
OntoUML specification Documentation

Marek Suchánek

Oct 09, 2018

Contents

1 Introduction 3
1.1 OntoUML . 3
1.2 UFO . 3

2 Theory 5
2.1 Types and Individuals . 5
2.2 Identity . 6
2.3 Rigidity . 8
2.4 Dependency . 9
2.5 Objects & Events . 9

3 Class stereotypes 11
3.1 Kind . 11
3.2 Subkind . 15
3.3 Phase . 18
3.4 Role . 22
3.5 Collective . 27
3.6 Quantity . 33
3.7 Relator . 35
3.8 Category . 43
3.9 RoleMixin . 46
3.10 Mixin . 49
3.11 Mode . 53
3.12 Quality . 57

4 Relationship stereotypes 61
4.1 Introduction . 61
4.2 Formal . 62
4.3 Material . 63
4.4 Mediation . 65
4.5 Characterization . 65
4.6 Derivation . 66
4.7 Structuration . 67
4.8 Part-Whole . 67
4.9 ComponentOf . 71
4.10 Containment . 72
4.11 MemberOf . 74

i

4.12 SubCollectionOf . 75
4.13 SubQuantityOf . 77

5 OntoUML Pattern Catalogue 81
5.1 Phase Partition pattern . 81
5.2 Relator pattern . 82
5.3 RoleMixin pattern . 84
5.4 RoleMixin Alternative pattern . 84

6 Contributing 85
6.1 Reporting issues . 85
6.2 Solving issues . 85
6.3 Documentation guidelines . 85

7 TODOs 87

8 Indices and tables 89

ii

OntoUML specification Documentation

Welcome to the documentation of OntoUML ontology-driven conceptual modelling language based on upper ontology
UFO. We welcome any form of contribution and questions that will make this documentation better as it is community-
driven hosted on github.com.

Contents 1

https://github.com/OntoUML/OntoUML

OntoUML specification Documentation

2 Contents

CHAPTER 1

Introduction

1.1 OntoUML

OntoUML is an ontologically well-founded language for Ontology-driven Conceptual Modeling. OntoUML is built
as a UML extension based on the Unified Foundational Ontology (UFO). The foundations of UFO and OntoUML can
be traced back to Giancarlo Guizzardi’s Ph.D. thesis “Ontological Foundations for Structural Conceptual Models”.
In his work, he proposed a novel foundational ontology for conceptual modeling (UFO) and employed it to evaluate
and re-design a fragment of the UML 2.0 metamodel for the purposes of conceptual modeling and domain ontology
engineering. OntoUML has been adopted by many academic, corporate and governmental institutions worldwide for
the development of conceptual models in a variety of domains. It has also been considered as a candidate for addressing
the OMG SIMF (Semantic Information Model Federation) Request for Proposal, as is explicitly recognized as the
foundations for the “Data Modeling Guide (DMG) For An Enterprise Logical Data Model (ELDM)” initiative. Finally,
some of the foundational theories underlying OntoUML have also influenced other popular conceptual modeling
languages such as ORM 2.0.

Source: wikipedia.org

1.2 UFO

The Unified Foundational Ontology (UFO), developed by Giancarlo Guizzardi and associates, incorporating devel-
opments from GFO, DOLCE and the Ontology of Universals underlying OntoClean in a single coherent foundational
ontology. The core categories of UFO (UFO-A) have been completely formally characterized in Giancarlo Guizzardi’s
Ph.D. thesis and further extended at the Ontology and Conceptual Modelling Research Group (NEMO) in Brazil with
cooperators from Brandenburg University of Technology (Gerd Wagner) and Laboratory for Applied Ontology (LOA).
UFO-A has been employed to analyze structural conceptual modeling constructs such as object types and taxonomic
relations, associations and relations between associations, roles, properties, datatypes and weak entities, and parthood
relations among objects. More recent developments incorporate an ontology of events in UFO (UFO-B), as well as an
ontology of social and intentional aspects (UFO-C). The combination of UFO-A, B and C has been used to analyze,
redesign and integrate reference conceptual models in a number of complex domains such as, for instance, Enterprise
Modeling, Software Engineering, Service Science, Petroleum and Gas, Telecommunications, and Bioinformatics. An-
other recent development aimed towards a clear account of services and service-related concepts, and provided for

3

https://www.researchgate.net/publication/215697579_Ontological_Foundations_for_Structural_Conceptual_Models
http://www.uml.org
https://en.wikipedia.org/wiki/OntoUML

OntoUML specification Documentation

a commitment-based account of the notion of service (UFO-S), UFO is the foundational ontology for OntoUML, an
ontology modeling language.

Source: wikipedia.org

4 Chapter 1. Introduction

https://en.wikipedia.org/wiki/Upper_ontology#UFO_.28Unified_Foundational_Ontology.29

CHAPTER 2

Theory

2.1 Types and Individuals

OntoUML is built upon the fundamental distinction between Types and Individuals. And that is because we like
classify things.

Types are abstract things we create to help us perceive and classify the world around us. These things work as bundles
of characteristics we can expect to encounter in other particular things - the individuals.

Let’s consider the type Person. Which characteristics does every Person have? We could say a head, a heart, arms,
hands, legs, feet, eyes. . . Every person also has a weight, a height, an age. Maybe a name, place of birth, birthdate.

Now let’s consider you and me. I am individual. And so are you. If you are reading this, I am confident to say that we
are both people. We both have a heart, we both have a particular height and weight. We exemplify what it is to be a
Person. The relation that holds between us and the type Person is called instantiation.

In OntoUML, we represent classes as boxes, just like in UML. Every class must have a name and a stereotype, as
depicted in the figure below:

Now, let’s see some other examples of types and individuals them:

• Person: Bill Gates, Linus Torvalds, Barack Obama, Steve Jobs, Alan Turing, Messi

• Football Player: Neymar, Messi, Cristiano Ronaldo, Pelé, Maradona

• City: Rio de Janeiro, Milano, Barcelona, New York City, London, Lisbon

• Operating System: Windows, OS X, Ubuntu

• Company: Apple, Samsung, Microsoft, Facebook, Nokia

5

OntoUML specification Documentation

If you pay close attention on the list, you will see that we included Messi’s name as an instance of Person and Football
Player. And that is fine! In fact, it very common that an individual simultaneously instantiates many types. Me, for
example, besides being a Person, I’m a Software Developer, a Brazilian, an Adult and a Man.

Whenever we refer to the term extension of a type, we mean every individual that instantiates that type in a particular
instant of time. As an example, let’s assume that the type Web Browser. Last year, we could say that its extension
contained 5 individuals: Chrome, Internet Explorer, Safari, Firefox, Opera. This year, however, after Microsoft Edge’s
release, the extension of Browser grew by 1.

