by running the following command:

$ git remote add upstream ssh://git@bitbucket.org/openattic/openattic.git

Now you can keep your local repository in sync with the upstream repository by running git fetch upstream.

5.4.2 Using git+ssh behind a Proxy Server

If you want to use SSH behind a proxy you may use corkscrew. After the installation, append the following two lines
to your $HOME/.ssh/config file:

Host bitbucket.org
ProxyCommand corkscrew <proxy name or ip> <port number> %h %p

Now you can use SSH behind the proxy, because corkscrew now tunnels your SSH connections through the proxy to
bitbucket.org.

5.4. Contributing Code to openATTIC 27

http://agroman.net/corkscrew/

openATTIC Documentation, Release 3.7.4-201910132222

5.4.3 Working With Branches

It is strongly recommended to separate changes required for a new feature or for fixing a bug in a separate git branch.
Please refer to the git documentation for a detailed introduction into working with branches.

If you intend to submit a patch to the upstream openATTIC repository via a pull request, please make sure to follow
the openATTIC Contributing Guidelines.

To create a new feature branch, update your repository, change to the master branch and create your new branch on
top of it, in which you commit your feature changes:

$ git fetch upstream
$ git checkout master
$ git pull upstream master
$ git checkout -b <branchname>
< Your code changes >
$ git commit -a

To list your branches type the following (the current branch will be marked with an asterisk):

$ git branch --list

To just see the current branch you are working with type:

$ git rev-parse --abbrev-ref HEAD

After you are done with your changes, you can push them to your fork:

$ git push origin

5.4.4 Submitting Pull Requests

Now that your fork on BitBucket contains your changes in a separate branch, you can create a pull-request on Bitbucket
to request an inclusion of the changes you have made into the master branch of the upstream openATTIC repository.

To do this, go to your fork on Bitbucket and click Create pull request in the left panel. On the next page,
choose the branch with your changes as source and the openATTIC master branch as target.

Below the Create pull request button, first check out the Diff part if there are any merge conflicts. If you have some,
you have go back into your branch and update it:

$ git fetch upstream
$ git rebase upstream/master
<resolve conflicts, mark them as resolved using "git add">
<test and review changes>
$ git rebase --continue
$ git push -f origin

After you have resolved the merge conflicts and pushed them into your fork, retry submitting the pull-request. If you
already created a pull request, BitBucket will update it automatically.

After the pull-request was reviewed and accepted, your feature branch will be merged into the main repository. You
may delete your feature branch on your local repository and BitBucket fork once it has been merged.

28 Chapter 5. Developer Documentation

https://www.git-scm.com/book/en/v2/Git-Branching-Branches-in-a-Nutshell
https://bitbucket.org
https://bitbucket.org

openATTIC Documentation, Release 3.7.4-201910132222

5.5 openATTIC Contributing Guidelines

Please see Contributing Code to openATTIC for details on the process of how to contribute code changes.

The following recommendations should be considered when working on the openATTIC code base.

While adhering to these guidelines may sound more work in the first place, following them has multiple benefits:

• It supports the collaboration with other developers and others involved in the product development life cycle
(e.g. documentation, QA, release engineering).

• It makes the product development life cycle more reliable and reproducible.

• It makes it more transparent to the user what changes went into a build or release.

Some general recommendations for making changes and for documenting and tracking them:

• New Python code should adhere to the Style Guide for Python Code (PEP 8) with the exception of using 100
instead of 80 characters per line. Use the flake8 tool to verify that your changes don’t violate this style before
committing your modifications. Also, please have a look at the Django coding style guides as a reference.

• Existing code can be refactored to adhere to PEP 8, if you feel like it. However, such style changes must be
committed separately from other code modifications, to ease the reviewing of such pull requests.

• For JavaScript code, we use ESLint using the eslint-loader to perform automated syntax and style checks of the
JavaScript code. ESLint is configured to adhere to the official AngularJS style guide. Please consult this style
guide for more details on the coding style and conventions. The configuration files for these WebUI rules can
be found in webui/.eslintrc.json and webui/webpack.eslintrc.json.

• Every bug fix or notable change made to a release branch must be accompanied by a JIRA issue. The is-
sue ID must be mentioned in the summary of the commit message and pull request in the following format:
<summary> (OP-xxxx).

• Pull requests must be accompanied by a suggested CHANGELOG entry that documents the change.

• New features and other larger changes also require a related JIRA issue that provides detailed background
information about the change.

• Code and the related changes to the documentation should be committed in the same change set, if possible.
This way, both the code and documentation are changed at the same time.

• Write meaningful commit messages and pull request descriptions. Commit messages should include a detailed
description of the change, including a reference to the related JIRA issue, if appropriate. “Fixed OP-xxx” is
not a valid or useful commit message! For details on why this matters, see The Science (or Art?) of Commit
Messages and How to Write a Git Commit Message

• When resolving a JIRA issue as fixed, include the resulting git revision ID or add a link to the ChangeSet or
related pull request on BitBucket for reference. This makes it easier to review the code changes that resulted
from a bug report or feature request.

5.5.1 Documenting Your Changes

Depending on what you have changed, your modifications should be clearly described and documented. Basically,
you have two different audiences that have different expectations on how and where you document your changes:

• Developers that need to review and comment on your changes from an architectural and code quality point of
view. They are primarily interested in the descriptions you put into the git commit messages and the description
of your pull request, but will also review and comment on any other documentation you provide.

5.5. openATTIC Contributing Guidelines 29

https://www.python.org/dev/peps/pep-0008/
https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/
https://eslint.org/
https://github.com/MoOx/eslint-loader/
https://angular.io/guide/styleguide
https://tracker.openattic.org/
http://www.joinfu.com/2012/01/the-science-of-commit-messages/
http://www.joinfu.com/2012/01/the-science-of-commit-messages/
http://chris.beams.io/posts/git-commit/

openATTIC Documentation, Release 3.7.4-201910132222

• End users or administrators that use openATTIC and need to be aware of potential changes in behaviour, new
features or important bug and security fixes. They primarily consult the official documentation, release notes
and the CHANGELOG.

