

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            
  
Omnipresence documentation

Omnipresence is an IRC utility bot built on Twisted, originally developed for the #yackfest channel on EsperNet [https://room208.org/yackfest/].
Most of its functionality is provided through plugins for commands and channel-specific event handlers, with some other sugar thrown in for flavor.


Contents



	Installing and running Omnipresence

	Writing plugins
	Handler plugins

	Command plugins

	Using Deferreds





	API reference
	Core IRC client

	Web utility methods

	Other helper methods












Indices and tables


	Index

	Module Index

	Search Page









          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            
  
Installing and running Omnipresence

Omnipresence requires Python 2.7 or later.
There is no Python 3 support at this time.

Installation can be performed with the provided setup script:

$ python setup.py install





The following dependencies should be automatically installed by the setup script:


	Twisted [http://twistedmatrix.com/] 14.0.0 or later

	pyOpenSSL [http://pythonhosted.org/pyOpenSSL/] and service_identity [https://service-identity.readthedocs.org/]

	SQLObject [http://sqlobject.org/] 0.10 or later

	Beautiful Soup [http://www.crummy.com/software/BeautifulSoup/] 4



You will need to install an additional package to provide support for the specific database engine you wish to use.
For example, MySQL support is provided by the mysql-python package.
Some plugins have their own dependencies; consult the sample configuration in docs/omnipresence.sample.cfg for more details.

Omnipresence is installed as a Twisted application plugin executable through twistd, which handles daemonizing and logging.
The twistd command takes the location of the bot configuration file as its sole argument.
For example, to run Omnipresence in the foreground and log to stdout, use:

$ twistd -no omnipresence omnipresence.cfg





The following command starts Omnipresence as a daemon, logging to the file messages and using the PID file pid:

$ twistd -l messages --pidfile pid omnipresence omnipresence.cfg





For full information on the available options, consult the twistd documentation.





          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            
  
Writing plugins

Omnipresence supports two different types of plugins:


	Handler plugins listen for and respond to general events.

	Command plugins are more specialized variants of handler plugins that only respond when a specific keyword is sent to the bot in a message.
In IRC channels, a command prefix is also expected.  Both of these are specified in the bot configuration.



Plugins are expected to be module-level variables in submodules of the package omnipresence.plugins.
Twisted’s plugin documentation [http://twistedmatrix.com/documents/current/core/howto/plugin.html#auto1] has further details.
In practice, this means that you will write a plugin class that implements the provided interfaces, and assign an instance of that class to a variable in your plugin module:

# omnipresence/plugins/example.py
from twisted.plugin import IPlugin
from omnipresence.iomnipresence import ICommand


class ExampleCommand(object):
    implements(IPlugin, ICommand)
    name = 'example'

    def execute(self, bot, prefix, reply_target, channel, args):
        # ... command performs its work ...
        bot.reply(reply_target, channel, text)


# Don't forget to do this at the end of your module file, or Omnipresence
# will not load your command plugin!
example = ExampleCommand()






Handler plugins

Handler plugins are expected to implement both twisted.plugin.IPlugin and IHandler.


	
interface omnipresence.iomnipresence.IHandler[source]

	A handler that responds to IRC events passed to it by the bot.
There are no required methods for this interface, since handlers may
implement only a subset of available events.  Callbacks are
generally the same as those defined in
omnipresence.IRCClient, except that an instance of the
bot protocol class is provided as the second argument (after
self).


	
registered()

	An optional callback, fired when the plugin is initialized.
At this point, an omnipresence.IRCClientFactory object has been assigned to the self.factory object attribute, which can be used to read configuration data (through config).






	
name

	The name used to refer to this handler in the configuration
file, among other places.












Command plugins

Handler plugins are expected to implement both twisted.plugin.IPlugin and ICommand.


	
interface omnipresence.iomnipresence.ICommand[source]

	A command that is invoked in response to specially-formatted IRC
messages.

The docstring is used to provide documentation for the help
command plugin, with %s standing in for the keyword assigned by
the bot’s configuration.  Generally, command docstrings take the
form of a brief usage note, with the following formatting:


	Text to be typed literally by the user, including the command
keyword, is presented in boldface, through wrapping with the IRC
format code \x02.

	Variable names are presented with an underline, through wrapping
with the IRC format code \x1F.

	Optional arguments are surrounded by unformatted square brackets.

	Choices among mutually-exclusive arguments are separated with
vertical pipes.



For example:

class SampleCommand(object):
    '''
    \x02%s\x02
    \x1Fa\x1F|\x1Fb\x1F|\x1Fc\x1F
    [\x1Foptional_argument\x1F] -
    Provides an example within documentation.
    '''





This would be presented to a typical IRC client as follows, assuming
that the command keyword sample has been assigned:


sample a | b | c [optional_argument] - Provides an
example within documentation.



	
registered()

	See IHandler.registered().






	
execute(self, bot, prefix, reply_target, channel, args)

	Invoked when a command message is seen.





	Parameters:	
	bot (omnipresence.IRCClient) – The current bot protocol instance.

	prefix (str) – The nick@user!host prefix of the user
that invoked this command.

	reply_target (str) – The target of command output
redirection suggested by the invoking user with >
target, or prefix if no such redirection is specified.
This is not necessarily a valid prefix or nickname, as it is
given by the user!

	channel (str) – The channel on which the command was
invoked.  For private messages, this is generally the bot’s
own nickname.

	args (str) – The arguments passed with the command,
including the keyword used to invoke the command ("keyword
arg1 arg2").









Generally, a command’s execute() method should either
call the bot’s reply() method
and (implicitly) return None; or create a Twisted
Deferred object, add a
callback that calls reply(),
and return that Deferred
(see Using Deferreds).  An error handler will be
automatically added that replies with the associated value of
any exceptions that are not handled by the command itself.

Most command plugins shipped with Omnipresence send error or
“no-result” replies to prefix, giving the invoking user a
chance to correct any potential mistakes, while successful
replies are sent to reply_target:

def execute(self, bot, prefix, reply_target, channel, args):
    results = do_something(args)

    if not results:
        bot.reply(prefix, channel, 'No results found.')
        return

    bot.reply(reply_target, channel, results[0])










	
name

	The name used to refer to this command in the configuration
file, among other places.










Web-based commands

Omnipresence provides a convenience class for commands that rely on making an HTTP request and parsing the response, WebCommand.
See the class documentation for more details.






Using Deferreds

Command and handler plugins that need to perform actions that would otherwise block the main thread should use Twisted’s deferred execution mechanism [http://twistedmatrix.com/documents/current/core/howto/defer.html] to make the blocking call asynchronously.
Omnipresence automatically adds an errback to any Deferred objects returned by a command plugin’s execute() method, so that any unhandled errors encountered during the command’s execution can be reported to the user.







          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            
  
API reference



	Core IRC client

	Web utility methods

	Other helper methods









          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Omnipresence 2.5 documentation 

          	API reference 
 
      

    


    
      
          
            
  
Core IRC client

The Omnipresence IRC utility bot.


	
class omnipresence.IRCClient(factory)[source]

	Omnipresence’s core IRC client protocol class.  Common parameters
for callbacks and class methods include:


	prefix

	A full nick!user@host mask.

	channel or nick

	An IRC channel, for commands directed at an entire channel; or
specific nickname, for commands directed at a single user.
Despite their names, parameters with either name will usually
take both channels and nicks as values.  To distinguish between
the two in a callback, use the Twisted constant
CHANNEL_PREFIXES:

from twisted.words.protocols import irc

class Handler(object):
    # ...
    def callback(self, prefix, channel):
        if channel[0] in irc.CHANNEL_PREFIXES:
            # addressed to a channel
        else:
            # addressed to the bot specifically










	
action(prefix, channel, data)[source]

	Called when a /me action is performed in the given
channel.






	
channel_names = None

	A mapping of channels to the set of nicks present in each
channel.






	
connectionLost(reason)[source]

	Called when the connection to the IRC server has been lost
or disconnected.






	
connectionMade()[source]

	Called when a connection has been successfully made to the
IRC server.






	
factory = None

	The IRCClientFactory that created this client.