Whenever the extension of a type is always included in the extension of another type, we say that the former is a
subtype of the latter. To represent this constraint in OntoUML models, we use the generalization (some people call it
specialization instead) relation. We find countless examples of type specializations:

• Doctor, Student and Child are subtypes of Person

• Table, Mouse and Ball are subtypes of Object

• Fridge, Stove and Microwave are subtypes of Appliance

We represent generalizations are lines with arrow heads on the end connected to the super-type, as shown in the figure
below:

When we build a model in OntoUML we are formally defining types by specifying the characteristics they impose on
their instances.

Warning: OntoUML ONLY supports the specification of TYPES. Therefore, you CANNOT specify an INDIVID-
UAL in an OntoUML model. Making an analogy to regular UML, you can create Class Diagrams, but there is no
Object diagram.

2.2 Identity

Another fundamental ontological notion you need to grasp before you start modelling is the ontological notion of
identity. To start the discussion, let’s take a look at the picture below:

6 Chapter 2. Theory

OntoUML specification Documentation

As you might know, that is Aphrodite of Milos, better known as the Venus de Milo, an ancient Greek statue and one of
the most famous works of ancient Greek sculpture (Wikipedia). On the left side, it’s the statue’s current state, and on
the right, it’s how it was supposably built. My question for you is: Do these pictures portrait the same individuals or
different ones?. Is it the same statue that went through some changes or these changes destroyed the first individual
(the statue with arms) and created a new one (the statue without arms)? If you think like most people, your answer
would be: “Yes, they are the same individual.”. Now, what if the statue was broken into very little pieces, like in the
picture below:

Would you say that these marble debris are still the statue? Somehow our intuition says no, right? These debris cannot
be Venus anymore. But why do we say “Yes” to the first question and “No” to the second one? Because of our common
sense identity principle for statue. An identity principle is a sort of function we use to distinguish two individuals.
Let’s use the simplest example of all: the identity principle of sets. Two sets, A and B, are the same if, and only if,
they have the same elements. Therefore, if A = {1,2} and B = {2,3} then A != B. So the identity of a set is defined by
its members. Changing a member of a set changes the identity of the set. Now, let’s think about a morencomplicated
example. Let’s say, the identity principle we adopt for people. Could we say that someone’s identity depends on
their name? Or some sort of identification code, like the American ‘social security’, the Brazilian ‘CPF’ or the Italian

2.2. Identity 7

https://en.wikipedia.org/wiki/Venus_de_Milo

OntoUML specification Documentation

‘codice fiscale’? The answer is NO! These can’t be used as our identification function. And I’ll tell you why. . .

Let’s start with a Person’s name. Did you ever meet two folks with the very same name? I have. If you don’t believe,
just go on Facebook and experiment search for common names of your country. I just searched for “João Carlos da
Silva”, a fairly common Brazilian name, and I found at least 5 guys with that exact name. If name was our identity
function, we would not be able to distinguish between them. Another problem with using name as identity is that
often, people change their names. Our function needs to be not only able to distinguish two individuals in the same
moment in time, but also through time. How else would we be able to meet someone today and recognize that same
person tomorrow? So, our function needs to always return the same individual for a given input. Now, let’s analyze
the reason why the social security number (SSN), the codice fiscale and the CPF are not very good identity principles
for people. The answer is quite simple, our function needs to apply to everybody. If you are not American or never
worked in the USA, you probably don’t have a SSN, right? Even young children born in the USA might not have.
The last important fact about identity principle is that every individual must have exactly one. So, what is the identity
principle for a person? One’s fingerprint, iris pattern, DNA? Well, it is really hard to define it, even though we know
it is there.

What we can “touch” are what’s called the identity conditions. These are “parts” of the identity function, necessary
conditions for identity but not sufficient by themselves. In order for me to consider A and B as the same Person they
need to have the same birth date. And the statue need to be made of the same material. Why identity principles and
conditions are important for us? Because by thinking about them we are guided in the construction of our types hier-
archy. They impose constraints on how we can combine the different OntoUML constructs to design our conceptual
models. Will talk about these constraints when we present the stereotypes usage. For now, just keep in mind that:
Some types have the characteristic of providing identity principles for their instances. They are stereotype as: «Kind»,
«Collective», «Quantity», «Relator», «Mode» and «Quantity». Here are some examples:

Some other types don’t provide identity principle for their instances, but they all share a common one. They are
stereotyped as: «Subkind», «Role» and «Phase». Here are some examples:

Some other types don’t provide identity and their instances follow different identity principles. They are stereotyped
as: «RoleMixin», «Mixin» and «Category». Here are some examples:

2.3 Rigidity

Now that you are already familiar with the notion of type, individual and instantiation, let’s go through a fundamental
ontological meta-property of types - rigidity. To start, let’s take a look at the following pictures:

8 Chapter 2. Theory

OntoUML specification Documentation

They show a dog’s development through the years (let’s call him Rex for now). In the first frame (and maybe also in
the second) Rex is a Puppy. In the third one he is not a Puppy anymore, but an Adult. However, in all three frames
Rex is a Dog and a French Bulldog. Let’s focus on the types Dog and French Bulldog. Can you imagine any other
point in time, besides the three shown in the pictures, in which Rex ceased to be either a Dog or a Bulldog? I guess
not. Let’s expand our imagination a little. Can you imagine any individual that used to be a Dog but is not anymore?
I bet the answer is also no.

If an individual must instantiate a given type in all possible scenarios in which the individual exists, we call that
type RIGID. In other words, rigid types are the ones who define essential characteristics to their instances. Other
examples of rigid types are: Person, Car, Band, Apple, Country and Company. List of rigid stereotypes: «Category»,
«Collective», «Kind», «Mode», «Quality», «Quantity», «Relator», and «Subkind».

Now, let’s focus solely on the type Puppy. By looking at the pictures, we can see that Rex used to be a puppy, but
stopped being one after he grew older. Just like Rex, every other dog was once a puppy or will cease to be one someday.
If every individual that instantiate a given type in a particular time can cease to do so and still exists, then we call that
type ANTI-RIGID. Examples of anti-rigid types are: Student, Employee, Spouse, Elder, Living Person and Healthy
Person. List of anti-rigid stereotypes: «Role», «Phase» and «RoleMixin»

2.4 Dependency

Todo: This topic will be covered soon. . .

2.5 Objects & Events

2.4. Dependency 9

OntoUML specification Documentation

Todo: This topic will be covered soon. . .

10 Chapter 2. Theory

CHAPTER 3

Class stereotypes

3.1 Kind

3.1.1 Definition

A «Kind» is construct you are going to use in most of your models. It is used to represent rigid concepts that provide
an identity principle for their instances and do not require a relational dependency. A «Kind» represent a Functional
Complex, i.e., a whole that has parts contributing in different ways for its functionality (see the ComponentOf relation
for more details about functional parts). Let’s see some examples:

3.1.2 Constraints

C1: A «Kind» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quan-
tity») as its direct or indirect super-type.