Changes that should be user-visibly documented in the CHANGELOG, release notes or documentation include:

• Bug/security fixes on a release branch.

• User-visible changes or changes in behavior on a release branch. Make sure to review and update the documen-
tation, if required.

• Major changes / new features. In addition to the CHANGELOG, these must be described in the documentation as
well. See Working on the openATTIC documentation for details on how to update the openATTIC documenta-
tion.

Minor or “behind the scene” changes that have no user-visible impact or do not cause changes in behavior/functionality
(e.g. improvements to build scripts, typo fixes, internal code refactoring) usually don’t have to be documented in the
CHANGELOG or the release notes.

Trust your judgment or ask other developers if you’re unsure if something should be user-visibly documented or not.

Don’t worry too much about the wording or formatting, the CHANGELOG and Release Notes will be reviewed and
improved before a final release build anyway. It’s much more important that we keep track of all notable changes
without someone having to trawl JIRA or the commit messages prior to a release.

5.5.2 Signing Your Patch Contribution

To improve tracking of who did what, we use the “sign-off” procedure introduced by the Linux kernel. The sign-off is
a simple line at the end of the explanation for the patch, which certifies that you wrote it or otherwise have the right to
pass it on as an open-source patch.

The rules are pretty simple: if you can certify the following:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
660 York Street, Suite 102,
San Francisco, CA 94110 USA

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(continues on next page)

30 Chapter 5. Developer Documentation

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/process/submitting-patches.rst

openATTIC Documentation, Release 3.7.4-201910132222

(continued from previous page)

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

then you just add the following line below your commit message and pull request saying:

Signed-off-by: Random J Developer <random@developer.example.org>

using your real name and email address (sorry, no pseudonyms or anonymous contributions).

Using git, this can be performed by adding the option --signoff to your commit command.

If you like, you can put extra tags at the end:

1. Reported-by: is used to credit someone who found the bug that the patch attempts to fix.

2. Acked-by: says that the person who is more familiar with the area the patch attempts to modify liked the
patch.

3. Reviewed-by:, unlike the other tags, can only be offered by the reviewer and means that she is completely
satisfied that the patch is ready for application. It is usually offered only after a detailed review.

4. Tested-by: is used to indicate that the person applied the patch and found it to have the desired effect.

You can also create your own tag or use one that’s in common usage such as Thanks-to:,
Based-on-patch-by:, or Mentored-by:.

5.5.3 Merging Pull Requests

The following steps should be performed when you’re reviewing and processing a pull request on BitBucket:

1. A developer fixes a bug or implements a new feature in a dedicated feature branch. If required, he documents
the changes in the documentation (for end-users) and the git commit messages (including the related Jira issue
ID and a Signed-off by: line as outlined in chapter Signing Your Patch Contribution)

2. The developer creates a new Pull Request on BitBucket as described in chapter Submitting Pull Requests. The
Pull Request description should include a detailed description of the change in a form suitable for performing
a code review, summarizing the necessary changes. The description should also include a text suitable for
inclusion into the CHANGELOG, describing the change from an end-user perspective.

3. After the pull request has been reviewed and approved, you perform the merge into the master branch using
the BitBucket merge functionality.

4. Use a “merge” commit, not a “squash” commit for merging pull requests via BitBucket.

5.5.4 Backport commits

The following steps should be performed when you want to backport a fix to a stable release branch:

1. Ensure that the commits you want to backport exists on master (original pull request is merged to master)

2. Update your upstream repo: git fetch upstream

5.5. openATTIC Contributing Guidelines 31

openATTIC Documentation, Release 3.7.4-201910132222

3. Create a branch from the stable release branch: git checkout -b OP-<issue_id>-backport
upstream/2.x

4. Cherry pick the commits, using -x option: git cherry-pick -x <sha-1>

5. Adapt the CHANGELOG

6. Run all tests

7. Submit a pull request to the 2.x stable release branch (title should be prefixed with “[2.x]”)

5.5.5 Error Handling in Python

A few notes about error handling in openATTIC.

Good error handling is a key requirement in creating a good user experience and providing a good API. In our opinion,
providing good errors to users is a blocker for releasing any non-beta releases of openATTIC.

Assume all user input is bad. As we are using Django, we can make use of Django’s user input validation. For example,
Django will validate model objects when deserializing from JSON and before saving them into the database. One way
to achieve this is to add constraints to Django’s model field definitions, like unique=True to catch duplicate inserts.

In general, input validation is the best place to catch errors and generate the best error messages. If feasible, generate
errors as soon as possible.

Django REST framework has a default way of serializing errors. We should use this standard when creating own
exceptions. For example, we should attach an error to a specific model field, if possible.

Our WebUI should show errors generated by the API to the user. Especially field-related errors in wizards and dialogs
or show non-intrusive notifications.

Handling exceptions in Python should be an exception. In general, we should have few exception handlers in our
project. Per default, propagate errors to the API, as it will take care of all exceptions anyway. In general, log the
exception by adding logger.exception() with a description to the handler.

In Python it is easier to ask for forgiveness than permission (EAFP). This common Python coding style assumes the
existence of valid keys or attributes and catches exceptions if the assumption proves false. This clean and fast style is
characterized by the presence of many try and except statements. The technique contrasts with the LBYL style
common to many other languages such as C.

When calling system utilities or call external libraries, raise exceptions if appropriate to inform the user of problems.
For example, if mounting a volume fails, raise an exception. From the Zen Of Python:

Errors should never pass silently. Unless explicitly silenced.

Distinguish user errors from internal errors and programming errors. Using different exception types will ease the task
for the API layer and for the user interface:

• Use NotImplementedError in abstract methods when they require derived classes to override the method.
Have a look at the official documentation.

• Use ValidationError in an input validation step. For example. Django is using ValidationErrors
when deserializing input.

• In case a NotImplementedError is not appropriate, because it is intentional not to implement a method
and a ValidationError is not appropriate, because you’re not validating any input, you can use a
NotSupportedError. For example, if a file system does not support shrinking, you can use this excep-
tion here. They will be converted to a 400 status code in the API.

• Standard Python errors, like SystemError, ValueError or KeyErrorwill end up as internal server errors
in the API.