	
heartbeatInterval = 60

	The number of seconds to wait between sending successive PINGs
to the server.  This overrides a class variable in Twisted’s
implementation, hence the unusual capitalization.






	
irc_ERR_NICKNAMEINUSE(prefix, params)[source]

	Called when the bot attempts to use a nickname that is
already taken by another user.






	
join(channel)[source]

	Join the given channel.  If joins have been suspended with
suspend_joins(), add the channel to the join queue and
actually join it when resume_joins() is called.






	
joined(prefix, channel)[source]

	Called when the bot successfully joins the given channel.
Use this to perform channel-specific initialization.






	
kick(channel, nick, reason=None)[source]

	Kick the the given nick from the given channel.






	
kickedFrom(channel, kicker, message)[source]

	Called when the bot is kicked from the given channel.






	
last_pong = None

	The time of the last PONG seen from the server.






	
leave(channel, reason=None)[source]

	Leave the given channel.






	
left(prefix, channel)[source]

	Called when the bot leaves the given channel.






	
max_lag = 150

	The maximum acceptable lag, in seconds.  If this amount of time
elapses following a PING from the client with no PONG response
from the server, the connection has timed out.  (The timeout
check only occurs at every heartbeatInterval, so
actual disconnection intervals may vary by up to one heartbeat.)






	
me(channel, action)[source]

	Perform an action in the given channel.






	
message_buffers = None

	A mapping of channels to a mapping containing message buffers
for each channel, keyed by nick.






	
mode(chan, set, modes, limit=None, user=None, mask=None)[source]

	Change the mode of the given channel.






	
modeChanged(prefix, channel, set, modes, args)[source]

	Called when a channel’s mode is changed.






	
msg(nick, message)[source]

	Send a message to the nickname or channel specified by
nick.






	
myInfo(servername, version, umodes, cmodes)[source]

	Called with information about the IRC server at logon.






	
names(*channels)[source]

	Ask the IRC server for a list of nicknames in the given
channels.  Plugins generally should not need to call this
method, as it is automatically invoked on join.






	
nickChanged(nick)[source]

	Called when the bot’s nickname is changed.






	
notice(nick, message)[source]

	Send a notice to the nickname or channel specified by
nick.






	
noticed(prefix, channel, message)[source]

	Called when we receive a notice from another user.  Behaves
largely the same as privmsg().






	
privmsg(prefix, channel, message)[source]

	Called when we receive a message from another user.






	
quit(message='')[source]

	Quit from the IRC server.






	
reactor = None

	The reactor in use on this client.  This may be overridden
when a deterministic clock is needed, such as in unit tests.






	
reply(prefix, channel, message)[source]

	Send a reply to a user.  The method used depends on the
values of prefix and channel:


	If prefix is specified and channel starts with an IRC
channel prefix (such as # or +), send the reply
publicly to the given channel, addressed to the nickname
specified by prefix.

	If prefix is specified and channel is the bot’s nickname,
send the reply as a private notice to the nickname specified
by prefix.

	If prefix is not specified, send the reply publicly to the
channel given by channel, with no nickname addressing.



Long replies are buffered in order to satisfy protocol message
length limits; a maximum of 256 characters will be sent at any
given time.  Further content from a buffered reply can be
retrieved by using the command provided with the more plugin.

When possible, Omnipresence attempts to truncate replies on
whitespace, instead of in the middle of a word.  Replies are
_always_ broken on newlines, which can be useful for creating
commands that progressively give more information.






	
reply_with_error(failure, prefix, channel, keyword)[source]

	Call reply() with information on an error that
occurred during an invocation of the command with the given
keyword.  failure should be an instance of
twisted.python.failure.Failure.


Note

This method is automatically called whenever an
unhandled exception occurs in a command’s
execute()
method, and usually does not need to be invoked manually.








	
resume_joins()[source]

	Resume immediate joining of channels after suspending it with
suspend_joins(), and perform any channel joins that
have been queued in the interim.






	
setNick(nickname)[source]

	Change the bot’s nickname.






	
signedOn()[source]

	Called after successfully signing on to the server.






	
signon_timed_out()[source]

	Called when a timeout occurs after connecting to the server,
but before receiving the RPL_WELCOME message that starts the
normal PING heartbeat.






	
signon_timeout = None

	An IDelayedCall used
to detect timeouts that occur after connecting to the server,
but before receiving the RPL_WELCOME message that starts
the normal PING heartbeat.






	
suspend_joins()[source]

	Suspend all channel joins until resume_joins() is
called.






	
suspended_joins = None

	If joins are suspended, a set containing the channels to join
when joins are resumed.  Otherwise, None.






	
topic(channel, topic=None)[source]

	Change the topic of channel if a topic is provided;
otherwise, ask the IRC server for the current channel topic,
which will be provided through the topicUpdated()
callback.






	
topicUpdated(nick, channel, newTopic)[source]

	Called when the topic of the given channel is changed.






	
userJoined(prefix, channel)[source]

	Called when another user joins the given channel.






	
userKicked(kickee, channel, kicker, message)[source]

	Called when another user kicks a third party from the given
channel.






	
userLeft(prefix, channel)[source]

	Called when another user leaves the given channel.






	
userQuit(prefix, quitMessage)[source]

	Called when another user has quit the IRC server.






	
userRenamed(oldname, newname)[source]

	Called when another user changes nick.













          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          next |

        	
          previous |

        	Omnipresence 2.5 documentation 

          	API reference 
 
      

    


    
      
          
            
  
Web utility methods

Utility methods for retrieving and manipulating data from Web resources.


	
class omnipresence.web.WebCommand[source]

	A utility class for writing command plugins that make a single
HTTP GET request and do something with the response.

Subclasses should define a url property containing the
string %s, and implement the reply() method.  When the
command is invoked, %s is substituted with the command’s literal
argument string, and a deferred request to the resulting URL is made
with reply() as its success callback.

An optional property arg_type can be used to indicate the
type of argument that your custom command expects.  This is used to
provide a usage message should no arguments be given; for example,
setting arg_type to 'a search term' sets the usage
message to “Please specify a search term.”  The default value is
'an argument string'.


	
reply(response, bot, prefix, reply_target, channel, args)[source]

	Implement this method in your command subclass.  The
response argument will contain a (headers, content)
response tuple as returned by
request().  The other arguments are
as passed in to ICommand.execute().










	
omnipresence.web.decode_html_entities(s)[source]

	Convert HTML entities in a string to their Unicode character
equivalents.  This method is equivalent to:

textify_html(s, format_output=False)






Deprecated since version 2.2: Use textify_html() instead.








	
omnipresence.web.request(*args, **kwargs)[source]

	Make an HTTP request, and return a Deferred that will yield an
httplib2-style (headers, content) tuple to its callback.

Arguments are as for a request to a typical Twisted Web agent, with
the addition of one keyword argument, max_bytes, that specifies
the maximum number of bytes to fetch from the desired resource.  If
no User-Agent header is specified, one is added before making
the request.

Two custom headers are returned in the response, in addition to any
set by the HTTP server:  X-Omni-Location contains the final
location of the request resource after following all redirects, and
X-Omni-Length contains the original value of the response’s
Content-Length header, which Twisted may overwrite if the actual
response exceeds max_bytes in size.






	
omnipresence.web.textify_html(html, format_output=True)[source]

	Convert the contents of html to a Unicode string.  html can
be either a string containing HTML markup, or a Beautiful Soup tag
object.  If format_output is True, IRC formatting codes are
added to simulate common element styles.