11

OntoUML specification Documentation

C2: A «Kind» cannot have types that in-
herit identity («Subkind», «Role» and «Phase») as its direct or indirect super-type.

C3: A «Kind» can-
not have types that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as
its direct or indirect subtypes.

C4: As a rigid type, a «Kind» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or
indirect super-type.

3.1.3 Common questions

Q1: If a «Kind» is relationally independent, does that mean we cannot define relations for theses types?

A1: No! When we say that a «Kind» is relationally independent, we mean that it does not necessarily require a relation
to be defined, like a «Role» does. Here is an example in which a «Kind» has a dependency.

12 Chapter 3. Class stereotypes

OntoUML specification Documentation

This example was extracted from the Software Requirements Reference Ontology (SRRO). Click here to take a look
at it.

3.1.4 Examples

EX1: Fragment from the Configuration Management Task Ontology (see more):

3.1. Kind 13

http://www.menthor.net/srro.html
http://www.menthor.net/cmto.html

OntoUML specification Documentation

EX2: Fragment from the OntoUML Org Ontology (O3) (see more):

14 Chapter 3. Class stereotypes

http://www.menthor.net/o3.html

OntoUML specification Documentation

3.2 Subkind

3.2.1 Definition

A «Subkind» is a construct used to represent rigid specializations of identity providers («Kind», «Collective», «Quan-
tity», «Relator», «Mode» and «Quantity»). By default, its usage do not require a relational dependency. Let’s see
some examples:

3.2.2 Constraints

C1: A «Subkind» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator»,
«Mode», «Quantity») as an ancestor (a direct or indirect super-type). Therefore, our examples in the first figure should
be modelled as:

C2: Because it is a rigid type, a «Subkind» cannot have an anti-rigid type («Role», «Phase», «RoleMixin») as an
ancestor. Therefore, the following fragments would not be allowed:

C3: Since every instance of
a «Subkind» follows the same identity principle, a «Subkind» cannot have an mixin type («Category», «Mixin»,
«RoleMixin») as a descendant, i.e., a direct or indirect subtype. Fragments like the ones below are not allowed:

3.2. Subkind 15

OntoUML specification Documentation

3.2.3 Common questions

Q1: Are subkinds only used to specialize kinds?

A1: No! Even though the name might be a little misleading, a «Subkind» may be used to specialize any identity
provider, which includes «Collective», «Quantity» and «Relator».

3.2.4 Examples

EX1: Usually, subkinds come in groups, like in the examples below:

EX2: Fragment from the Normative Acts Ontology (see more):

16 Chapter 3. Class stereotypes

http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

EX3: Fragment of a conceptual model about Brazilian Universities (see more):

3.2. Subkind 17

http://www.menthor.net/university.html

OntoUML specification Documentation

3.3 Phase

3.3.1 Definition

The «Phase» stereotype is used to represent anti-rigid subtypes of identity providers («Kind», «Collective», «Quan-
tity», «Relator», «Mode» and «Quantity») that are instantiated by changes in intrinsic properties (e.g. the age of a
person, the color of an object, the condition of a car). All instances of a particular «Phase» must follow the same
identity principle. Phases always come in partitions.

Note: Tip: When defining a phase partition, think about which property (or properties) variation is causing the
instantiation of the phases and include it in your model. For instance, when defining the phases Child, Adult and Elder
for Person, you should include an age property for the type Person.

Here are some examples of phases:

18 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.3.2 Constraints

C1: A «Phase» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator»,
«Mode», «Quantity») as an ancestor (a direct or indirect super-type). Our examples above should be modelled as:

C2: A «Phase» must always be part of a partition (a generalization set disjoint and complete). Modeling a «Phase»
as in example below is forbidden:

C3: A «Phase» cannot be a direct subtype of a «RoleMixin» or «Category».

3.3. Phase 19

OntoUML specification Documentation

C4: A «Phase» cannot be a super-type of a rigid type («Kind»,
«Collective», «Quantity», «Relator», «Mode», «Quantity», «Subkind», «Category»).

C5: A «Phase»
cannot be a super-type of a mixin type («Category», «RoleMixin», «Mixin»).

3.3.3 Common questions

Q1: Do I have to represent the intrinsic property which is affecting the instantiation of the phase?

A1: No, OntoUML does not require you to do that. However, whenever it is possible, you should represent everything
needed to define the phase. On one hand, if you want to represent the Living and Deceased phases of a Person, it is
ok. On the other hand, if representing Adult and Child, your model would be a lot more precise if you include the age
property on your model and the OCL constraint defining the instantiation of the two phases.

Q2: Can I define phases using modes?

A2: Yes. The fragment below is an example of how to do that.

20 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.3.4 Examples

EX1: Conceptual model about Brazilian Universities (see more):

3.3. Phase 21

http://www.menthor.net/university.html

OntoUML specification Documentation

Errata: Phase as subtype of Role (Class), no multiplicity on part-whole, not marked as material and multiplicity
does not correspond with mediations, Role (Professor) has optional relation, no multiplicity on <<characterization>>
relation with Field Quality, (Department gets identity from kind in different diagram), Class has no identity

3.4 Role

3.4.1 Definition

A «Role» is a construct used to represent anti-rigid specializations of identity providers («Kind», «Collective», «Quan-
tity», «Relator», «Mode» and «Quantity») that are instantiated in relational contexts. All instances of a particular
«Role» must follow the same identity principle. Here are some examples of roles:

22 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.4.2 Constraints

C1: A «Role» must always have exactly one identity provider («Kind», «Collective», «Quantity», «Relator», «Mode»,
«Quantity») as an ancestor (a direct or indirect super-type). To model our list of roles presented above, we should given
them identity providers:

C2: Every «Role» must be
connected, directly or indirectly, to a «Mediation» relation, since it is a relationally dependent construct. Continuing
our example above, we should do the following:

Remember that you can’t defined a relational dependency with a minimum cardinality of zero. Therefore, the fragment
below is wrong!

3.4. Role 23

OntoUML specification Documentation

C3: A «Role» cannot be a
supertype of a rigid type («Kind», «Subkind», «Collective», «Quantity», «Relator», «Category»).

C4: A «Role» cannot be a supertype of a mixin types
(«Category», «RoleMixin», «Mixin»).

3.4.3 Common questions

Q1: Can I define multiples dependencies for a «Role»?

A1: Yes, there is no restriction in the number of dependencies one can define for a «Role». However, think carefully
before doing so. You might be adding some unwanted instantiations to your ontology. This is an Ontological Anti-
Pattern, called Multiple Dependency (read more about it here)

Q2: Can a «Role» be used to specialize another «Role»?