• Assert statements can help, if you want to protect functions from having bad side effects or return bad results.

32 Chapter 5. Developer Documentation

http://www.django-rest-framework.org/api-guide/exceptions/#exception-handling-in-rest-framework-views
https://docs.python.org/2/glossary.html#term-bdfl
https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/2/library/exceptions.html#exceptions.NotImplementedError

openATTIC Documentation, Release 3.7.4-201910132222

In general, do not return error responses in the REST API. They will be returned by the openATTIC error handler
exception.custom_handler. Instead, raise the appropriate exception.

In a Python function, in case of an error, try to raise an exception instead of returning None. Returning None in this
case forces your caller to always check for None values.

5.5.6 Database migrations

Please follow the standard guidelines for adding database migration for Django 1.8+. Even, if you changed a NoDB
model that don’t write any data into the database. This ensures a consistent table schema for future Django upgrades.

5.6 openATTIC Architecture

The openATTIC core makes heavy use of the Django framework and is implemented as a Django project, consisting
of several apps, one for each supported functionality or backend system.

Each app bundles a set of submodules. Models are used to represent the structure of the objects an app is supposed to
be able to manage. The REST API (based on the Django REST Framework is used for interaction with the models.
And lastly, the System API can be used in order to run other programs on the system in a controlled way.

When an application (e.g. the openATTIC Web UI, a command line tool or an external application), wants to perform
an action, the following happens:

• The REST API receives a request in form of a function call, decides which host is responsible for answering the
request, and forwards it to the core on that host.

• The openATTIC Architecture consists of two layers:

– Django Models, the brains. They keep an eye on the whole system and decide what needs to be done.

– File system layer: Decides which programs need to be called in order to implement the actions requested
by the models, and calls those programs via the openATTIC systemd background process (not to be
confused with the Linux operating system’s systemd System and Service Manager).

• The openATTIC systemd executes commands on the system and delivers the results.

5.6.1 Models

Models are used to provide an abstraction for the real-world objects that your app has to cope with. They are respon-
sible for database communication and for keeping an eye on the state of the whole system, being able to access any
other piece of information necessary.

Please check out Django at a glance for more information.

5.6.2 openATTIC systemd background process

Some tasks require root privileges for being performed. In openATTIC, this is done via a separate background process
openattic-systemd, written in Python. The Django web application uses DBUS as a bidirectional communica-
tion channel to this background service.

5.6. openATTIC Architecture 33

http://djangoproject.com
http://www.django-rest-framework.org/
http://www.freedesktop.org/wiki/Software/systemd/
https://docs.djangoproject.com/en/1.7/intro/overview/

openATTIC Documentation, Release 3.7.4-201910132222

5.7 Working on the openATTIC documentation

The documentation for openATTIC consists of several documents, which are managed in the subdirectory
documentation of the source code repository:

• Installation (subdirectory install_guides)

• User Manual (subdirectory gui_docs)

• Developer Documentation (subdirectory developer_docs)

The documentation is written in the reStructuredText markup language. We use the Sphinx documentation generator
to build the documentation in HTML and PDF format, which is available online from http://docs.openattic.org/.

If you would like to work on the documentation, you first need to checkout a copy of the openATTIC source code
repository as outlined in chapter Setting up a Development System (you can skip the steps of installing the development
tools, if you intend to only work on the documentation).

5.7.1 Requirements

The documentation can be edited using your favorite text editor. Many editors provide built-in support for reStruc-
turedText to ease the task of formatting.

To setup the Sphinx document generator, consult your Linux distribution’s documentation. Most distributions ship
with Sphinx included in the base distribution, so installing the package python-sphinx using your distribution’s
package management tool usually gets you up and running quickly, at least for creating the HTML documentation.
Creating the PDF documentation is somewhat more involved, as it requires a LateX environment (e.g. the texlive
distribution) and the latexpdf utility (usually included in the pdftex package).

Note: python-sphinx version should be >=1.3.6.

For previewing the HTML documentation, you need a local web browser, e.g. Mozilla Firefox or Google
Chrome/Chromium. The PDF document can be previewed using any PDF viewer, e.g. Evince or Adobe Acrobat
Reader®.

5.7.2 Documentation Guidelines

In order to maintain a common document structure and formatting, please keep the following recommendation in mind
when working on the documentation:

• Use 2 spaces for indendation, not tabs.

• Wrap long lines at 78 characters, if possible.

• Overlong command line examples should be wrapped in a way that still supports cutting and pasting them into
a command line, e.g. by using a backslash (“") for breaking up shell commands.

5.7.3 Building the documentation

After you have made your changes to the respective reST text files, you can perform a build of the HTML documen-
tation by running the following command from within the documentation directory:

$ make html

34 Chapter 5. Developer Documentation

http://docutils.sourceforge.net/rst.html
http://sphinx-doc.org/
http://docs.openattic.org/

openATTIC Documentation, Release 3.7.4-201910132222

Take a close look at the build output for any errors or warnings that might occur. The resulting HTML files can be
found in the directory _build/html. To open the start page of the documentation, open the index page in a web
browser, e.g. as follows:

$ firefox _build/html/index.html

To build the PDF document, run the following command:

$ make latexpdf

This build process will take some more time, again make sure to check for any warnings or errors that might occur.
The resulting PDF can be found in the directory _build/latex. Open it in a PDF viewer, e.g. as follows:

$ evince _build/latex/openATTIC.pdf

If you are satisfied with the outcome, commit and push your changes.

If you would like to contribute your changes, please make sure to read Contributing Code to openATTIC for instruc-
tions.

5.8 Customizing the openATTIC WebUI

The openATTIC user interface is a web application based on the AngularJS 1 JavaScript MVW framework the Boot-
strap framework. Using Cascading Style Sheets (CSS), it is possible to customize the look to some degree, e.g. by
replacing the logo or adapting the color scheme.

These modifications can be performed by adding your changes to the vendor.css CSS file. It is located in the
directory webui/app/styles/vendor.css in the Mercurial source code repository and the source tar archive,
or in /usr/share/openattic-gui/styles/vendor.css in the RPM and DEB packages.

Take a look at the file webui/app/styles/openattic-theme.css to get an overview about the existing class names and their
attributes.

