
Omnia Foundation Documentation

Precio Fishbone

Apr 06, 2018

Contents

1 Topics 3
1.1 Getting Started . 3
1.2 Omnia Foundation Fundamentals . 13
1.3 SharePoint Provisioning . 42
1.4 Omnia API . 54
1.5 Custom Web API for Omnia extensions . 70
1.6 Omnia Jobs . 73
1.7 Client-Side Development . 78
1.8 Performance . 97
1.9 Release Notes . 98
1.10 Contribute to this Documentation . 102

i

ii

Omnia Foundation Documentation

.. include:: /../common/authors.txt

Note: This documentation is a work in progress and contributions can be made on our Github repo

Contents 1

Omnia Foundation Documentation

2 Contents

CHAPTER 1

Topics

.. include:: /../common/authors.txt

1.1 Getting Started

1.1.1 1. Install Visual Studio 2017

Download and install Visual Studio 2017 (not Community edition)

1.1.2 2. Install Node JS

Download and install Node JS from https://nodejs.org/ . Choose the latest Current version. (Tested with version
8.5.0)

Or, if you have the need for running different versions of nodejs, for various projects. NVM (Node Version Manager)
for windows is recomended, it allows for easy switching between nodejs versions. It can be found at https://github.
com/coreybutler/nvm-windows You will need to uninstall nodejs if you already have it, instructions are on the repo.

1.1.3 3. Install Office Developer Tools

Download and install Office Developer Tools from https://www.visualstudio.com/vs/office-tools/

1.1.4 4. Configure Precio Fishbone NuGet package source in Visual Studio

Precio Fishbone NuGet package source is needed for download Omnia NuGet packages. To configure Precio Fishbone
NuGet package source, follow these steps:

• In Visual Studio, navigate to Tools > NuGet Packages Manager > Packages Manager Settings

• In the Options dialog, select Package Sources in the left pane

3

https://nodejs.org/
https://github.com/coreybutler/nvm-windows
https://github.com/coreybutler/nvm-windows
https://www.visualstudio.com/vs/office-tools/

Omnia Foundation Documentation

• Add a new package source named Precio Fishbone with this URL http://nuget.preciofishbone.se/api/v2

1.1.5 5. Install Omnia Tooling for Visual Studio

Download and install Omnia Tooling for Visual Studio

4 Chapter 1. Topics

http://nuget.preciofishbone.se/api/v2

Omnia Foundation Documentation

1.1.6 6. Create new project with Omnia Extension project template

Note:

• Omnia Documentation - Project template for creating an Omnia documentation package

• Omnia Extension - Project template for creating an Omnia extension package

Select the Omnia Extension template and name your project. Click OK.

The following screen opens

1.1. Getting Started 5

Omnia Foundation Documentation

The first section is where you enter metadata about your extension. Normally there is no need to change these two
values

The second section exists to help you configure the communication beween your development environment and your
Omnia tenant

6 Chapter 1. Topics

Omnia Foundation Documentation

• Tenant Id is found in Omnia Admin in your tenant, in the Settings section (see image below)

• Foundation Url is also found in Omnia Admin, in the Settings section (see image below)

• Api Secret. This secret is recieved from Omnia by navigating to Omnia Admin > System > Extensions >
Register Extension and paste in your Extension Id (from the Visual Studio dialog)

1.1. Getting Started 7

Omnia Foundation Documentation

The third section’s purpose is there to help you target the correct API version, both in Omnia and SharePoint

The Foundation API version used in your tenant can be found in Omnia Admin > System, in the Developer Information
section

The right hand side of the dialog determines the structure and files that will be created in the Extension projects

8 Chapter 1. Topics

Omnia Foundation Documentation

• The Extension Package checkbox controls if an Omnia Extension project is created in the solution

• The Web API checkbox controls if a Web API project, prepared to communicate with Omnia is created in the
solution

The Extension Package checkbox has some child items that can be selected

• The Client Side checkbox determines if the project structure and files for doing client side development should
be added to the solution

• The Angular Tooling checkbox makes sure the relevant files and tooling support for Angular development is
added

• The Less Tooling checkbox makes sure the relevant files and tooling support for compiling Less files is added