24 Chapter 3. Class stereotypes

https://www.researchgate.net/publication/268220197_Ontology_Validation_for_Managers

OntoUML specification Documentation

A2: Yes, there is no restriction regarding it. Again, take care when doing so. Since the language only require at least
one indirect dependency for a «Role», you might forget to define additional dependencies for the sub-types.

3.4.4 Examples

EX1: Conceptual model about roles in the Catholic clergy (see more):

EX2: Fragment from an ontological analysis of a Human Genome scheme (see more):

3.4. Role 25

http://www.menthor.net/clergy.html
http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

26 Chapter 3. Class stereotypes

OntoUML specification Documentation

Errata: No material derivation, bad material multiplicity, bad memberOf multiplicity EX3: Fragment of the On-
toUML Org Ontology (O3) (see more):

Errata: Relator cannot be subtype of Relator, Category not abstract and no subtypes (or just one), no material relation

3.5 Collective

3.5.1 Definition

The «Collective» construct is used to represent rigid concepts that provide an identity principle for their instances.
The main characteristic of a «Collective» is that it has an homogenous internal structure, i.e., all parts are perceived in
the same way by the whole (see the «MemberOf » relation for more details about members of collections).

To decide whether or not to classify a concept as a collective, think about the relation between it has towards its parts
(or members). Do all members are “equally perceived” by the whole (the collective)? In other words, do all members
contribute in the same way to the functionality of the whole? If the answers are yes, you have a collective. It is
important to keep in mind that some concepts, like Family or Fleet could be classified as both collectives and functional
complexes. For instance, if we understand a family as a group of people with equal roles and responsibilities towards
the family, we would say it is a collective. However, if we distinguish a person as the head of the family, and another
as being responsible for the family’s income, we would say that a family is a functional complex.

3.5. Collective 27

http://www.menthor.net/o3.html

OntoUML specification Documentation

As the other identity provider stereotypes («Kind», «Quality», «Relator» and «Mode»), a «Collective» can be special-
ized by subkinds, phases and roles, as well as generalized by mixins and categories.

28 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.5.2 Constraints

C1: A «Collective» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and
«Quantity») as its direct or indirect super-type.

C2: A «Collective» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect
super-types.

C3: A «Collective» cannot have types
that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or
indirect subtypes.

C4: As a rigid type, a «Collec-
tive» cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

3.5. Collective 29

OntoUML specification Documentation

3.5.3 Common questions

Ask us some question if something is not clear . . .

3.5.4 Examples

EX1: Fragment from the a conceptual model about the human genome (see more):

30 Chapter 3. Class stereotypes

http://www.menthor.net/cshg.html

OntoUML specification Documentation

EX2: Fragment from the Normative Acts Ontology (see more):3.5. Collective 31

http://www.menthor.net/normative-acts.html

OntoUML specification Documentation

32 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.6 Quantity

3.6.1 Definition

The «Quantity» construct is used to represent rigid concepts that provide an identity principle for their instances. A
«Quantity» represent uncountable things, like Water, Clay, or Beer. It represents a maximally topologically connected
amount of matter. Quantities only have other quantities as parts (see the «SubQuantityOf » relation for more details
about members of collections). Here are some examples:

An easy way to decide whether a concept is a quantity or not, as yourself this: if you physically divide an instance of
‘x’ in two parts, are the resulting individuals two new instances of x? What if you divide another 5 or 10 times? If the
answer is always yes, ‘x’ is a Quantity. To exemplify, let’s think about an pile of sand. If you divide the pile in two,
you now have to new piles of sand, right? What if you do that again for each remaining part? We would have 4 piles
of sand.

As the other identity provider stereotypes («Kind», «Collective», «Relator» and «Mode»), a Quality can be specialized
by subkinds, phases and roles, as well as generalized by mixins and categories.

3.6. Quantity 33

OntoUML specification Documentation

Be careful not to confuse «Quantity» and «Quality».

3.6.2 Constraints

C1: A «Quantity» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and
«Quantity») as its direct or indirect super-type.

C2: A «Quantity» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect
super-types.

C3: A «Quantity» cannot have types
that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or

34 Chapter 3. Class stereotypes

OntoUML specification Documentation

indirect subtypes.

C4: As a rigid type, a «Quantity»
cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

3.6.3 Common questions

Ask us some question if something is not clear . . .

3.6.4 Examples

Todo: To be added . . .

3.7 Relator

3.7.1 Definition

The «Relator» construct is used to represent truth-makers of material relations, i.e., the “things” that must exist in
order for two or more individuals to be connected by material relations. Because of this nature, relators are always
dependent on other individuals to exist. Here are some examples of concepts classified as relators:

3.7. Relator 35

OntoUML specification Documentation

Note that the «Relator» meta-class is analogous to the «Kind», «Collective» and «Quantity» meta-classes, in the sense
that it is rigid and provides an identity principle for its instances. The difference is that, instead of representing
functional complexes, quantities or collections, a «Relator» represents the objectification of relational properties. The
direct consequence is that relators can also be specialised by subkinds, phases and roles, and generalised by categories
and mixins.

3.7.2 Constraints

C1: A «Relator» must always be connected (directly or indirectly) to at least one relation stereotyped as «Mediation»

C2: The sum of the minimum cardinalities of the opposite ends of the mediations connected (directly or indirectly)
to the «Relator» must be greater or equal to 2.

36 Chapter 3. Class stereotypes

OntoUML specification Documentation

C3: A «Relator» cannot have an identity provider («Kind», «Collective», «Quantity», «Relator», «Mode» and «Quan-
tity») as its direct or indirect super-type.

C4: A «Relator» cannot have types that inherit identity («Subkind», «Role» and «Phase») as its direct or indirect
super-type.

C5: A «Relator» cannot have types
that aggregate individuals with different identity principles («Category», «RoleMixin» and «Mixin») as its direct or
indirect subtypes.

3.7. Relator 37

OntoUML specification Documentation

C6: As a rigid type, a «Relator»
cannot have any anti-rigid type («Role», «RoleMixin» and «Phase») as its direct or indirect super-type.

3.7.3 Common questions

Ask us some question if something is not clear . . .

3.7.4 Examples

EX1: Conceptual model about the Catholic Clergy (see more):

38 Chapter 3. Class stereotypes

http://www.menthor.net/clergy.html

OntoUML specification Documentation

EX2: Fragment of a conceptual model representing the worldview of a possible parking lot management system (see
more):

3.7. Relator 39

http://www.menthor.net/parking-lot.html
http://www.menthor.net/parking-lot.html

OntoUML specification Documentation

EX3: UFO-S fragment focused on service offering (see more):

40 Chapter 3. Class stereotypes

http://www.menthor.net/ufo-s.html

OntoUML specification Documentation

EX4: Fragment of a conceptual model about the human genome (see more):

3.7. Relator 41

http://www.menthor.net/cshg.html

OntoUML specification Documentation

42 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.8 Category

3.8.1 Definition

A «Category» is a rigid mixin that does not require a dependency to be specified. It is used to aggregate essential
properties to individuals which following different identity principles. Let’s see some examples:

Categories are usually used in a refactoring process. For example, let’s suppose that you defined two classes in your
model, Person and Animal. Now you want to state that either people and animals have a weight. You than create a
«Category», which has weight, and generalize the existing classes into it.