Alternatively, you can use Mozilla Firebug or similar web development tools to obtain this information.

5.8.1 Changing the favicon

An alternative favicon image (PNG format, 32x32 pixels) must be copied to the images/ directory (webui/app/
images in the source, /usr/share/openattic-gui/images for the installation packages).

If you choose a different name for the image file, the file name in index.html must be adapted. As of the time of
writing, this information is located in lines 27-29:

<!-- favicons -->
<link rel="shortcut icon" href="images/openattic_favicon_32x32.png" type="image/x-icon
→˓">
<link rel="icon" href="images/openattic_favicon_32x32.png" type="image/x-icon">

5.8.2 Changing the logo

It is possible to customize the application logo displayed in the top left corner of the application window. The format
should be PNG, the size should not exceed 250x25 pixel (to ensure it is displayed properly on mobile devices).

The logo file should be copied into the images/ directory. If you choose a different name than the default, update the
file name in file components/navigation/templates/navigation.html (currently located in line 5).

5.8. Customizing the openATTIC WebUI 35

https://angularjs.org/
http://getbootstrap.com/
http://getbootstrap.com/
https://bitbucket.org/openattic/openattic/src/default/webui/app/styles/openattic-theme.css
http://getfirebug.com/

openATTIC Documentation, Release 3.7.4-201910132222

If you comment out line 5 and enable line 6, the graphical logo can be replaced with regular text:

<img src="images/openattic_brand_bright.png" alt=
→˓"openATTIC">
<!--openATTIC storage management framework-->

In addition to that, the logo on the login screen should be replaced to match your desired logo. It should be in
PNG format and should not exceed 256x256 px. This can be achieved by changing the image file name in file
components/auth/templates/login.html, line 4:

5.9 Background-Tasks

5.9.1 What is a background task?

A background task is a task of a process that takes time, while you would normally be waiting on the frontend, for it
to already finish. Instead of waiting in the UI you will be redirected as soon as the task is created. The task will finish
in the background fulfilling it’s duty.

5.9.2 Where can I find the running background tasks?

You can watch your current background tasks by one click on “Background-Tasks” at the top right, to the left of your
login name. A dialogue will open and list the current pending tasks if any.

5.9.3 Are there different types of tasks?

There are three categories of tasks - pending, failed and finished tasks. You can choose them through the tabs, named
after the category, in the background task dialog. The pending tab is always opened when you open up the dialog.
* Pending task are queued and waiting to run or running. * Failed tasks are tasks that failed due to there process or
because a user deleted a pending task. * Finished tasks are task that have successfully processed what they should do.

5.9.4 How can I test it?

You can. The openATTIC API needed to implement the creation of test task which are doing nothing than counting
numbers, in order to test the functionality with tasks of a predefined running time.

Open up your Javascript console of your browser after your have logged in and paste the following function in it:

var createTestTask = function (time) {
var xhr = new XMLHttpRequest();
var url = "/openattic/api/taskqueue/test_task";
xhr.open("post", url, true);
xhr.setRequestHeader("Content-Type", "application/json");
var data = JSON.stringify({times: time});
xhr.send(data);

}

Now you can create a test task like this:

36 Chapter 5. Developer Documentation

openATTIC Documentation, Release 3.7.4-201910132222

createTestTask(<time in seconds>)

The time a task runs is not really the value you pass, the value determines the calculation rounds the task will do. One
round estimates to around one second at low numbers.

5.9.5 Can I delete them?

Yes, even pending tasks, but you will be warned if you want that, because the running process will not be stopped
immediately instead all follow up executions will be canceled and the action taken will not be revoked. But if you do
so, the task will be handled as a failed task. Failed and finished task can be deleted with out the risk of data corruption.

5.9.6 Do I have to wait for the task to finish?

No, you see the changes more rapidly. For example if you create a ceph pool the pool will be created and be available
in the pool listing, while it’s still building up, so you should’t modify it right away.

5.9.7 Which processes create a background task?

At the moment the following operations are running as background tasks:

• Setting the number of PGs in a ceph pool.

• Getting RBD performance data of a cluster.

5.10 Task Queue Module

This module is intended to track long running tasks in the background.

Please read this mailing first, before continuing.

Tasks are functions which are scheduled from our Django backend and are executed in our openATTIC-systemD
daemon.

5.10.1 Hello World

Let’s build our first task:

from taskqueue.models import task

@task
def hello(name):

print 'hello {}!'.format(name)

To schedule this task, restart our openattic-systemd and run

hello.delay("world")

Now, our daemon should print hello world! into the console. Keep in mind that our daemon needs to import our hello
task, thus if you see AttributeError: 'module' object has no attribute 'hello' in your log
file, make the task importable by putting it into a python file.

5.10. Task Queue Module 37

https://groups.google.com/forum/#!topic/openattic-users/1-MTS9B60rI

openATTIC Documentation, Release 3.7.4-201910132222

Note: There is no guarantee that a task will not be executed multiple times. Although, multiple executions of one
task will not happen concurrently.

Note: A task is expected to be a top-level function of a module. Class methods or inner functions may not work as
expected.

5.10.2 Recursion

Let’s wait for a long running task:

@task
def wait(times):

if times:
return wait(times - 1)

else:
print 'finished'

This tasks schedules itself, similar to a recursive function. As we’re using a trampoline, this will not grow the stack.
This also means that you cannot synchronously wait for a task to finish, thus if you want to run multiple iterations,
you can only use end-recursion. This is similar to continuation passing style, where the next task is continuation of
our current iteration.

We’re JSON serializing the parameters into the database, so you are limited to basic data types, like int, str, float, list,
dict, tuple. As an extension to JSON, you can also use a task as a parameter. For example, you can use this to chain
tasks into one task:

from taskqueue.models import deserialize_task
@task
def chain(values):

tasks = map(deserialize_task, values) # need to manually deserialize the tasks
first, *rest = tasks
res = first.run_once()
if isinstance(res, Task):

return chain([res] + rest, total_count)
elif not rest:

return res
else:

Ignoring res here.
return chain(rest, total_count)

@task
def wait_and_print(times, name):

return chain([wait(times), hello(name)])

When calling wait_and_print.delay(3, 'Sebastian'), Task Queue will run a state machine like this:

A ready-to-use chain task is available by importing taskqueue.models.chain.