          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	
          previous |

        	Omnipresence 2.5 documentation 

          	API reference 
 
      

    


    
      
          
            
  
Other helper methods

General utility functions used within Omnipresence.


	
omnipresence.util.ago(then, now=None)[source]

	Given a datetime object, return a string giving an approximate relative
time, such as “5 days ago”.






	
omnipresence.util.andify(seq, two_comma=False)[source]

	Given a list, join its elements and return a string of the form
“x and y” for a two-element list, or “x, y, and z” for
three or more elements.  If two_comma is True, insert a comma
before “and” even if the list is only two elements long (“x, and
y”).






	
omnipresence.util.duration_to_timedelta(duration)[source]

	Convert a duration of the form ”?w?d?h?m?s” into a
datetime.timedelta object, where individual components
are optional.






	
omnipresence.util.readable_duration(duration)[source]

	Convert a duration of the form ”?w?d?h?m?s” to a readable string
representation of the form “2 weeks, 5 days, and 20 hours”.






	
omnipresence.util.truncate_unicode(s, char_limit, byte_limit, encoding='utf-8')[source]

	Truncate a Unicode string so that it fits both within the
specified character limit and, when encoded in the given encoding,
the specified byte limit.  Return the truncated string as a byte
string.









          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            

   Python Module Index


   
   o
   


   
     			

     		
       o	

     
       	[image: -]
       	
       omnipresence	
       

     
       	
       	
       omnipresence.util	
       

     
       	
       	
       omnipresence.web	
       

   



          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

    
      Navigation

      
        	
          index

        	
          modules |

        	Omnipresence 2.5 documentation 
 
      

    


    
      
          
            

Index



 A
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


A


  	
      
  	action() (omnipresence.IRCClient method)
  


      
  	ago() (in module omnipresence.util)
  


  

  	
      
  	andify() (in module omnipresence.util)
  


  





C


  	
      
  	channel_names (omnipresence.IRCClient attribute)
  


      
  	connectionLost() (omnipresence.IRCClient method)
  


  

  	
      
  	connectionMade() (omnipresence.IRCClient method)
  


  





D


  	
      
  	decode_html_entities() (in module omnipresence.web)
  


  

  	
      
  	duration_to_timedelta() (in module omnipresence.util)
  


  





E


  	
      
  	execute() (ICommand method)
  


  





F


  	
      
  	factory (omnipresence.IRCClient attribute)
  


  





H


  	
      
  	heartbeatInterval (omnipresence.IRCClient attribute)
  


  





I


  	
      
  	ICommand (interface in omnipresence.iomnipresence)
  


      
  	IHandler (interface in omnipresence.iomnipresence)
  


  

  	
      
  	irc_ERR_NICKNAMEINUSE() (omnipresence.IRCClient method)
  


      
  	IRCClient (class in omnipresence)
  


  





J


  	
      
  	join() (omnipresence.IRCClient method)
  


  

  	
      
  	joined() (omnipresence.IRCClient method)
  


  





K


  	
      
  	kick() (omnipresence.IRCClient method)
  


  

  	
      
  	kickedFrom() (omnipresence.IRCClient method)
  


  





L


  	
      
  	last_pong (omnipresence.IRCClient attribute)
  


      
  	leave() (omnipresence.IRCClient method)
  


  

  	
      
  	left() (omnipresence.IRCClient method)
  


  





M


  	
      
  	max_lag (omnipresence.IRCClient attribute)
  


      
  	me() (omnipresence.IRCClient method)
  


      
  	message_buffers (omnipresence.IRCClient attribute)
  


      
  	mode() (omnipresence.IRCClient method)
  


  

  	
      
  	modeChanged() (omnipresence.IRCClient method)
  


      
  	msg() (omnipresence.IRCClient method)
  


      
  	myInfo() (omnipresence.IRCClient method)
  


  





N


  	
      
  	name (ICommand attribute)
  


      	
        
  	(IHandler attribute)
  


      


      
  	names() (omnipresence.IRCClient method)
  


      
  	nickChanged() (omnipresence.IRCClient method)
  


  

  	
      
  	notice() (omnipresence.IRCClient method)
  


      
  	noticed() (omnipresence.IRCClient method)
  


  





O


  	
      
  	omnipresence (module)
  


      
  	omnipresence.util (module)
  


  

  	
      
  	omnipresence.web (module)
  


  





P


  	
      
  	privmsg() (omnipresence.IRCClient method)
  


  





Q


  	
      
  	quit() (omnipresence.IRCClient method)
  


  





R


  	
      
  	reactor (omnipresence.IRCClient attribute)
  


      
  	readable_duration() (in module omnipresence.util)
  


      
  	registered() (ICommand method)
  


      	
        
  	(IHandler method)
  


      


      
  	reply() (omnipresence.IRCClient method)
  


      	
        
  	(omnipresence.web.WebCommand method)
  


      


  

  	
      
  	reply_with_error() (omnipresence.IRCClient method)
  


      
  	request() (in module omnipresence.web)
  


      
  	resume_joins() (omnipresence.IRCClient method)
  


  





S


  	
      
  	setNick() (omnipresence.IRCClient method)
  


      
  	signedOn() (omnipresence.IRCClient method)
  


      
  	signon_timed_out() (omnipresence.IRCClient method)
  


  

  	
      
  	signon_timeout (omnipresence.IRCClient attribute)
  


      
  	suspend_joins() (omnipresence.IRCClient method)
  


      
  	suspended_joins (omnipresence.IRCClient attribute)
  


  





T


  	
      
  	textify_html() (in module omnipresence.web)
  


      
  	topic() (omnipresence.IRCClient method)
  


  

  	
      
  	topicUpdated() (omnipresence.IRCClient method)
  


      
  	truncate_unicode() (in module omnipresence.util)
  


  





U


  	
      
  	userJoined() (omnipresence.IRCClient method)
  


      
  	userKicked() (omnipresence.IRCClient method)
  


      
  	userLeft() (omnipresence.IRCClient method)
  


  

  	
      
  	userQuit() (omnipresence.IRCClient method)
  


      
  	userRenamed() (omnipresence.IRCClient method)
  


  





W


  	
      
  	WebCommand (class in omnipresence.web)
  


  







          

      

      

    


    
         Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  _modules/omnipresence/util.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »


          		Module code »


          		omnipresence »

 
      


    


    
      
          
            
  Source code for omnipresence.util

"""General utility functions used within Omnipresence."""
import datetime
import re

from twisted.words.protocols import irc


DURATION_RE = re.compile(r'^(?:(\d+)w)?(?:(\d+)d)?(?:(\d+)h)?(?:(\d+)m)?(?:(\d+)s)?$',
                         re.IGNORECASE | re.VERBOSE)

DURATION_GROUPS = ['weeks', 'days', 'hours', 'minutes', 'seconds']

[docs]def ago(then, now=None):
    """Given a datetime object, return a string giving an approximate relative
    time, such as "5 days ago"."""
    if not now:
        now = datetime.datetime.now()

    delta = now - then

    if delta.days == 0:
        if delta.seconds < 10:
            return "just now"
        elif delta.seconds < 60:
            return "%d seconds ago" % (delta.seconds)
        elif delta.seconds < 120:
            return "a minute ago"
        elif delta.seconds < 3600:
            return "%d minutes ago" % (delta.seconds / 60)
        elif delta.seconds < 7200:
            return "an hour ago"
        else:
            return "%d hours ago" % (delta.seconds / 3600)
    elif delta.days == 1:
        return "yesterday"
    elif delta.days < 7:
        return "%d days ago" % (delta.days)
    elif delta.days < 14:
        return "a week ago"
    else:
        return "%d weeks ago" % (delta.days / 7)


[docs]def andify(seq, two_comma=False):
    """Given a list, join its elements and return a string of the form
    "*x* and *y*" for a two-element list, or "*x*, *y*, and *z*" for
    three or more elements.  If *two_comma* is True, insert a comma
    before "and" even if the list is only two elements long ("*x*, and
    *y*")."""
    if len(seq) > 2:
        return ', '.join(seq[:-2] + [', and '.join(seq[-2:])])

    if two_comma:
        return ', and '.join(seq)

    return ' and '.join(seq)


[docs]def duration_to_timedelta(duration):
    """Convert a duration of the form "?w?d?h?m?s" into a
    :py:class:`datetime.timedelta` object, where individual components
    are optional."""
    match = DURATION_RE.match(duration)

    if match:
        kwargs = dict(((DURATION_GROUPS[i], int(value, 10))
                       for (i, value) in enumerate(match.groups('0'))))
        return datetime.timedelta(**kwargs)

    return datetime.timedelta(0)