3.8.2 Constraints

C1: A «Category» is always abstract. Notice that abstract classes are represented with an italic label.

C2: A «Category» aggregate individuals that follow
different identity principles, therefore it may not have as ancestor the following constructs: «Kind», «Quantity»,
«Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

3.8. Category 43

OntoUML specification Documentation

C3: A «Category» is a rigid construct,
therefore it cannot have as ancestor an anti-rigid type, as: «Role», «RoleMixin», «Phase».

C4: Categories cannot have as de-
scendants the following types: «Mixin», «Role», «Phase».

3.8.3 Common questions

Ask us some question if something is not clear . . .

3.8.4 Examples

EX1: Fragment from the ECG Ontology (see more):

44 Chapter 3. Class stereotypes

http://www.menthor.net/ecg.html

OntoUML specification Documentation

EX2: Fragment from UFO-S, a commitment-based service ontology (see more):

3.8. Category 45

http://www.menthor.net/ufo-s.html

OntoUML specification Documentation

3.9 RoleMixin

3.9.1 Definition

A «RoleMixin» is the equivalent of «Role» for types that aggregate instances with different identity principles. A class
stereotyped as «RoleMixin» is also an anti-rigid type whose instantiation depends on a relational property. Here are
some examples:

46 Chapter 3. Class stereotypes

OntoUML specification Documentation

RoleMixins usually occur in one of the two patterns:

• Pattern 1: «RoleMixin» defined by roles

• Pattern 2: «RoleMixin» as a role of a «Category»

The second pattern is a more concise form of the first. They are semantically equivalent.

3.9.2 Constraints

C1: A «RoleMixin» is always abstract. Notice that abstract classes are represented with an italic label.

3.9. RoleMixin 47

OntoUML specification Documentation

C2: A «RoleMixin» ag-
gregate individuals that follow different identity principles, therefore it may not have as ancestor the following con-
structs: «Kind», «Quantity», «Collective», «Subkind», «Role», «Phase», «Relator», «Mode», «Quality».

C3: A «RoleMixin» is a anti-rigid construct, therefore it cannot have as descendent any rigid or semi-rigid type, as:
«Kind», «Quantity», «Collective», «Subkind», «Category», «Mixin», «Relator», «Mode», «Quality».

3.9.3 Common questions

Ask us some question if something is not clear . . .

3.9.4 Examples

EX1: Fragment of the OntoUML Org Ontology (O3) (see more):

48 Chapter 3. Class stereotypes

http://www.menthor.net/o3.html

OntoUML specification Documentation

EX2: Fragment of a conceptual model about Brazilian Public Tenders (see more):

3.10 Mixin

3.10.1 Definition

A «Mixin» is a semi-rigid type, i.e., it “behaves” as a rigid type for some individuals and as an anti-rigid one for
others (it’s the only stereotype with such feature in OntoUML). As the «Category» and the «RoleMixin», the «Mixin»
meta-class characterizes individuals that follow different identity principles. Here are some examples of types that
could be classified as «Mixin»:

3.10. Mixin 49

http://www.menthor.net/public-tenders.html

OntoUML specification Documentation

As categories, mixins are commonly applied during a refactoring process, in particular when we want to state that some
properties are applied to both rigid and anti-rigid types. For instance, let’s consider that we defined the following types
in our model, Car and Jewellery, a general concept for Ring, Necklace, etc. Now we want to define the type Luxury
Good. In our worldview, every jewellery is luxurious, but only cars that are worth more than 30k dollars are. Since the
value of a car changes through the years, being a luxurious car is a temporary classification, whilst being a jewellery
is a permanent one. The type Luxury Good, therefore, is semi-rigid or a «Mixin».

3.10.2 Constraints

C1: A «Mixin» is always abstract. Note that abstract classes are represented with italic labels.

C2: A «Mixin» is a semi-rigid
construct and because of that, it cannot have as ancestor either a rigid or an anti-rigid type. Therefore, only mix-

50 Chapter 3. Class stereotypes

OntoUML specification Documentation

ins can be ancestor of other mixins.

3.10.3 Common questions

Ask us some question if something is not clear . . .

3.10.4 Examples

EX1: Conceptual model based on the Music Ontology (see more):

EX2: Fragments extracted from the OntoUML Org Ontology (O3), a model about the active structure of organisations
(see more):

3.10. Mixin 51

http://www.menthor.net/music-ontology.html
http://www.menthor.net/o3.html

OntoUML specification Documentation

52 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.11 Mode

3.11.1 Definition

A «Mode» is a particular type of intrinsic property that has no structured value. Like qualities, modes are also indi-
viduals that existentially depend on their bearers. Types stereotyped as «Mode» are also rigid. You can find some
examples of modes below:

3.11.2 Constraints

C1: Every «Mode» must be (directly or indirectly) connected to an association end of at least one «Characterization»
relation.

3.11. Mode 53

OntoUML specification Documentation

C2: The multiplicity of the characterized end (opposite to the «Mode») must be exactly one. Therefore, the following
examples are forbidden.

C3: Modes cannot have as ances-
tors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role», «RoleMixin», «Phase», «Relator»,
«Quality».

C4: Modes cannot have as descendants
the following types: «Kind», «Quantity», «Collective», «RoleMixin», «Category», «Mixin», «Relator», «Quality».

54 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.11.3 Common questions

Ask us some question if something is not clear . . .

3.11.4 Examples

EX1: Fragment from the Configuration Management Task Ontology (see more):

3.11. Mode 55

http://www.menthor.net/cmto.html

OntoUML specification Documentation

EX2: Fragment from the OntoUML Org Ontology (O3) (see more):

56 Chapter 3. Class stereotypes

http://www.menthor.net/o3.html

OntoUML specification Documentation

3.12 Quality

3.12.1 Definition

A «Quality» is a particular type of intrinsic property which has a structured value. Qualities are things that are
existentially dependent on the things they characterize, called their bearers. Types stereotyped as «Quality» are also
rigid. OntoUML differentiates between three types of qualities:

• Perceivable, which capture qualities that could be measured by an agent with the appropriate instrument, like
weight, height, color and speed.

• Non-Perceivable, which represent properties which cannot be directly measured by an instrument, like currency.

• Nominal, which are used to make reference to an individual, like one’s name, a book’s ISBN or a credit card
number.

Notice some examples of qualities in the next figure:

You can define different types of geometrical structures for a quality value using dimensions and domains. Here is an
example:

3.12. Quality 57

OntoUML specification Documentation

3.12.2 Constraints

C1: A «Quality» must always be connected, through a «Characterization» to another type.