38 Chapter 5. Developer Documentation

https://en.wikipedia.org/wiki/Trampoline_(computing)
https://de.wikipedia.org/wiki/Continuation-passing_style

openATTIC Documentation, Release 3.7.4-201910132222

5.10.3 Progress Percentage

A task also has an attached progress percentage value. In case you have a long running task where a progress may be
useful to a user, you can provide a percent argument to @task like so:

@task(percent=lambda total, remaining: 100 * remaining / total)
def wait(total, remaining):

if remaining:
return wait(total, remaining - 1)

else:
print 'finished'

The percent parameter will be called with the same parameters as your task.

Note: The function is expected not to have any side effects, as it may be called multiple times or never.

Note: Always use keyword arguments for the task decorator, as positional arguments may not work as expected.

5.10.4 Revision Upgrades

Warning: Keep in mind, that we’re serializing the tasks into the database.

If you modify code, keep these restrictions in mind:

1. A task, including all parameters are serialized into the database,

2. thus be prepared to be called with a outdated and ancient function arguments.

3. Deleting the Python source of a task will eventually throw an exception.

4. Rule of thumb, only add optional parameters at the end to existing tasks.

5. If something goes wrong, a task may be aborted between function calls.

6. Try not to run important modifying commands later on.

7. Validate your function parameters.

8. As long as you only modify the implementation, everything is fine.

5.10.5 Referencing a newly created TaskQueue object

The taskqueue module provides a Python mixin for referencing a TaskQueue object in a HTTP header from
another REST API. First, add the TaskQueueMixin to your ViewSet class like so:

from taskqueue.restapi import TaskQueueLocationMixin

class MyModelViewSet(TaskQueueLocationMixin, ViewSet):
pass

Second, create a _task_queue attribute of your saved model instance in your save method:

5.10. Task Queue Module 39

openATTIC Documentation, Release 3.7.4-201910132222

class MyModel(Model):
def save(self, *args, **kwargs):

...
self._task_queue = app.tasks.my_task.delay()

Now, if a MyModel instance is saved, a Taskqueue-Location HTTP header pointing to the TaskQueue object
is added to your response.

5.10.6 Integration with openATTIC-systemD

Tasks are executed in our openATTIC-systemD process, thus they are independent of Apache worker processes and
can run without being interrupted.

On the other hand, openATTIC-systemD runs in glibs MainLoop. In order to integrate with it, we need to create a
GObject with a periodic timer event. Here is the code to start the timer of TaskQueueManager:

try:
import taskqueue.manager
taskqueue_manager = taskqueue.manager.TaskQueueManager()

except ImportError:
pass

5.10.7 Background

As the architecture is similar to other task queues, I’ve tried to make a task definition similar to the API of Celery,
which also uses a task decorator.

Task Queue is also similar to a Haskell package called Workflow, quote:

Transparent support for interruptable computations. A workflow can be seen as a persistent thread that
executes a monadic computation. Therefore, it can be used in very time consuming computations such
are CPU intensive calculations or procedures that are most of the time waiting for the action of a process
or an user, that are prone to communication failures, timeouts or shutdowns. It also can be used if you
like to restart your program at the point where the user left it last time. The computation can be restarted
at the interrupted point thanks to its logged state in permanent storage.

Task Queue stores the computation context between each trampoline call. Workflow uses some kind of continuation
monad to hide interruptions between restarts. Task queue use a similar idea, although in a greatly reduced variant, as
the syntax of Python is not as expressive as other Languages, like C#.

You can even think of a task as being a green thread, because you can schedule multiple tasks at once. Each of them
will be executed interleaved.

5.11 openATTIC Web UI Tests - Unit Tests

openATTIC Web UI has both Unit and E2E tests. This section is related to Unit tests, if you are looking for E2E
tests documentation please refer to openATTIC Web UI Tests - E2E Test Suite.

Unit tests are implemented in *.spec.js files, which must be in the same directory as the file being tested:

+-- oa-sample
| '-- oa-sample.service.js
| '-- oa-sample.service.specjs

40 Chapter 5. Developer Documentation

https://lazka.github.io/pgi-docs/GLib-2.0/structs/MainLoop.html
https://www.fullstackpython.com/task-queues.html
http://docs.celeryproject.org/en/latest/getting-started/first-steps-with-celery.html#application
https://hackage.haskell.org/package/Workflow
https://en.wikipedia.org/wiki/Monad_(functional_programming)
http://www.haskellforall.com/2012/12/the-continuation-monad.html
http://www.haskellforall.com/2012/12/the-continuation-monad.html
http://www.fh-wedel.de/~si/seminare/ss13/Ausarbeitung/07.Monaden/haskell.html#3
https://en.wikipedia.org/wiki/Green_threads

openATTIC Documentation, Release 3.7.4-201910132222

5.11.1 Writing Unit Tests

Use “angular.mock.module” instead of “module” seen in most examples. The reason behind that is the usage of
“webpack”. It has a assigned module variable which is a constant this way it can’t be overwritten by the import of
“angular-mocks”. To be consistent call other mock methods via “angular.mock”.

5.11.2 Run Unit Tests

To run openATTIC Web UI unit tests, you should guarantee that your dependencies are updated ($ npm install),
and perform the following command:

$ npm test

If you are a developer and want to run the tests on each change automatically use this command:

$ npm run devTest

5.11.3 Coverage Report

After running the unit tests, an HTML coverage report will be generated into coverage directory. To open this
coverage report you should use a web browser, e.g.:

$ firefox coverage/index.html

5.11.4 References

For more information on the tools that are used by the Web UI unit tests, see:

• Karma

• Jarmine

5.12 openATTIC Web UI Tests - E2E Test Suite

This section describes how our E2E test environment is set up, as well as how you can run our existing E2E tests on
your openATTIC system and how to write your own tests. If you are looking for Web UI Unit tests documentation
please refer to openATTIC Web UI Tests - Unit Tests.