• The Server Side checkbox determined if the project structure for doing server side development (like features,
jobs etc.) is added to the project

• Below the Examples checkbox you can select different code examples to be provisioned to your project, to set
you off to a quick start

• The Setup basic folder structure checkbox will add a best practice folder structure to your project

After filling in all the fields in the form, and selecting all the checkboxes, the following solution structure will be
created

1.1. Getting Started 9

Omnia Foundation Documentation

1.1.7 7. Alter the environment information in your project

(when changing tenant, or when passing the extension over to a fellow developer)

Open the file environment.json in MyOmniaExtension and fill in:

• TenantId: you get this from the System page in Omnia admin

• ApiSecret: the secret you got when you registered your extension in step 6

• FoundationUrl: you get this from the System page in Omnia admin

10 Chapter 1. Topics

Omnia Foundation Documentation

1.1.8 9. Deploy your extension

Right click on Extension project (DevelopDocumentation) and click Omnia Deploy

1.1. Getting Started 11

Omnia Foundation Documentation

You can see the deployment progress in the Output window in Visual Studio

12 Chapter 1. Topics

Omnia Foundation Documentation

1.1.9 10. Verify

After the extension has been deployed successfully to Omnia, you can verify it by navigating to System > Extension
in Omnia admin

And in the Features page you should see the features from your extension.

Congratulations, you are now ready to build your magical Omnia extension!

.. include:: /../common/authors.txt

1.2 Omnia Foundation Fundamentals

Note: This documentation is a work in progress and contributions can be made on our Github repo

1.2.1 Topics

.. include:: /../common/authors.txt

Omnia Extension Package

Omnia Foundation is built with extensibility in mind since day one and an Omnia Extension Package is the main way
to extend Omnia. This article will give an overview of what you can achieve with extension packages and the basic
structure of an extension package. For a more practical guide on how to start developing Omnia extensions see the
Getting Started guide.

Sections:

• What is an Omnia Extension Package?

1.2. Omnia Foundation Fundamentals 13

Omnia Foundation Documentation

• Manage extension packages

What is an Omnia Extension Package?

An Omnia extension package is a pack of features or extensions for Omnia. You can think of it like SharePoint
solution packages but for the Omnia platform. An extension can be used to deploy all kinds of new features, from
small UI changes to non-trivia applications with its own back-end and database. Examples are Omnia Intranet and
Omnia Documentation Management.

At the core of an extension package are resource files. Resource files can be anything from client-side code like
JavaScript, CSS, HTML templates to SharePoint artifacts like page layouts and web parts. These resources are mapped
and deployed by logical containers called Omnia feature.

For example, the resources in a large extension might looks like this

14 Chapter 1. Topics

Omnia Foundation Documentation

An extension package can also contain Omnia jobs, pieces of code that will run as scheduled tasks in Omnia, and
provisioning pipelines, pieces of code that will be hooked into the site provisioning pipeline of Omnia.

Manage extension packages

All extension packages in a tenant can be managed in Omnia admin, System > Extensions

New extensions can be uploaded directly from this UI by drag and drop or from Visual Studio using Omnia Tooling.
An extension need to be registered before it can be uploaded, see the Getting Started guide for more details.

In this UI you can also manage configurations for each extension by clicking on the extension name

1.2. Omnia Foundation Fundamentals 15

Omnia Foundation Documentation

When a new version of an extension package has been deployed, all the new changes will not be available for users
until the features of that extension are upgraded to the latest version.

.. include:: /../common/authors.txt

Omnia Feature

Omnia features are modules containing customizations for Omnia. They are very similar to SharePoint features, except
that they can provisioning resources to both SharePoint and to Omnia database. An Omnia feature can also run your
custom code when they are activated, upgraded or removed.

Sections:

• Feature scopes

• Built-in methods and properties

• Create new feature

• Feature activation, deactivation and upgrade

• Provisioning tenant resources

• Provisioning SharePoint artifacts

Feature scopes

A feature will have one of the three scopes Site, SiteCollection and Tenant, each scope can deploy different types of
artifacts.