C2: The multiplicity of the characterized end (opposite to the quality) must be exactly one. Therefore, the following
examples are forbidden.

C3: Qualtities cannot have as ancestors the following types: «Kind», «Quantity», «Collective», «Subkind», «Role»,
«RoleMixin», «Phase», «Relator», «Mode».

C4: Qualtities cannot have as descendants the following types: «Kind», «Quantity», «Collective», «RoleMixin»,
«Category», «Mixin», «Relator», «Mode».

58 Chapter 3. Class stereotypes

OntoUML specification Documentation

3.12.3 Common questions

Q1: Can I represent the property “height” as an attribute instead of a «Quality»?

A1: Yes. The decision to represent attributes or qualities is entirely up to you. It is useful to represent properties as
qualities when you want to define different escales for the same characteristic. For instance, if you want to model that
a Person has a “height” property, which can be measured in meters or centimeters you should explicitly represent the
Height quality.

3.12.4 Examples

Todo: To be added . . .

3.12. Quality 59

OntoUML specification Documentation

60 Chapter 3. Class stereotypes

CHAPTER 4

Relationship stereotypes

4.1 Introduction

Relations are entities that glue together other entities. Every relation has a number of relata as arguments, which are
connected or related by it. The number of a relation’s arguments is called its arity. As much as an unary property such
as being Red, properties of higher arities such as being married-to, being heavier-than are universals, since they can
be predicated of a multitude of individuals. Relations can be classified according to the types of their relata. There are
relations between sets, between individuals, and between universals, but there are also cross-categorical relations, for
example, between urelements and sets or between sets and universals. We divide relations into two broad categories,
called Material and Formal relations. Formal relations hold between two or more entities directly without any further
intervening individual. Examples of formal relations are:

• 5 is greater than 3

• this day is part of this month

• N is subset of Q

but also the relations of instantiation, inherence, quale of a quality, association, existential dependence, among others –
. . . relations that form the mathematical superstructure of our framework. Material relations, conversely, have material
structure on their own and include examples such as:

• employments

• kisses

• enrollments

• flight connections

• commitments

The relata of a material relation are mediated by individuals that are called relators. Relators are individuals with the
power of connecting entities:

• a flight connection, for example, founds a relator that connects airports

• an enrollment is a relator that connects a student with an educational institution

61

OntoUML specification Documentation

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005.

4.2 Formal

4.2.1 Definition

The name «Formal» is short for Domain Comparative Formal Relation. This construct is used to represent relations
that can be reduced to the comparison of the quality values that characterize the related individuals, like heavier-then,
younger-then or cheaper-then. Here are some examples in OntoUML:

To specify how the relation can be reduced, use an OCL derivation rule:

context Person::lighter : Set(Person)
derive : Person.allInstances()->select(x | self.weight > x.weight)

Tip: Due to its ontological, the «Formal» relations have no constraints in OntoUML. Nonetheless, make sure the
relation you are modeling is indeed a comparative one. Think about how to reduce the relation to a comparison
between values and represent the necessary properties.

4.2.2 Common questions

Ask us some question if something is not clear . . .

4.2.3 Examples

EX1: Fragment from OntoEmerge, an ontology about Emergency Plans (see more):

62 Chapter 4. Relationship stereotypes

http://www.menthor.net/ontoemerge.html

OntoUML specification Documentation

4.3 Material

4.3.1 Definition

«Material» relations have material structure on their own and include examples such as employments, kisses, enroll-
ments, flight, connections and commitments. The relata of a material relation are mediated by individuals that are
called relators. Relators («Relator») are individuals with the power of connecting entities; a flight connection, for
example, founds a relator that connects airports, an enrollment is a relator that connects a student with an educational
institution. Relators play an important role in answering questions of the sort: what does it mean to say that John is
married to Mary? Why is it true to say that Bill works for Company X but not for Company Y?.

Material relations are derived (via «Derivation») from relators and the mediation relations that connect them to the
corresponding relata. Cardinality constraints of mediation relations collapse by derivation. Material relations are
always affected by collapsed cardinality). Also, several «Material» relations can be derived from a single «Relator»
and «Mediation» relations.

4.3. Material 63

OntoUML specification Documentation

4.3.2 Common questions

Ask us some question if something is not clear . . .

4.3.3 Examples

EX1:

EX2:

For more examples see «Relator», «Derivation», «Mediation», and «Relator pattern».

64 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.4 Mediation

4.4.1 Definition

We define a relation of «Mediation» between a «Relator» and the entities it connects. Mediation is a type of existential
dependence relation (a form of nonfunctional inherence). It can be derived from the relation between the relata and
the qua individiuals that compose the relator and that inhere in the relata. A «Relator» must mediate at least two
distinct individuals.

4.4.2 Common questions

Ask us some question if something is not clear . . .

4.4.3 Examples

EX1:

For more examples see «Relator», «Material», and «Relator pattern».

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

4.5 Characterization

4.5.1 Definition

«Characterization» is a relation between a bearer type and its feature. Feature is intrinsic (inherent) moment of its
bearer type, and thus existentially dependent on the bearer. Feature may be stereotyped as «Quality» or «Mode».
Feature characterizes a bearer type iff every instance of bearer exemplifies the feature.

4.4. Mediation 65

OntoUML specification Documentation

4.5.2 Common questions

Ask us some question if something is not clear . . .

4.5.3 Examples

For examples see «Quality» and «Mode».

Source:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.6 Derivation

4.6.1 Definition

«Material» relation can be completely derived (via «Derivation») from the «Relator» and the corresponding «Me-
diation» relations. Derivation makes the cardinality constraints of the mediation relations collapse (see «Material»
relation, example 2).

Also, several «Material» relations can be derived from a single «Relator» and «Mediation» relations (see «Material»
relation, example 1).

4.6.2 Common questions

Ask us some question if something is not clear . . .

4.6.3 Examples

EX1:

66 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

For more examples see «Relator», «Material», and Relator pattern.

Quoted from:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

4.7 Structuration

4.7.1 Definition

«Structuration» relation allows structuring «Quality».

4.7.2 Common questions

Ask us some question if something is not clear . . .

4.7.3 Examples

For examples see «Quality».

Source:

GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague University of Eco-
nomics, 2011.

4.8 Part-Whole

UML distinguishes between aggregation and composition only. OntoUML distinguishes among

• sharing

– shared part (white)

– exclusive part (black)

• multiplicity of relationship

– mandatory part with respect to the whole

– mandatory whole w.r.t. the part

– mandatory non-rigid type (e.g. role, phase, mixin)

OntoUML also distinguishes among various types of wholes and their parts

• functional whole (and ComponentOf relation)

• Collective (and SubCollectionOf and MemberOf relations)

• Quantity (and Containment and SubQuantityOf relations)

4.7. Structuration 67

OntoUML specification Documentation

4.8.1 Examples

EX1:

EX2:

Notice that maximum multiplicity of the whole is > 1.