By continuously writing E2E-tests, we want to make sure that our graphical user interface is stable and acts the way it
is supposed to be - that offered functionalities really do what we expect them to do.

We want to deliver a well-tested application, so that you - as users and community members - do not get bothered
with a buggy user interface. Instead, you should be able to get started with the real deal - MANAGING storage with
openATTIC.

5.12.1 About Protractor

Protractor is a end-to-end test framework, which is especially made for AngularJS applications and is based on Web-
DriverJS. Protractor will run tests against the application in a real browser and interacts with it in the same way a user
would.

For more information, please refer to the protractor documentation.

5.12. openATTIC Web UI Tests - E2E Test Suite 41

http://karma-runner.github.io
https://jasmine.github.io/
http://docs.seleniumhq.org/projects/webdriver/
http://docs.seleniumhq.org/projects/webdriver/
https://angular.github.io/protractor/#/

openATTIC Documentation, Release 3.7.4-201910132222

5.12.2 System Requirements

Testing VM:

• Based on our experience,the system on which you want to run the tests needs at least 4GB RAM to prevent it
from being laggy or very slow!

5.12.3 Install Protractor

Note: Protractor and most of its dependencies will be installed locally when you execute npm install on webui/
.

• (optional) npm install -g protractor@5.1.2

• apt-get install openjdk-8-jre-headless oracle-java8-installer

• Choose/Install your preferred browser (Protractor supports the two latest major versions of Chrome, Firefox,
Safari, and IE)

• Please adapt the protractor.conf.js file which can be found in /openattic/webui/ to your system
setup - see instructions below

5.12.4 Protractor Configuration

Before starting the tests, you need to configure and adapt some files.

Use Multiple Browsers

When using Chrome and Firefox for the tests, you could append the following to your protractor.conf.js so
the test will run in both browsers:

exports.config.multiCapabilities = [
{'browserName': 'chrome'},
{'browserName': 'firefox'}

];

To prevent running both browsers at the same time you can add:

exports.config.maxSessions = 1;

Set up configs.js

Create a configs.js file in folder e2e and add the URL to you openATTIC system as well as login data - see
below:

(function() {
module.exports = {
urls: {

base: '<proto://addr:port>',
ui: '/openattic/#/',
api: '/openattic/api/'

},

(continues on next page)

42 Chapter 5. Developer Documentation

openATTIC Documentation, Release 3.7.4-201910132222

(continued from previous page)

//leave this if you want to use openATTIC's default user for login
username: 'openattic',
password: 'openattic',

};
}());

If you are using a Vagrant box, then you have to set urls.ui to /#/ and urls.api to /api/.

In order to run our graphical user interface tests, please make sure that your openATTIC system at least has:

• One LVM volume group

• One ZFS zpool

and add them to e2e/configs.js.

Note: For more information have a look at e2e/configs.js.sample.

It is important that the first element in this config file is your volume group.

If you do not have a ZFS zpool configured and you do not want to create one, you can of course skip those tests by
removing the suite from protractor.conf.js or putting them in to the comment section.

5.12.5 Start webdriver manager Environment

Go to webui/ and type the following command:

$ webdriver-manager start or: $ npm run webdriver

5.12.6 Make Protractor Execute the Tests

Use a separate tab/window, go to webui/ and type:

$ npm run protractor (-- --suite <suiteName>)

Important: Without a given suite protractor will execute all tests (and this will probably take a while!)

5.12.7 Starting Only a Specific Test Suite

If you only want to test a specific action, you can run i.e. $ npm run protractor -- --suite general.

Available test cases can be looked up in protractor.conf.js, i.e.:

suites: {
//suite name : '/path/to/e2e-test/file.e2e.js'
general : '../e2e/base/general/**/general.e2e.js',

}

5.12. openATTIC Web UI Tests - E2E Test Suite 43

openATTIC Documentation, Release 3.7.4-201910132222

Note: When running protractor.conf and the browser window directly closes and you can see something like
“user-data error” (i.e. when using Chrome) in your console just create a dir (i.e. in your home directory) and run
google-chrome --user-data-dir=/path/to/created/dir

5.12.8 How to Cancel the Tests

When running the tests and you want to cancel them, rather press CTRL+C on the commandline (in same window in
which you’ve started protractor) than closing the browser. Just closing the browser window causes every single
test to fail because protractor now tries to execute the tests and can not find the browser window anymore.

5.12.9 E2E-Test Directory and File Structure

In directory e2e/ the following directories can be found:

+-- base
| '-- auth
| '-- datatable
| '-- general
| '-- pagination
| '-- pools
| '-- settings
| '-- taskqueue
| '-- users
+-- ceph
| `-- iscsi
| `-- nfs
| `-- pools
| `-- rbds
| `-- rgw

Most of the directories contain a *form.e2e.js in which we only test things like validation, the number of input
fields, the title of the form etc. Actions like add, clone etc. are always in a separate file. This makes it better to get
an overview and prevents the files from getting very huge and confusing.

5.12.10 Writing Your Own Tests

Please include common.js in every .e2e.js file by adding var helpers = require('../common.
js');. In some cases (depending on how you’ve structured your tests) you may need to adapt the path.

By including it as var helpers you can now make use of helper functions from common.js, i.e. the
setLocation function, you just have to add helpers. to the function: helpers.setLocation(
location [, dialogIsShown]).

The following helper functions are implemented:

• setLocation

• leaveForm

• checkForUnsavedChanges

• get_list_element

• get_list_element_cells

44 Chapter 5. Developer Documentation

openATTIC Documentation, Release 3.7.4-201910132222

• delete_selection

• search_for

• search_for_element

• login

• hasClass

When using more than one helper function in one file, please make sure that you use the right order of creating and
deleting functions in beforeAll and afterAll.

If you need to navigate to a specific menu entry (every time!) where your tests should take place, you can make use
of:

beforeEach(function(){

//always navigates to menu entry "ISCSI" before executing the actions
//defined in 'it('', function(){});'
element(by.css('.tc_menuitem_ceph_iscsi')).click();

});

5.12.11 Style Guide - General e2e.js File Structure / Architecture

You should follow the official Protractor style guide.