16 Chapter 1. Topics

Omnia Foundation Documentation

Scope Artifacts SharePoint ClientContext
Site

• Page
• List instance
• Site.js bundle
• Site.css bundle

App-only context of the
target site

SiteCollection
• Page
• List instance
• Content Type
• Field
• Masterpage and pagelayout
• Webpart
• SiteCollection.js bundle
• SiteCollection.css bundle

App-only context of the
root site of the target
site collection

Tenant
• Tenant resource
• Tenant.js bundle
• Tenant.css bundle

Not available

Built-in methods and properties

Properties Type Description
Ctx ClientContext

App-only client context for the
targeting site.
This property is not available in
tenant scope features.

1.2. Omnia Foundation Fundamentals 17

/fundamentals/bundling.html
/fundamentals/bundling.html
/fundamentals/bundling.html
/fundamentals/bundling.html
/fundamentals/bundling.html
/fundamentals/bundling.html

Omnia Foundation Documentation

Methods Type Description
CreateContextFor(string spUrl) ClientContext

Create a new app-only context for
another site

Log(string log) void

Add a new entry to this feature’s
logs

WorkWith() ApiFactory

Return the ApiFactory that can call
Omnia API
Example: Work-
With().Logging().AddLog(log)

Localize(string localizeKey) string

Return the localized string

Create new feature

As usual, you can create new Omnia feature using the template from Omnia tooling

18 Chapter 1. Topics

Omnia Foundation Documentation

At the top of the feature is the FeatureDefinition attribute which contains the feature’s metadata

[FeatureDefinition(
id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
name: "MyOmniaExtension Sample Feature Core",
version: "0.1.0",
scope: FeatureScopes.Tenant

)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature

Feature activation, deactivation and upgrade

In a feature you can override the activation, decativation or upgrade events to run custom code. In these events, you
can:

• Write CSOM code to work with data in SharePoint (except for Tenant scope features where the ClientContext
is not available)

• Call the API of Omnia Foundation like logging and configurations using the built-in method WorkWith

• Trigger queue jobs using Omnia Queues API

Example: Provisioning new start page for the target site when activating the feature

/// <summary>
/// Activates the feature
/// </summary>
public override void Activate()
{

try
{

string pageTitle = this.Localize("$Localize:MyOmniaExtension.StartPageTitle;
→˓");

var publishingClient = this.WorkWith().Publishing(this.Ctx);
publishingClient.CreateStartPage(new Page
{

Name = "StartPage.aspx",
PageLayout = MyOmniaExtension.PageLayouts.StartPage,
Title = pageTitle

});
}
catch (Exception ex)
{

this.Log("Activate feature", ex.Message, FeatureInstanceLogTypes.Error);
throw;

}
}

/// <summary>
/// Deactivates the feature.
/// </summary>
/// <param name="fromVersion">From version.</param>
public override void Deactivate(string fromVersion)
{

// Your code to handle feature deactivation here
}

(continues on next page)

1.2. Omnia Foundation Fundamentals 19

/fundamentals/logging.html
/fundamentals/configuration.html

Omnia Foundation Documentation

(continued from previous page)

/// <summary>
/// Upgrades the feature
/// </summary>
/// <param name="fromVersion">From version.</param>
public override void Upgrade(string fromVersion)
{

// Your code to handle feature upgrade here
}

Provisioning tenant resources

By overriding the method OnTenantResourceMappings, a feature can provision tenant resources to Omnia database.

For code resources like JavaScript and CSS, you will also need to add them to a bundle for them to be loaded and
executed on SharePoint or Omnia admin application. Read more on bundling in Omnia.

Note: Only tenant-scope features can provision tenant resources, though any features can add resources to bundles.

Example

/// <summary>
/// Called when [OmniaFeature resource mappings is being performed].
/// </summary>
/// <param name="resourceMapper">The resource mapper.</param>
public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

// Provisioning tenant resources to Omnia database
// NOTE: Only tenant-scope features can provision tenant resources
resourceMapper

.AddOrUpdateTenantResourcesFrom<ResourcesMapping>();

// Adding resources to the scope's bundles, in this case tenant.js and tenant.css
resourceMapper

.CreateBundleFor(BundleTargets.SharePoint)

.Include<ResourcesMapping.Scripts.Core>()

.Include<ResourcesMapping.Scripts.Services>()

.Include<ResourcesMapping.Scripts.Directives>()

.Include<ResourcesMapping.Scripts.Controls>()

.Include<ResourcesMapping.Styles>();

resourceMapper
.CreateBundleFor(BundleTargets.OmniaAdmin)
.Include<ResourcesMapping.Scripts.Core>()
.Include<ResourcesMapping.Scripts.Services>()
.Include<ResourcesMapping.Scripts.Directives>()
.Include<ResourcesMapping.Scripts.AdminSettings>(q => q.