68 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

EX3:

Notice that maximum multiplicity of the whole is = 1.

EX4:

Optional part w.r.t. the rigid whole. The whole doesn´t necessarily need any part.

EX5:

Mandatory part w.r.t. the rigid whole. The whole does need a part, instances of the part may mute.

EX6:

Essential part w.r.t. the rigid whole. The whole does need a part, instances mustn´t mute.

4.8. Part-Whole 69

OntoUML specification Documentation

EX7:

Optional rigid whole w.r.t. the part. The part may exist alone, even without the whole.

EX8:

Mandatory rigid whole w.r.t. the part. The part must belong to some whole, instances of the whole may mute.

EX9:

Inseparable part of the rigid whole. The part must belong to the same whole, instances of the whole mustn´t mute.

EX10:

Immutable part of the antirigid whole. Whenever the whole exists in the particular role or phase, its parts must be still
the same instances – they cannot not mute. Compare to {essential}.

70 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

EX11:

Immutable whole w.r.t. the antirigid part. Whenever the part exists in the particular role or phase, its wholes must be
still the same instances – they cannot not mute. Instances of the whole may mute only as the part changes it´s role or
phase.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.9 ComponentOf

4.9.1 Definition

«ComponentOf » is a parthood relation between two complexes. Examples include:

1. my hand is part of my arm;

2. a car engine is part of a car;

3. an Arithmetic and Logic Unit (ALU) is part of a Central Process Unit (CPU);

4. a heart is part of a circulatory system.

Transitivity holds for certain cases but not for others, it depends on context. «ComponentOf » relation obeys weak
supplementation principle (at least 2 parts are required, may be of different types).

4.9.2 Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are
functional complexes.

4.9.3 Common questions

Ask us some question if something is not clear . . .

4.9. ComponentOf 71

OntoUML specification Documentation

4.9.4 Examples

EX1:

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.10 Containment

4.10.1 Definition

«Containment» is a relation between a container and its contents – a «Quantity», e.g., a barrel contains beer.

Multiplicities of the containment relation must be exactly one for the same reason as those of the «SubQuantityOf »
relation.

4.10.2 Common questions

Ask us some question if something is not clear . . .

72 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.10.3 Examples

EX1:

EX2:

EX3:

See also

• SubQuantityOf

• Part-Whole

References:

4.10. Containment 73

OntoUML specification Documentation

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.11 MemberOf

4.11.1 Definition

«MemberOf » is a parthood relation between a functional complex or a «Collective» (as a part) and a «Collective» (as
a whole).

Examples include:

1. a tree is part of forest;

2. a card is part of a deck of cards;

3. a fork is part of cutlery set;

4. a club member is part of a club.

«MemberOf » relation obeys weak supplementation principle (at least 2 parts are required, may be of different types).
The memberOf relation is intransitive.

For example, Kazi, Bobek, Nemo and others are members of the TJ Sokol Zizkov Youth Tourist Club. The TJ Sokol
Zizkov Youth Tourist Club is the member of the Association of the Youth Tourist Clubs. But Kazi, Bobek, Nemo
and others are not members of the Association of the Youth Tourist Clubs, since not persons but only clubs may be
members of the association. Although transitivity does not hold across two «MemberOf » relations, a «MemberOf »
relation followed by «SubCollectionOf » is transitive.

4.11.2 Constraints

C1: This relation can only represent essential parthood if the object representing the whole is extensional (i.e. pro-
vided that adding or removing of any member changes the identity of the collective). In this case, all parthood relations
in which the whole is extensional are constrained as {essential} parthood relations.

C2: The classifier connected to the whole end must be a «Collective». The classifier connected to the part end can be
either a «Collective» or functional complex.

4.11.3 Common questions

Ask us some question if something is not clear . . .

74 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.11.4 Examples

EX1:

See also Part-Whole.

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.12 SubCollectionOf

4.12.1 Definition

«SubCollectionOf » is a parthood relation between two collectives. Examples include:

1. the north part of the Black Forest is part of the Black Forest;

2. the collection of Jokers in a deck of cards is part of that deck of cards;

3. the collection of forks in cutlery set is part of that cutlery set;

4. the collection of male individuals in a crowd is part of that crowd.

The subCollectionOf relation can be shareable in some cases while non-shareable in others. For example, the Kulik
siblings is a collection of three members: Marie, Vaclav, and Karel. The same Kulik siblings are sub-collection of the
Kulik family, as well as a sub-collection of the FC Bilsko football team, as well as a sub-collection of the Voluntary
Firefighter Unit in Bilsko. On contrary, the local organization of the Agrarian Party in Borovno is a sub-collection
of the Agrarian Party, but must not be a sub-collection of any other political party, because the statutes prohibit it.

4.12. SubCollectionOf 75

OntoUML specification Documentation

«Collective» is a type of collections (and collections are instances of collectives). Collection is an integral whole, or
closure defined by a unifying relation. Closure means that no more parts or members can be added to the collection
by its unifying relation.

Unlike «Quantity», «Collective» have members and their members may not be placed together (or connected topolog-
ically), but unified intentionally e.g. by the common role, or purpose, or social connection. Closure of the unifying
relation makes the collective maximal, e.g. the football team is made up of all its members and no subset of its
members can make up the same team. For this reason, the «SubQuantityOf » relation is irreflexive. Moreover, for
the same reason, any super-collective can have at maximum one sub-collective of a given type. Finally, since every
sub-collective of a super-collective is obtained by refining the unifying relation of the latter, the subCollectionOf re-
lation is always transitive. Since collections are maximal, the «SubCollectionOf » parthood must have a cardinality
constraint of one and exactly one in the sub-collection side. Addition or removal of a sub-collection (or even a
member) of a collection may or may not change identity of the collection. E.g. new firefighter units are taken in the
National Rescue System and some of the existing units cease to exist without changing identity of the National Rescue
System. Similarly, the Voluntary Firefighter Unit in Karlik consists of three members: Velebil, Strasirybka, and Jech.
Then Veselik applies for membership and is taken in the firefighter unit. It is still the same unit, its identity does not
change. On contrary, imagine: Jarmila and Jaroslav are spouses. If Jaroslav died, the spousal will cease to exist. And
the unifying relation of spousal does not even admit changing Jaroslav for Karel – such a change would change the
identity of the spousal, as well. This means that collectives are not extensional (but intentional). That is why only the
weak supplementation axiom holds for the subCollectionOf relation (unlike the «SubQuantityOf » relation, where
the strong supplementation axiom holds). This axiom means among others that every super-collection must have at
least two different types of sub-collections.

4.12.2 Constraints

C1: The classes connected to both association ends of this relation must represent universals whose instances are
collectives. Collectives are types as defined in the overview table above.