Here are a few extra recommendations:

• describe should contain a general description of what is going to be tested (functionality) in this spec file
i.e. the site, menu entry (and its content), panel, wizard etc. example: “should test the user panel and its
functionalities”

• it should describe, what exactly is going to be tested in this specific it-case i.e. (based on the described example
above): “should test validation of form field “Name”“

• Elements which are going to be used more than once should be defined in a variable on top of the file (under
described)

• If something has to be done frequently and across multiple spec files one can define those steps in a function
defined in above mentioned common.js and use this function in specific spec files i.e. if you always/often
need a user before you can start the actual testing you can define a function create_user which contains
the steps of creating a user and use the create_user function in the tests where it’s required. Therefore you
just have to require the common.js file in the spec file and call the create_user function in the beforeAll
function. This procedure is a good way to prevent duplicated code. (for examples see common.js -> login
function)

• Make use of the beforeAll/afterAll functions if possible. Those functions allow you to do some steps
(which are only required once) before/after anything else in the spec file is going to be executed. For example,
if you need to login first before testing anything, you can put this step in a beforeAll function. Also, using a
beforeAll instead of a beforeEach saves a lot of time when executing tests. Furthermore, it’s not always
necessary to repeat a specific step before each ìt section. The afterAll function is a good way to “clean
up” things which are no longer needed after the test. If you already have a function (i.e. create_user)
which creates something, you probably want to delete it after the tests have been executed. So it makes sense
having another function, which deletes the object (in this case a delete_user-function) that can simply
be called in afterAll. In addition we decided to put an afterAll at the end of each test file which
contains a console.log("<protractor suite name> -> <filename>.e2e.js"). By doing
so it is possible to track which test in which file is currently executed when running all tests.

5.12. openATTIC Web UI Tests - E2E Test Suite 45

http://www.protractortest.org/#/style-guide

openATTIC Documentation, Release 3.7.4-201910132222

• In a bunch of openATTIC HTML files (see openattic/webui/app/templates) you’ll find css classes
which are especially set for tests (those test classes are recognizable by the tc_-term which stands for “test
class”). This is very useful when protractor finds more than one element of something (i.e. “Add”-button) and
you can specify the element by adding or just using this tc_class of the element you’re looking for to the locator.
This makes the needed element unique (i.e.: element(by.css('oadatatable .tc_add_btn')).
click();)

• Tests should be readable and understandable for someone who is not familiar in detail with tests in order to make
it easy to see what exactly the test does and to make it simple writing tests for contributors. Also, for someone
who does not know what the software is capable of, having a look at the tests should help understanding the
behavior of the application

• Always navigate to the page which should be tested before each test to make sure that the page is in a “clean
state”. This can be done by putting the navigation part in a beforeEach function - which ensures that it
sections do not depend on each other as well.

• Make sure that written tests do work in the latest version of Chrome and Firefox

• The name of folders/files should tell what the test is about (i.e. folder “user” contains “user_add.e2e.js”)

5.12.12 Tips on how to write tests that also support Firefox

Let protractor only click on clickable elements, like a, button or input.

If you want to select an option element use the following command to make sure that the item is selected (issue #480):

browser.actions().sendKeys(protractor.Key.ENTER).perform();

5.12.13 Debugging your tests

To set a breakpoint use browser.pause() in your code.

After your test pauses, go to the terminal window where you started the test.

You can type c and hit enter to continue to the next command or you can type repl to enter the interactive mode,
here you can type commands that will be executed in the test browser.

To continue the test execution press ctrl + c.

5.13 openATTIC REST API Tests - Gatling Test Suite

Gatling is the openATTIC integration test suite. It’s based on the Python unit testing framework and contains a bunch
of tests to be run against a live openATTIC installation.

Gatling sends requests to openATTIC’s REST API and checks if the responses are correct. For example Gatling tries
to create a volume via openATTIC’s REST API and checks if it’s getable and deletable afterwards. If an error should
be included in a response, Gatling checks if it is really included.

Afterwards Gatling checks the openATTIC internal command log if errors occurred during execution time.

5.13.1 Quick start

To run Gatling, you need to have an openATTIC host set up that has all the features installed (have a look at Installa-
tion) which you intend to test. Then create a configuration file in the conf subdirectory (i.e., conf/<yourhost>.
conf) as explained in section Configuration and run Gatling with the following command:

46 Chapter 5. Developer Documentation

https://github.com/angular/protractor/issues/480#issuecomment-122429984
https://docs.python.org/2/library/unittest.html

openATTIC Documentation, Release 3.7.4-201910132222

$ python gatling.py -t yourhost

Gatling will adapt to your environment, automatically skipping tests that cannot be run on your installation, and run
all tests that can run in your environment.

5.13.2 Dependencies

Gatling depends on the testtools and xmlrunner packages. To install them, type:

apt-get install python-testtools python-xmlrunner

5.13.3 Configuration

In order to get Gatling work well with your openATTIC environment it needs some information about the system
configuration. These information are organized in configuration files. For an example configuration, have a look at the
gatling.conf file included in the distribution. These settings are suitable in most of the cases. However all the
settings which do not match your openATTIC installation need to be overridden in a separate configuration file.

The first section of the configuration file is the options section. It holds general settings about how to connect to
your openATTIC host. Enter the complete name of your openATTIC host at the host_name setting. If the username
or the password of the admin account does not match the default values you will need to configure them too.

If you don’t want to test a specific feature - for example you don’t have the openATTIC DRBD module installed, so
you don’t want to test it by Gatling, you just need to disable the related tests by:

[drbd]
enabled = no

For a complete overview of the configuration section and options please have a look at the gatling.conf file.

All available tests of Gatling are enabled by default.

5.13.4 CI integration

Gatling supports integration in Continuous Integration systems like Jenkins. To use this functionality, pass the --xml
option to Gatling, which will instruct Gatling to write JUnit-compatible test reports in XML format into an output
directory of your choice. You can then instruct your build server to generate reports from these documents.