[docs]def readable_duration(duration):
    """Convert a duration of the form "?w?d?h?m?s" to a readable string
    representation of the form "2 weeks, 5 days, and 20 hours"."""
    match = DURATION_RE.match(duration)

    if match:
        components = []
        for (i, value) in enumerate(match.groups()):
            if value:
                unit = DURATION_GROUPS[i]
                value = int(value, 10)

                if value == 1:
                    # Thankfully, all of these words are simple plurals.
                    components.append(unit[:-1])
                else:
                    components.append('%d %s' % (value, unit))

        return andify(components)

    return 'instant'

# <http://stackoverflow.com/questions/1809531/-/1820949>

[docs]def truncate_unicode(s, char_limit, byte_limit, encoding='utf-8'):
    """Truncate a Unicode string so that it fits both within the
    specified character limit and, when encoded in the given encoding,
    the specified byte limit.  Return the truncated string as a byte
    string."""
    encoded = s[:char_limit].encode(encoding)[:byte_limit]
    return encoded.decode(encoding, 'ignore').encode(encoding)






          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_modules/omnipresence/web.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »


          		Module code »


          		omnipresence »

 
      


    


    
      
          
            
  Source code for omnipresence.web

# -*- test-case-name: omnipresence.test.test_web -*-
"""Utility methods for retrieving and manipulating data from Web resources."""

try:
    import cStringIO as StringIO
except ImportError:
    import StringIO
import sys
import urllib
from urlparse import urlparse

from bs4 import BeautifulSoup, NavigableString, Tag
import ipaddress
from twisted.internet import defer, protocol, reactor
from twisted.names.client import getResolver
from twisted.plugin import IPlugin
from twisted.python.failure import Failure
from twisted.web.client import (IAgent, Agent, ContentDecoderAgent,
                                RedirectAgent, GzipDecoder, ResponseFailed)
from twisted.web.http_headers import Headers
from zope.interface import implements

from omnipresence import VERSION_NUM
from omnipresence.iomnipresence import ICommand

#
# Constants
#

USER_AGENT = ('Omnipresence/{0} (+bot; '
              'https://bitbucket.org/kxz/omnipresence)' \
               .format(VERSION_NUM))


#
# HTTP request machinery
#

class BufferSizeExceededError(Exception):
    def __init__(self, actual_size, buffer_size):
        self.actual_size = actual_size
        self.buffer_size = buffer_size

    def __str__(self):
        return 'tried to read {} bytes into {}-byte buffer'.format(
            self.actual_size, self.buffer_size)


class ResponseBuffer(protocol.Protocol):
    def __init__(self, response, finished, max_bytes=sys.maxsize):
        self.buffer = StringIO.StringIO()
        self.response = response
        self.finished = finished
        self.remaining = self.max_bytes = max_bytes

    def dataReceived(self, bytes):
        if self.remaining - len(bytes) < 0:
            self.transport.loseConnection()
            self.buffer.close()
            failure = Failure(BufferSizeExceededError(
                self.max_bytes - self.remaining + len(bytes), self.max_bytes))
            self.finished.errback(ResponseFailed([failure], self.response))
            return

        self.buffer.write(bytes)
        self.remaining -= len(bytes)

    def connectionLost(self, reason):
        self.finished.callback(self.buffer.getvalue())


class BlacklistedHost(Exception):
    def __init__(self, hostname, ip):
        self.hostname = hostname
        self.ip = ip

    def __str__(self):
        return 'host {} corresponds to blacklisted IP {}'.format(
            self.hostname, self.ip)


class BlacklistingAgent(object):
    """An `~twisted.web.client.Agent` wrapper that forbids requests to
    loopback, private, and internal IP addresses."""
    implements(IAgent)

    def __init__(self, agent, resolver=None):
        self.agent = agent
        self.resolver = resolver or getResolver()

    @defer.inlineCallbacks
    def request(self, method, uri, headers=None, bodyProducer=None):
        hostname = urlparse(uri).hostname
        # Don't attempt to resolve the hostname if it's already a bare
        # IP address.
        try:
            # `ipaddress` takes a Unicode string and I don't really care
            # to handle `UnicodeDecodeError` separately.
            ip = ipaddress.ip_address(hostname.decode('ascii', 'replace'))
        except ValueError:
            ip_str = yield self.resolver.getHostByName(hostname)
            ip = ipaddress.ip_address(ip_str.decode('ascii', 'replace'))
        if ip.is_private or ip.is_loopback or ip.is_link_local:
            raise BlacklistedHost(hostname, ip)
        response = yield self.agent.request(method, uri, headers, bodyProducer)
        defer.returnValue(response)


default_agent = ContentDecoderAgent(RedirectAgent(Agent(reactor)),
                                    [('gzip', GzipDecoder)])


def transform_response(response, **kwargs):
    """Return an httplib2-style ``(headers, content)`` tuple from the
    given Twisted Web response."""
    headers = dict((k, v[0]) for k, v in response.headers.getAllRawHeaders())
    # Add the ultimately requested URL as a custom X-header.
    headers['X-Omni-Location'] = response.request.absoluteURI
    # Calling deliverBody causes the response's Content-Length header to
    # be overwritten with how much of the body was actually delivered.
    # In some cases, the original value is needed, so we store it in a
    # custom X-header field.
    headers['X-Omni-Length'] = str(response.length)
    d = defer.Deferred()
    response.deliverBody(ResponseBuffer(response, d, **kwargs))
    d.addCallback(lambda content: (headers, content))
    return d


[docs]def request(*args, **kwargs):
    """Make an HTTP request, and return a Deferred that will yield an
    httplib2-style ``(headers, content)`` tuple to its callback.

    Arguments are as for a request to a typical Twisted Web agent, with
    the addition of one keyword argument, *max_bytes*, that specifies
    the maximum number of bytes to fetch from the desired resource.  If
    no ``User-Agent`` header is specified, one is added before making
    the request.

    Two custom headers are returned in the response, in addition to any
    set by the HTTP server:  ``X-Omni-Location`` contains the final
    location of the request resource after following all redirects, and
    ``X-Omni-Length`` contains the original value of the response's
    ``Content-Length`` header, which Twisted may overwrite if the actual
    response exceeds *max_bytes* in size."""
    kwargs.setdefault('headers', Headers())
    if not kwargs['headers'].hasHeader('User-Agent'):
        kwargs['headers'].addRawHeader('User-Agent', USER_AGENT)

    transform_kwargs = {}
    if 'max_bytes' in kwargs:
        transform_kwargs['max_bytes'] = kwargs.pop('max_bytes')

    agent = kwargs.pop('agent', None) or default_agent
    d = agent.request(*args, **kwargs)
    d.addCallback(transform_response, **transform_kwargs)
    return d


#
# HTML handling methods
#


[docs]def decode_html_entities(s):
    """Convert HTML entities in a string to their Unicode character
    equivalents.  This method is equivalent to::

        textify_html(s, format_output=False)

    .. deprecated:: 2.2
       Use :py:func:`textify_html` instead.
    """
    return textify_html(s, format_output=False)



[docs]def textify_html(html, format_output=True):
    """Convert the contents of *html* to a Unicode string.  *html* can
    be either a string containing HTML markup, or a Beautiful Soup tag
    object.  If *format_output* is ``True``, IRC formatting codes are
    added to simulate common element styles."""
    if isinstance(html, BeautifulSoup) or isinstance(html, Tag):
        soup = html
    else:
        soup = BeautifulSoup(html)

    def handle_soup(soup, format_output):
        if format_output:
            # Grab the node's tag name, and change the format if necessary.
            if soup.name in (u'b', u'strong'):
                fmt = u'\x02{0}\x02'
            elif soup.name in (u'i', u'u', u'em', u'cite', u'var'):
                fmt = u'\x16{0}\x16'
            elif soup.name == u'sup':
                fmt = u'^{0}'
            elif soup.name == u'sub':
                fmt = u'_{0}'
            else:
                fmt = u'{0}'

            # Recurse into the node's contents.
            contents = u''
            for k in soup.contents:
                if isinstance(k, NavigableString):
                    contents += unicode(k)
                elif hasattr(k, 'name'):  # is another soup element
                    contents += handle_soup(k, format_output)
            return fmt.format(contents)
        else:
            return u''.join(soup.strings)

    # Don't strip whitespace until the very end, in order to avoid
    # misparsing constructs like <span>hello<b> world</b></span>.
    return u' '.join(handle_soup(soup, format_output).split()).strip()


#
# Plugin utility classes
#


[docs]class WebCommand(object):
    """A utility class for writing command plugins that make a single
    HTTP GET request and do something with the response.