C2: The maximum cardinality constraint in the association end connected to the part must be one.

4.12.3 Common questions

Ask us some question if something is not clear . . .

76 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

4.12.4 Examples

EX1:

See also

• Part-Whole

• «MemberOf »

Quoted from:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.13 SubQuantityOf

4.13.1 Definition

«SubQuantityOf » is a parthood relation between two quantities, e.g.:

1. alcohol is part of wine;

2. plasma is part of blood;

3. sugar is part of ice cream.

Quantities have not elements (or members). Since their members cannot be enumerated, they must be defined by a
relation that unifies them into a connected whole (self-connectedness). Quantities are connected topologically (unlike
e.g. collectives, which parts and members may not be placed together). Topological connection is characteristic for

4.13. SubQuantityOf 77

OntoUML specification Documentation

quantities and because of topological connection, sub-quantities cannot be shared among several super-quantities.
For this reason, a subQuantityOf relation is always non-sharable. Since quantities do not have elements, they can be
arbitrarily divided, like e.g. water. That´s why any quantity is defined to be maximal portion and can not be part of itself
(water cannot be part of water). Since every part of a quantity is maximal (and self-connected), the SubQuantityOf
parthood must have a cardinality constraint of one and exactly one in the sub-quantity side. E.g. since alcohol is a
quantity (and, hence, maximal), there is exactly one quantity of alcohol which is part of a specific quantity of wine.
Since quantity is maximal, it cannot have a quantity of the same kind as its part – i.e. the «SubQuantityOf » relation is
irreflexive.

Nevertheless, a quantity can be part of another quantity (like glucose in wine) using the «SubQuantityOf » relation. The
change of any of parts of the quantity changes the identity of the whole (i.e. quantities are extensional entities). That
is why the strong supplementation axiom holds for the the «SubQuantityOf » relations (unlike «SubCollectionOf »
relation, which on contrary holds only weaker axiom). For the same reason, all parts of a quantity are essential and
«SubQuantityOf » relations are essential parthood relations. Further, since essential parthood relations are always
transitive, «SubQuantityOf » is always transitive.

4.13.2 Constraints

C1: The «SubQuantityOf » relation is always non-shareable.

C2: A sub-quantity is always an essential part of its super-quantity (marked with {essential} constraint).

C3: The cardinality in the part-end must be exactly one.

C4: The «SubQuantityOf » quantities at its both ends. Quantities are types as defined in the overview table above.

4.13.3 Common questions

Ask us some question if something is not clear . . .

4.13.4 Examples

EX1:

EX2:

78 Chapter 4. Relationship stereotypes

OntoUML specification Documentation

EX3:

See also

• :ref:‘part-whole

• «Containment»

References:

GUIZZARDI, Giancarlo. Ontological Foundations for Structural Conceptual Models. Enschede: CTIT, Telematica
Instituut, 2005. GUIZZARDI, Giancarlo. Introduction to Ontological Engineering. [presentation] Prague: Prague
University of Economics, 2011.

4.13. SubQuantityOf 79

OntoUML specification Documentation

80 Chapter 4. Relationship stereotypes

CHAPTER 5

OntoUML Pattern Catalogue

To help you build your OntoUML models faster, we are assembling a list of known patterns. Please notice that this list
is still under construction, so some patterns might still be missing.

5.1 Phase Partition pattern

5.1.1 Generic pattern

5.1.2 Examples

EX1:

81

OntoUML specification Documentation

5.2 Relator pattern

5.2.1 Generic pattern

5.2.2 Examples

EX1:

82 Chapter 5. OntoUML Pattern Catalogue

OntoUML specification Documentation

EX2:

5.2. Relator pattern 83

OntoUML specification Documentation

5.3 RoleMixin pattern

5.3.1 Generic pattern

5.3.2 Examples

See RoleMixin

5.4 RoleMixin Alternative pattern

5.4.1 Generic pattern

5.4.2 Examples

See RoleMixin

84 Chapter 5. OntoUML Pattern Catalogue

CHAPTER 6

Contributing

This project is community-driven. Are you OntoUML enthusiast? We would like to invite you to cooperate on this
documentation.

6.1 Reporting issues

Found a problem? Any uncertainty? Please create an issue on our GitHub repository
github.com/OntoUML/OntoUML.

6.2 Solving issues

Feel free to solve any issue by yourself. You need just a GitHub account, you will fix the problem in your fork of the
repository and then submit a pull request to the original one. Also, you can fork the repository and try to propose your
OntoUML changes for the future version.

6.3 Documentation guidelines

• Keep the file structure, if you want to propose some big changes, please create an issue where we can discuss
such big change.

• Do not use line breaks unless ending paragraph. In 21st century all human-usable editors and IDEs have func-
tionality called “word wrap” that is configurable per user. Why should someone with wide screen see only 80
characters per line if want more?

• Try to be consistent, maximize readers understanding (do not expect any IT or Ontology expertise), interlink
with other related pages and also label your pages.

• Take a look at Sphinx docs and reStructuredText Markup Specification.

85

https://github.com/OntoUML/OntoUML
http://www.sphinx-doc.org/en/master/contents.html
http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html

OntoUML specification Documentation

86 Chapter 6. Contributing

CHAPTER 7

TODOs

Todo: To be added . . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ontouml/checkouts/init-
ontouml/classes/aspects/quality/examples.rst, line 4.)

Todo: To be added . . .

(The original entry is located in classes/aspects/quality/examples.rst, line 4.)

Todo: To be added . . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ontouml/checkouts/init-
ontouml/classes/sortals/quantity/examples.rst, line 4.)

Todo: To be added . . .

(The original entry is located in classes/sortals/quantity/examples.rst, line 4.)

Todo: This topic will be covered soon. . .

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ontouml/checkouts/init-
ontouml/theory/dependency.rst, line 6.)

Todo: This topic will be covered soon. . .

87

OntoUML specification Documentation

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/ontouml/checkouts/init-
ontouml/theory/objects_events.rst, line 6.)

88 Chapter 7. TODOs

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

89

	Introduction
	OntoUML
	UFO

	Theory
	Types and Individuals
	Identity
	Rigidity
	Dependency
	Objects & Events

	Class stereotypes
	Kind
	Subkind
	Phase
	Role
	Collective
	Quantity
	Relator
	Category
	RoleMixin
	Mixin
	Mode
	Quality

	Relationship stereotypes
	Introduction
	Formal
	Material
	Mediation
	Characterization
	Derivation
	Structuration
	Part-Whole
	ComponentOf
	Containment
	MemberOf
	SubCollectionOf
	SubQuantityOf

	OntoUML Pattern Catalogue
	Phase Partition pattern
	Relator pattern
	RoleMixin pattern
	RoleMixin Alternative pattern

	Contributing
	Reporting issues
	Solving issues
	Documentation guidelines

	TODOs
	Indices and tables