5.13.5 Advanced options

Gatling uses the following command line structure:

python gatling.py [options] -- [unittest.TestProgram options]

Gatling supports all the options that the standard Python unittest module supports when run using python -m
unittest. However, in order to separate Gatling’s own options from those passed on to unittest, you need
to add -- in front of unittest options, like such:

python gatling.py --xml -- --failfast

If the Gatling command line does not include --, Gatling will by default activate test discovery and verbosity. If you
want to run Gatling without any unittest arguments, pass -- at the end of the command line.

5.13. openATTIC REST API Tests - Gatling Test Suite 47

openATTIC Documentation, Release 3.7.4-201910132222

5.13.6 Source code layout

Test cases are laid out in a way that ensures maximum flexibility while keeping the amount of duplicate code to an
absolute minimum.

The openATTIC API is flexible enough to allow lots of different combinations of storage technologies, and testing
all those different combinations is somewhat of a challenge. To mediate this without having to duplicate test cases,
Gatling uses a system of combining test scenarios and tests to test cases that are then added to the test suite and run by
Gatling.

Scenarios

A scenario defines the environment in which tests are supposed to be run, for instance:

• Test sharing an XFS-formatted LV using NFS.

• Test sharing a ZFS subvolume using NFS.

• Test sharing an Ext4-formatted ZVol using NFS.

• Test sharing an unformatted ZVol using iSCSI.

Scenario classes use the setUpClass and tearDownClass classmethods to prepare the openATTIC system for
the tests that are to be run, creating any necessary Volume pools or other objects to be used by the tests, and provide a
_get_pool method that returns the Volume pool on which the tests are to be run.

When implementing a Scenario, make sure that its setUpClass method

• raises SkipTest if the test scenario cannot be run on this system due to missing openATTIC modules or other
errors,

• properly calls its superclass so that inheriting multiple scenarios works the way it should, like so:

class LvTestScenario(GatlingTestCase):
@classmethod
def setUpClass(cls):

super(LvTestScenario, cls).setUpClass()

Generally lay out your class in a way that it can be combined with as many other scenarios as possible.

Tests

Tests are collected in classes that inherit from object and only define test_<something> methods. These
classes must not inherit unittest.TestCase so they can be imported into other modules without causing the
tests to be discovered and run twice.

Although this class does not inherit unittest.TestCase directly, their code can make use of everything the
TestCase class provides. This is because the *Tests classes are abstract classes meant to be combined with a test
scenario in order to be run, which then makes it a full TestCase subclass.

TestCases

In order to create a TestCase subclass that can be discovered and run, create a third class that inherits both the Scenario
and the Tests, like so:

class LioTestCase(LvTestScenario, LunTestScenario, LvLioTests):
pass

48 Chapter 5. Developer Documentation

openATTIC Documentation, Release 3.7.4-201910132222

Be sure to inherit all the test scenarios you need for your test functions to run, so that the environment is set up and
torn down correctly and tests can be skipped if necessary modules are missing.

5.14 Python Unit Tests

This chapter describes the use of unit tests for Python. Python unit tests are much simpler than our E2E or Gatling
tests, as they only test the Python code without having external dependencies, thus they are purely focused on the
Python code.

5.14.1 Executing Tests

Keep in mind that in order to execute the tests, openATTIC needs an execution environment with a database connection.

Please navigate to the backend root folder and execute:

$./manage.py test -t . -v 2

Note: Running the tests might not work due to permission issues for the openattic user to create an empty database.
The following commands will fix that:

oaconfig dbshell
ALTER USER openattic CREATEDB;

You can exit the dbshell by typing “\q” or pressing “Ctrl+D”.

To generate a coverage analysis, you will have to install coverage:

$ pip install coverage

Then, run the analysis:

$ coverage run --source='.' manage.py test -t . -v 2

and generate a report with:

$ coverage report

It’s also possible to generate detailed HTML reports to identify uncovered code lines by running:

$ coverage html

It will create the directory htmlcov containing index.html as a starting point.

5.14.2 Starting Only a Specific Test Suite

In order to run just a subset of the tests, append the backend module name like so:

$ manage.py test <module-name> -t . -v 2

where <module-name> needs to be replaced with a module name, like ceph.

5.14. Python Unit Tests 49

openATTIC Documentation, Release 3.7.4-201910132222

5.14.3 Writing Tests

Every backend module contains a tests.py containing unit tests. Please add your new unit test to this file.

We also make use of doctest. If your test would be an enhancement to the documentation and your testing subject
is easy to test, i.e. without mocking and side effects, consider to add this test to the docstring and add or extend the
“doctest boiler plate”:

import doctest
def load_tests(loader, tests, ignore):

tests.addTests(doctest.DocTestSuite(<module containing the doctest>))
return tests

5.14.4 Style Guide

Here are a few recommendations:

• Focus purely on Python. Hesitate to test anything else.

• Aim for keeping the testing coverage in percent for every Pull Request.

• Keep the tests fast: Don’t add any sleep statements or long running tests, except if really necessary. Speed is
important, as it keeps the code-test loop short.

• Use mock to reduce external dependencies, but try to reduce the amount of mock statements.

• Make sure your new tests work with all supported Django versions.

• Don’t execute network requests, as they introduce dependencies to other services.

50 Chapter 5. Developer Documentation

CHAPTER 6

Indices and Tables

• genindex

• modindex

• search

51

	Trademarks
	Prerequisites
	Supported distributions
	Base Operating System Installation
	Post-installation Operating System Configuration

	Installation
	Quick Start Guide
	Installation on openSUSE Leap
	Post-installation Configuration - (Manual deployment)
	Accessing the Web UI
	Configuring Authentication and Single Sign-On
	Troubleshooting

	User Manual
	Introduction to the openATTIC Graphical User Interface

	Developer Documentation
	Create Your own openATTIC git Fork on BitBucket
	Setting up a Development System with Vagrant
	Setting up a Development System
	Contributing Code to openATTIC
	openATTIC Contributing Guidelines
	openATTIC Architecture
	Working on the openATTIC documentation
	Customizing the openATTIC WebUI
	Background-Tasks
	Task Queue Module
	openATTIC Web UI Tests - Unit Tests
	openATTIC Web UI Tests - E2E Test Suite
	openATTIC REST API Tests - Gatling Test Suite
	Python Unit Tests

	Indices and Tables