    Subclasses should define a :py:attr:`url` property containing the
    string ``%s``, and implement the :py:meth:`.reply` method.  When the
    command is invoked, ``%s`` is substituted with the command's literal
    argument string, and a deferred request to the resulting URL is made
    with :py:meth:`.reply` as its success callback.

    An optional property :py:attr:`arg_type` can be used to indicate the
    type of argument that your custom command expects.  This is used to
    provide a usage message should no arguments be given; for example,
    setting :py:attr:`arg_type` to ``'a search term'`` sets the usage
    message to "Please specify a search term."  The default value is
    ``'an argument string'``.
    """
    implements(IPlugin, ICommand)
    arg_type = 'an argument string'
    url = None

    def execute(self, bot, prefix, reply_target, channel, args):
        args = args.split(None, 1)

        if len(args) < 2:
            bot.reply(prefix, channel,
                      'Please specify {0}.'.format(self.arg_type))
            return

        if self.url is None:
            raise NotImplementedError('no URL provided for WebCommand')

        d = request('GET', self.url % urllib.quote(args[1]))
        d.addCallback(self.reply, bot, prefix, reply_target, channel, args)
        return d

[docs]    def reply(self, response, bot, prefix, reply_target, channel, args):
        """Implement this method in your command subclass.  The
        *response* argument will contain a ``(headers, content)``
        response tuple as returned by
        :py:func:`~omnipresence.web.request`.  The other arguments are
        as passed in to :py:meth:`ICommand.execute`.
        """
        raise NotImplementedError('no reply method provided for WebCommand')







          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_modules/omnipresence.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »


          		Module code »

 
      


    


    
      
          
            
  Source code for omnipresence

# -*- test-case-name: omnipresence.test.test_connection -*-
"""The Omnipresence IRC utility bot."""


import re

import pkg_resources
import sqlobject
from twisted.internet import defer, protocol, reactor, task, threads
from twisted.plugin import getPlugins
from twisted.python import failure, log
from twisted.words.protocols import irc

from omnipresence import iomnipresence, plugins, ircutil, util


VERSION_NAME = 'Omnipresence'
VERSION_NUM = pkg_resources.require('omnipresence')[0].version
SOURCE_URL = 'https://github.com/kxz/omnipresence'

MAX_REPLY_LENGTH = 256
PRIVATE_CHANNEL = '@'


[docs]class IRCClient(irc.IRCClient):
    """Omnipresence's core IRC client protocol class.  Common parameters
    for callbacks and class methods include:

    *prefix*
        A full ``nick!user@host`` mask.
    *channel* or *nick*
        An IRC channel, for commands directed at an entire channel; or
        specific nickname, for commands directed at a single user.
        Despite their names, parameters with either name will usually
        take both channels and nicks as values.  To distinguish between
        the two in a callback, use the Twisted constant
        :py:const:`CHANNEL_PREFIXES`::

            from twisted.words.protocols import irc

            class Handler(object):
                # ...
                def callback(self, prefix, channel):
                    if channel[0] in irc.CHANNEL_PREFIXES:
                        # addressed to a channel
                    else:
                        # addressed to the bot specifically
    """
    # Instance variables handled by t.w.p.irc.IRCClient.
    versionName = VERSION_NAME
    versionNum = VERSION_NUM
    sourceURL = SOURCE_URL

    #: The maximum acceptable lag, in seconds.  If this amount of time
    #: elapses following a PING from the client with no PONG response
    #: from the server, the connection has timed out.  (The timeout
    #: check only occurs at every :py:attr:`~.heartbeatInterval`, so
    #: actual disconnection intervals may vary by up to one heartbeat.)
    max_lag = 150

    #: The number of seconds to wait between sending successive PINGs
    #: to the server.  This overrides a class variable in Twisted's
    #: implementation, hence the unusual capitalization.
    heartbeatInterval = 60

    def __init__(self, factory):
        #: The :py:class:`IRCClientFactory` that created this client.
        self.factory = factory

        # Various instance variables provided by Twisted's IRCClient.
        self.nickname = factory.config.getdefault('core', 'nickname',
                                                  default=VERSION_NAME)
        self.password = factory.config.getdefault('core', 'password')
        self.realname = factory.config.getdefault('core', 'realname')
        self.username = factory.config.getdefault('core', 'username')
        self.userinfo = factory.config.getdefault('core', 'userinfo')

        #: The reactor in use on this client.  This may be overridden
        #: when a deterministic clock is needed, such as in unit tests.
        self.reactor = reactor

        #: The time of the last PONG seen from the server.
        self.last_pong = None

        #: An :py:class:`~twisted.internet.interfaces.IDelayedCall` used
        #: to detect timeouts that occur after connecting to the server,
        #: but before receiving the ``RPL_WELCOME`` message that starts
        #: the normal PING heartbeat.
        self.signon_timeout = None

        #: A mapping of channels to the set of nicks present in each
        #: channel.
        self.channel_names = {}

        #: A mapping of channels to a mapping containing message buffers
        #: for each channel, keyed by nick.
        self.message_buffers = {PRIVATE_CHANNEL: {}}

        #: If joins are suspended, a set containing the channels to join
        #: when joins are resumed.  Otherwise, :py:data:`None`.
        self.suspended_joins = None

    # Utility methods

[docs]    def suspend_joins(self):
        """Suspend all channel joins until :py:meth:`resume_joins` is
        called."""
        # If suspended_joins is not None, then we've already suspended
        # joins for this client, and we shouldn't clobber the queue.
        if self.suspended_joins is not None:
            return

        log.msg('Suspending channel joins.')
        self.suspended_joins = set()


[docs]    def resume_joins(self):
        """Resume immediate joining of channels after suspending it with
        :py:meth:`suspend_joins`, and perform any channel joins that
        have been queued in the interim."""
        if self.suspended_joins is None:
            return

        log.msg('Resuming channel joins.')

        for channel in self.suspended_joins:
            self._join(channel)

        self.suspended_joins = None


    def call_handlers(self, event, channel, args=[]):
        # If the channel is None, this is a server event not associated
        # with a specific channel, such as a successful sign-on or a
        # quit.  Send the event to every registered handler.
        if channel is None:
            handlers = set()

            channels = self.factory.handlers.keys()
            # If this is a quit or nick change, only invoke callbacks on
            # the handlers that are active for the channels where the
            # relevant user is present.
            if event in ('userQuit', 'userRenamed'):
                nick = args[0].split('!', 1)[0]
                channels = filter(
                    lambda c: nick in self.channel_names.get(c, []), channels)
            for channel in channels:
                handlers.update(
                    self.factory.handlers[ircutil.canonicalize(channel)])
        else:
            # If the channel doesn't start with an IRC channel prefix,
            # treat the event as a private one.  Some networks send
            # notices to "AUTH" when performing ident lookups, for
            # example.
            if channel[0] not in irc.CHANNEL_PREFIXES:
                channel = '@'
            handlers = self.factory.handlers.get(
                ircutil.canonicalize(channel), [])
        for handler in handlers:
            if hasattr(handler, event):
                d = defer.maybeDeferred(getattr(handler, event), self, *args)
                d.addErrback(
                    log.err,
                    'Handler "%s" encountered an error.' % handler.name)

    def run_commands(self, prefix, channel, message):
        # First, get rid of formatting codes in the message.
        message = ircutil.remove_control_codes(message)

        # Second, see if the message matches any of the command prefixes
        # specified in the configuration file.  We read directly from
        # `self.factory.config` on every message, because the
        # "current_nickname" default may change while the bot is being
        # run.
        defaults = {'current_nickname': self.nickname}
        command_prefixes = self.factory.config.getspacelist('core',
                                                            'command_prefixes',
                                                            False, defaults)

        for command_prefix in command_prefixes:
            if message.lower().startswith(command_prefix.lower()):
                message = message[len(command_prefix):].strip()
                break
        else:
            # The message doesn't start with any of the given command
            # prefixes.  Continue command parsing if this is a private
            # message; otherwise, bail out.
            if channel[0] in irc.CHANNEL_PREFIXES:
                return

            # Strip excess leading and trailing whitespace for
            # unprefixed commands sent through private messages.
            message = message.strip()

        args = message.split()
        if not args:
            return

        keyword = args[0].lower()
        if keyword not in self.factory.commands:
            return

        # Handle command redirection in the form of "args > nickname",
        # as long as the command is invoked in a public channel.
        reply_target = prefix
        if '>' in message and channel[0] in irc.CHANNEL_PREFIXES:
            (message, reply_target) = message.rsplit('>', 1)
            message = message.strip()
            reply_target = reply_target.strip()

        if reply_target != prefix:
            log.msg('Command from %s directed at %s on channel %s: %s' %
                    (prefix, reply_target, channel, message))
        else:
            log.msg('Command from %s on channel %s: %s' %
                    (prefix, channel, message))

        d = defer.maybeDeferred(self.factory.commands[keyword].execute,
                                self, prefix, reply_target, channel, message)
        d.addErrback(self.reply_with_error, prefix, channel, keyword)

[docs]    def reply(self, prefix, channel, message):
        """Send a reply to a user.  The method used depends on the
        values of *prefix* and *channel*:

        * If *prefix* is specified and *channel* starts with an IRC
          channel prefix (such as ``#`` or ``+``), send the reply
          publicly to the given channel, addressed to the nickname
          specified by *prefix*.
        * If *prefix* is specified and *channel* is the bot's nickname,
          send the reply as a private notice to the nickname specified
          by *prefix*.
        * If *prefix* is not specified, send the reply publicly to the
          channel given by *channel*, with no nickname addressing.

        Long replies are buffered in order to satisfy protocol message
        length limits; a maximum of 256 characters will be sent at any
        given time.  Further content from a buffered reply can be
        retrieved by using the command provided with the `more` plugin.

        When possible, Omnipresence attempts to truncate replies on
        whitespace, instead of in the middle of a word.  Replies are
        _always_ broken on newlines, which can be useful for creating
        commands that progressively give more information.
        """
        # _Always_ split on a newline.
        to_send, sep, to_buffer = message.partition('\n')
        if isinstance(to_send, unicode):
            truncated = util.truncate_unicode(to_send,
                                              MAX_REPLY_LENGTH,  # in chars
                                              MAX_REPLY_LENGTH,  # in bytes
                                              self.factory.encoding)
            if truncated.decode(self.factory.encoding) != to_send:
                # Try and find whitespace to split the message on.
                truncated = truncated.rsplit(None, 1)[0]
                to_buffer = (
                    to_send[len(truncated.decode(self.factory.encoding)):] +
                    sep + to_buffer)
        else:
            truncated = to_send[:MAX_REPLY_LENGTH]
            if truncated != to_send:
                # Try and find whitespace to split the message on.
                truncated = truncated.rsplit(None, 1)[0]
                to_buffer = to_send[len(truncated):] + sep + to_buffer
        message = ircutil.close_formatting_codes(truncated).strip()
        to_buffer = (''.join(ircutil.unclosed_formatting_codes(truncated)) +
                     to_buffer.strip())
        if prefix:
            nick = prefix.split('!', 1)[0].strip()
            if to_buffer:
                message += ' (+%d more characters)' % len(to_buffer)
            log.msg('Reply for %s on channel %s: %s' %
                    (nick, channel, message))

            if channel == self.nickname:
                self.message_buffers[PRIVATE_CHANNEL][nick] = to_buffer
                self.notice(nick, message)
                return

            self.message_buffers[channel][nick] = to_buffer
            message = '%s: %s' % (nick, message)
        else:
            if to_buffer:
                message += u'\u2026'.encode(self.factory.encoding)
            log.msg('Undirected reply for channel %s: %s' % (channel, message))

        self.msg(channel, '\x0314%s' % message)


[docs]    def reply_with_error(self, failure, prefix, channel, keyword):
        """Call :py:meth:`reply` with information on an error that
        occurred during an invocation of the command with the given
        *keyword*.  *failure* should be an instance of
        :py:class:`twisted.python.failure.Failure`.

        .. note:: This method is automatically called whenever an
           unhandled exception occurs in a command's
           :py:meth:`~omnipresence.iomnipresence.ICommand.execute`
           method, and usually does not need to be invoked manually.
        """
        self.reply(prefix, channel,
                   'Command \x02%s\x02 encountered an error: %s.' %
                   (keyword, failure.getErrorMessage()))
        log.err(failure, 'Command "%s" encountered an error.' % keyword)

    # Connection maintenance


[docs]    def connectionMade(self):
        """Called when a connection has been successfully made to the
        IRC server."""
        self.call_handlers('connectionMade', None)
        irc.IRCClient.connectionMade(self)
        log.msg('Connected to server.')
        self.signon_timeout = self.reactor.callLater(
            self.max_lag, self.signon_timed_out)


[docs]    def signon_timed_out(self):
        """Called when a timeout occurs after connecting to the server,
        but before receiving the ``RPL_WELCOME`` message that starts the
        normal PING heartbeat."""
        log.msg('Sign-on timeout (%d seconds); disconnecting' % self.max_lag)
        self.transport.abortConnection()


    def _createHeartbeat(self):
        heartbeat = irc.IRCClient._createHeartbeat(self)
        heartbeat.clock = self.reactor
        return heartbeat

    def _sendHeartbeat(self):
        lag = self.reactor.seconds() - self.last_pong
        if lag > self.max_lag:
            log.msg('Ping timeout (%d > %d seconds); disconnecting' %
                    (lag, self.max_lag))
            self.transport.abortConnection()
            return
        irc.IRCClient._sendHeartbeat(self)

    def startHeartbeat(self):
        self.last_pong = self.reactor.seconds()
        irc.IRCClient.startHeartbeat(self)

[docs]    def connectionLost(self, reason):
        """Called when the connection to the IRC server has been lost
        or disconnected."""
        self.call_handlers('connectionLost', None, [reason])
        irc.IRCClient.connectionLost(self, reason)
        log.msg('Disconnected from server.')

    # Callbacks inherited from twisted.words.protocols.irc.IRCClient


[docs]    def myInfo(self, servername, version, umodes, cmodes):
        """Called with information about the IRC server at logon."""


[docs]    def privmsg(self, prefix, channel, message):
        """Called when we receive a message from another user."""
        if channel[0] not in irc.CHANNEL_PREFIXES:
            log.msg('Message from %s for %s: %s' % (prefix, channel, message))

        self.call_handlers('privmsg', channel, [prefix, channel, message])
        self.run_commands(prefix, channel, message)


[docs]    def joined(self, prefix, channel):
        """Called when the bot successfully joins the given *channel*.
        Use this to perform channel-specific initialization."""
        log.msg('Successfully joined channel %s.' % channel)
        self.call_handlers('joined', channel, [prefix, channel])
        self.channel_names[channel] = set()
        self.message_buffers[channel] = {}


[docs]    def left(self, prefix, channel):
        """Called when the bot leaves the given *channel*."""
        self.call_handlers('left', channel, [prefix, channel])
        del self.channel_names[channel]
        del self.message_buffers[channel]


[docs]    def noticed(self, prefix, channel, message):
        """Called when we receive a notice from another user.  Behaves
        largely the same as :py:meth:`privmsg`."""
        if channel[0] not in irc.CHANNEL_PREFIXES:
            log.msg('Notice from %s for %s: %s' % (prefix, channel, message))

        self.call_handlers('noticed', channel, [prefix, channel, message])


[docs]    def modeChanged(self, prefix, channel, set, modes, args):
        """Called when a channel's mode is changed."""
        self.call_handlers('modeChanged', channel,
                           [prefix, channel, set, modes, args])


[docs]    def signedOn(self):
        """Called after successfully signing on to the server."""
        log.msg('Successfully signed on to server.')
        if self.signon_timeout:
            self.signon_timeout.cancel()
        # Resetting the connection delay when a successful connection is
        # made, instead of at IRC sign-on, overlooks situations such as
        # host bans where the server accepts a connection and then
        # immediately disconnects the client.  In these cases, the delay
        # should continue to increase, especially if the problem is that
        # there are too many connections!
        self.factory.resetDelay()
        self.call_handlers('signedOn', None)
        for channel in self.factory.config.options('channels'):
            if channel != PRIVATE_CHANNEL:
                self.join(channel)


[docs]    def kickedFrom(self, channel, kicker, message):
        """Called when the bot is kicked from the given *channel*."""
        self.call_handlers('kickedFrom', channel, [channel, kicker, message])
        del self.channel_names[channel]
        del self.message_buffers[channel]


[docs]    def nickChanged(self, nick):
        """Called when the bot's nickname is changed."""
        self.call_handlers('nickChanged', None, [nick])
        irc.IRCClient.nickChanged(self, nick)


[docs]    def userJoined(self, prefix, channel):
        """Called when another user joins the given *channel*."""
        self.call_handlers('userJoined', channel, [prefix, channel])
        self.channel_names[channel].add(prefix.split('!', 1)[0])


[docs]    def userLeft(self, prefix, channel):
        """Called when another user leaves the given *channel*."""
        self.call_handlers('userLeft', channel, [prefix, channel])
        nick = prefix.split('!', 1)[0]
        self.channel_names[channel].discard(nick)
        self.message_buffers[channel].pop(nick, None)


[docs]    def userQuit(self, prefix, quitMessage):
        """Called when another user has quit the IRC server."""
        self.call_handlers('userQuit', None, [prefix, quitMessage])
        nick = prefix.split('!', 1)[0]
        for channel in self.channel_names:
            self.channel_names[channel].discard(nick)
            self.message_buffers[channel].pop(nick, None)


[docs]    def userKicked(self, kickee, channel, kicker, message):
        """Called when another user kicks a third party from the given
        *channel*."""
        self.call_handlers('userKicked', channel,
                           [kickee, channel, kicker, message])
        self.channel_names[channel].discard(kickee)
        self.message_buffers[channel].pop(kickee, None)


[docs]    def action(self, prefix, channel, data):
        """Called when a ``/me`` action is performed in the given
        *channel*."""
        self.call_handlers('action', channel, [prefix, channel, data])


[docs]    def topicUpdated(self, nick, channel, newTopic):
        """Called when the topic of the given *channel* is changed."""
        self.call_handlers('topicUpdated', channel, [nick, channel, newTopic])


[docs]    def userRenamed(self, oldname, newname):
        """Called when another user changes nick."""
        self.call_handlers('userRenamed', None, [oldname, newname])
        for channel in self.channel_names:
            if oldname in self.channel_names[channel]:
                self.channel_names[channel].discard(oldname)
                self.channel_names[channel].add(newname)
        for channel in self.message_buffers:
            if oldname in self.message_buffers[channel]:
                self.message_buffers[channel][newname] = (
                    self.message_buffers[channel].pop(oldname))


    def _join(self, channel):
        log.msg('Joining channel %s.' % channel)
        irc.IRCClient.join(self, channel)

[docs]    def join(self, channel):
        """Join the given *channel*.  If joins have been suspended with
        :py:meth:`suspend_joins`, add the channel to the join queue and
        actually join it when :py:meth:`resume_joins` is called."""
        # If joins are suspended, add this one to the queue; otherwise,
        # just go ahead and join the channel immediately.
        if self.suspended_joins is not None:
            log.msg('Joins suspended; adding channel %s to join queue.' %
                    channel)
            self.suspended_joins.add(channel)
            return

        self._join(channel)


[docs]    def leave(self, channel, reason=None):
        """Leave the given *channel*."""
        self.call_handlers('leave', channel, [channel, reason])
        del self.channel_names[channel]
        del self.message_buffers[channel]
        irc.IRCClient.leave(self, channel, reason)


[docs]    def kick(self, channel, nick, reason=None):
        """Kick the the given *nick* from the given *channel*."""
        self.call_handlers('kick', channel, [channel, nick, reason])
        irc.IRCClient.kick(self, channel, nick, reason)
        self.channel_names[channel].discard(nick)
        self.message_buffers[channel].pop(nick, None)


[docs]    def topic(self, channel, topic=None):
        """Change the topic of *channel* if a *topic* is provided;
        otherwise, ask the IRC server for the current channel topic,
        which will be provided through the :py:meth:`topicUpdated`
        callback."""
        self.call_handlers('topic', channel, [channel, topic])
        irc.IRCClient.topic(self, channel, topic)


[docs]    def mode(self, chan, set, modes, limit=None, user=None, mask=None):
        """Change the mode of the given *channel*."""
        self.call_handlers('mode', chan,
                           [chan, set, modes, limit, user, mask])
        irc.IRCClient.mode(self, chan, set, modes, limit, user, mask)

    # def say(...) is not necessary, as it simply delegates to msg().


[docs]    def msg(self, nick, message):
        """Send a message to the nickname or channel specified by
        *nick*."""
        self.call_handlers('msg', nick, [nick, message])
        irc.IRCClient.msg(self, nick, message)


[docs]    def notice(self, nick, message):
        """Send a notice to the nickname or channel specified by
        *nick*."""
        self.call_handlers('notice', nick, [nick, message])
        irc.IRCClient.notice(self, nick, message)


[docs]    def setNick(self, nickname):
        """Change the bot's nickname."""
        oldnick = self.nickname
        self.call_handlers('setNick', None, [nickname])
        irc.IRCClient.setNick(self, nickname)
        for channel in self.channel_names:
            if oldnick in self.channel_names[channel]:  # sanity check
                self.channel_names[channel].discard(oldnick)
                self.channel_names[channel].add(nickname)
        for channel in self.message_buffers:
            # We should never have a buffer for ourselves.
            self.message_buffers[channel].pop(oldnick, None)


[docs]    def quit(self, message=''):
        """Quit from the IRC server."""
        self.call_handlers('quit', None, [message])
        irc.IRCClient.quit(self, message)
        self.channel_names = {}
        self.message_buffers = {PRIVATE_CHANNEL: {}}


[docs]    def me(self, channel, action):
        """Perform an action in the given *channel*."""
        self.call_handlers('me', channel, [channel, action])
        irc.IRCClient.me(self, channel, action)


[docs]    def irc_ERR_NICKNAMEINUSE(self, prefix, params):
        """Called when the bot attempts to use a nickname that is
        already taken by another user."""
        self.call_handlers('irc_ERR_NICKNAMEINUSE', self.nickname)
        irc.IRCClient.irc_ERR_NICKNAMEINUSE(self, prefix, params)


    def irc_JOIN(self, prefix, params):
        nick = prefix.split('!', 1)[0]
        channel = params[-1]
        if nick == self.nickname:
            self.joined(prefix, channel)
        else:
            self.userJoined(prefix, channel)

    def irc_PART(self, prefix, params):
        nick = prefix.split('!', 1)[0]
        channel = params[0]
        if nick == self.nickname:
            self.left(prefix, channel)
        else:
            self.userLeft(prefix, channel)

    def irc_QUIT(self, prefix, params):
        self.userQuit(prefix, params[0])

    # IRC methods not defined by t.w.p.irc.IRCClient

    def irc_PONG(self, prefix, secs):
        self.last_pong = self.reactor.seconds()

[docs]    def names(self, *channels):
        """Ask the IRC server for a list of nicknames in the given
        channels.  Plugins generally should not need to call this
        method, as it is automatically invoked on join."""
        for ch in channels:
            self.sendLine("NAMES " + ch)


    def irc_RPL_NAMREPLY(self, prefix, params):
        channel = params[2]
        names = params[3].split()
        self.namesArrived(channel, names)

    def irc_RPL_ENDOFNAMES(self, prefix, params):
        channel = params[1]
        self.endNames(channel)

    def namesArrived(self, channel, names):
        # Liberally strip out all user mode prefixes such as @%+.  Some
        # networks support more prefixes, so this removes any prefixes
        # with characters not valid in nicknames.
        names = map(lambda x: re.sub(r'^[^A-Za-z0-9\-\[\]\\`^{}]+', '', x),
                    names)
        self.channel_names[channel].update(names)

    def endNames(self, channel):
        self.call_handlers('endNames', channel, [channel])



class IRCClientFactory(protocol.ReconnectingClientFactory):
    """Creates :py:class:`.IRCClient` instances."""
    protocol = IRCClient

    # Stores the handler instances for each channel that we are
    # connected to. Keys are channel names; values are an ordered list
    # of handler instances to execute for each one.
    handlers = None

    # Stores the command instances for this bot.  Keys are the keywords
    # used to invoke each command; values are the command instances
    # themselves.
    commands = None

    encoding = 'utf-8'

    def __init__(self, config):
        self.config = config
        self.encoding = self.config.getdefault('core', 'encoding',
                                               self.encoding)

        # Set up the bot's SQLObject connection instance.
        sqlobject_uri = self.config.get('core', 'database')
        sqlobject.sqlhub.processConnection = (
            sqlobject.connectionForURI(sqlobject_uri))

        # Load handler plug-ins through twisted.plugin, then map
        # handlers to channels based on the specified configuration
        # options.
        self.handlers = {}
        found_handlers = {}
        enabled_handler_names = set()

        for handler in getPlugins(iomnipresence.IHandler, plugins):
            handler.factory = self
            found_handlers[handler.name] = handler

        channels = self.config.options('channels')
        for channel in channels:
            handler_names = self.config.getspacelist('channels', channel)
            # Since "#" can't be used to start a line in the
            # configuration file (it gets parsed as a comment by
            # ConfigParser), add "#" to the beginning of any channel
            # name that's not special.
            if (channel[0] not in irc.CHANNEL_PREFIXES and
                    channel != PRIVATE_CHANNEL):
                channel = '#' + channel
            channel = ircutil.canonicalize(channel)
            self.handlers[channel] = []
            for handler_name in handler_names:
                if handler_name:  # ignore empty lists and list items
                    try:
                        self.handlers[channel].append(
                            found_handlers[handler_name])
                    except KeyError:
                        log.err(None,
                                'Could not find handler with name "%s".' %
                                handler_name)
                        raise
                    else:
                        enabled_handler_names.add(handler_name)

        for handler_name in enabled_handler_names:
            handler = found_handlers[handler_name]
            if hasattr(handler, 'registered'):
                handler.registered()

        # Load command plug-ins through twisted.plugin, then map
        # commands to keywords based on the specified configuration
        # options.
        self.commands = {}
        found_commands = {}
        enabled_command_names = set()

        for command in getPlugins(iomnipresence.ICommand, plugins):
            command.factory = self
            found_commands[command.name] = command

        for (keyword, command_name) in self.config.items('commands'):
            # Force the keyword to lowercase.  This enables case-
            # insensitive matching when parsing commands.
            keyword = keyword.lower()

            try:
                self.commands[keyword] = found_commands[command_name]
            except KeyError:
                log.err(None,
                        'Could not find command with name "%s".' %
                        command_name)
                raise
            else:
                enabled_command_names.add(command_name)

        for command_name in enabled_command_names:
            command = found_commands[command_name]
            if hasattr(command, 'registered'):
                command.registered()

    def startedConnecting(self, connector):
        log.msg('Attempting to connect to server.')

    def buildProtocol(self, addr):
        return self.protocol(self)





          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_modules/index.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »

 
      


    


    
      
          
            
  All modules for which code is available


		omnipresence


		omnipresence.iomnipresence


		omnipresence.util


		omnipresence.web








          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_modules/omnipresence/iomnipresence.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »


          		Module code »


          		omnipresence »

 
      


    


    
      
          
            
  Source code for omnipresence.iomnipresence

from zope.interface import Interface, Attribute

[docs]class IHandler(Interface):
    """A handler that responds to IRC events passed to it by the bot.
    There are no required methods for this interface, since handlers may
    implement only a subset of available events.  Callbacks are
    generally the same as those defined in
    :py:class:`omnipresence.IRCClient`, except that an instance of the
    bot protocol class is provided as the second argument (after
    *self*)."""

    name = Attribute("""
        The name used to refer to this handler in the configuration
        file, among other places.
        """)


[docs]class ICommand(Interface):
    """A command that is invoked in response to specially-formatted IRC
    messages.

    The docstring is used to provide documentation for the ``help``
    command plugin, with ``%s`` standing in for the keyword assigned by
    the bot's configuration.  Generally, command docstrings take the
    form of a brief usage note, with the following formatting:

    * Text to be typed literally by the user, including the command
      keyword, is presented in boldface, through wrapping with the IRC
      format code ``\\x02``.
    * Variable names are presented with an underline, through wrapping
      with the IRC format code ``\\x1F``.
    * Optional arguments are surrounded by unformatted square brackets.
    * Choices among mutually-exclusive arguments are separated with
      vertical pipes.

    For example::

        class SampleCommand(object):
            '''
            \\x02%s\\x02
            \\x1Fa\\x1F|\\x1Fb\\x1F|\\x1Fc\\x1F
            [\\x1Foptional_argument\\x1F] -
            Provides an example within documentation.
            '''

    This would be presented to a typical IRC client as follows, assuming
    that the command keyword ``sample`` has been assigned:

        **sample** *a* | *b* | *c* [*optional_argument*] - Provides an
        example within documentation.
    """

    def execute(self, bot, prefix, reply_target, channel, args):
        """Invoked when a command message is seen.

        :param bot: The current bot protocol instance.
        :type bot: :py:class:`omnipresence.IRCClient`
        :param str prefix: The ``nick@user!host`` prefix of the user
            that invoked this command.
        :param str reply_target: The target of command output
            redirection suggested by the invoking user with ``>
            target``, or *prefix* if no such redirection is specified.
            This is not necessarily a valid prefix or nickname, as it is
            given by the user!
        :param str channel: The channel on which the command was
            invoked.  For private messages, this is generally the bot's
            own nickname.
        :param str args: The arguments passed with the command,
            including the keyword used to invoke the command (``"keyword
            arg1 arg2"``).

        Generally, a command's :py:meth:`execute` method should either
        call the bot's :py:meth:`~omnipresence.IRCClient.reply` method
        and (implicitly) return ``None``; or create a Twisted
        :py:class:`~twisted.internet.defer.Deferred` object, add a
        callback that calls :py:meth:`~omnipresence.IRCClient.reply`,
        and return that :py:class:`~twisted.internet.defer.Deferred`
        (see :ref:`using-deferreds`).  An error handler will be
        automatically added that replies with the associated value of
        any exceptions that are not handled by the command itself.

        Most command plugins shipped with Omnipresence send error or
        "no-result" replies to *prefix*, giving the invoking user a
        chance to correct any potential mistakes, while successful
        replies are sent to *reply_target*::

            def execute(self, bot, prefix, reply_target, channel, args):
                results = do_something(args)

                if not results:
                    bot.reply(prefix, channel, 'No results found.')
                    return

                bot.reply(reply_target, channel, results[0])
        """

    name = Attribute("""
        The name used to refer to this command in the configuration
        file, among other places.
        """)






          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_static/minus.png





_static/comment.png





_static/plus.png





_static/comment-bright.png





search.html


    
      Navigation


      
        		
          index


        		
          modules |


        		Omnipresence 2.5 documentation »

 
      


    


    
      
          
            
  Search


  
  
  
    Please activate JavaScript to enable the search
    functionality.
  


  

  
    From here you can search these documents. Enter your search
    words into the box below and click "search". Note that the search
    function will automatically search for all of the words. Pages
    containing fewer words won't appear in the result list.
  


  
    
    
    
  

  
  
  
  


          

      

      

    


    
        © Copyright Kevin Xiwei Zheng.
      Created using Sphinx 1.3.1.
    

  

_static/comment-close.png





_static/up.png





_static/down-pressed.png





_static/down.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