→˓SampleAdminSettingsFormJs)
.Include<ResourcesMapping.Scripts.AdminSettings>(q => q.SampleAdminSettingsJs)
.Include<ResourcesMapping.Scripts.AdminSettings>();

}

20 Chapter 1. Topics

/fundamentals/bundling.html

Omnia Foundation Documentation

Provisioning SharePoint artifacts

In the method OnTenantResourceMappings you can also provision files like masterpage and pagelayout to Share-
Point. To provision other SharePoint artifacts like fields, content types and list instances you need to override the
method OnSharePointArtifactMappings.

Note: Only site-scope and sitecollection-scope features can provision SharePoint artifacts

Example

/// <summary>
/// Called when [OmniaFeature resource mappings is being performed].
/// </summary>
/// <param name="resourceMapper">The resource mapper.</param>
public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper
.MapTenantResource<ResourcesMapping.PageLayouts>(q => q.SamplePageLayout)
.WithSettingsForPageLayout()
.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);

}

/// <summary>
/// Called when [OmniaFeature sharepoint artifacts mappings is being performed].
/// </summary>
/// <param name="artifactMapper">The artifacts mapper.</param>
public override void OnSharePointArtifactMappings(SharePointArtifactMapper
→˓artifactMapper)
{

artifactMapper.MapToField<SampleField>()
.DeployTo(Ctx.Site.RootWeb);

artifactMapper
.MapToContentType<SampleContentType>()
.DeployTo(Ctx.Site.RootWeb)
.UpdateChildren();

artifactMapper
.MapToList<SampleList>()
.DeployTo(Ctx.Site.RootWeb);

}

.. include:: /../common/authors.txt

Resource Mappings

In an Omnia extension, every resource files need to be mapped with a unique ID. The resource mappings are defined
with an attribute-based pattern like other entities in Omnia like feature, jobs and SharePoint artifacts.

1.2. Omnia Foundation Fundamentals 21

Omnia Foundation Documentation

The resource mappings aslo help create an logical hierachy or grouping of resources, which can be used to distribute
the resources to different Omnia features. If your extension is small (less than 50 resource files) you should put all
resource mappings into one file, otherwise you should split it into multiple files by feature area.

In the resource mappings you can also specify different properties and metadata.

Sections:

• Folders mapping

• Generic files mapping

• Site templates mapping

• Localization files mapping

• SharePoint masterpages mapping

• SharePoint webparts mapping

• SharePoint pagelayouts mapping

Folders mapping

[TenantResourceFolderMapping(id: "EE2FFD07-D5B6-4964-BD46-09472229F49C", name:
→˓"Scripts")]
public class Scripts
{

// Other folders or files mapping code in here
}

Generic files mapping

[TenantResourceFileMapping(id: "DC37115E-9ED7-4017-BCA1-449C67D8EBC0",
sourceRelativePath: "/TenantResources/Scripts/Core/sample.core.js")]

public string SampleCoreJs { get; set; }

22 Chapter 1. Topics

Omnia Foundation Documentation

Site templates mapping

[TenantResourceFileMapping(id: "AA5A09DA-CA8D-4289-9EF2-D05AE99E4AB2",
sourceRelativePath: "/TenantResources/SiteTemplates/sampletemplate.json",
Category = BuiltInCategories.SiteProvisioning.SiteTemplate)]

public string SampleTemplate { get; set; }

Localization files mapping

[TenantResourceFileMapping(id: "766F18D7-1E6B-486D-912B-C12D6683B28A",
sourceRelativePath: "/TenantResources/Localization/sample.loc.json")]

public string SampleLocalization { get; set; }

[TenantResourceFileMapping(id: "0CD92A43-9065-49DC-83EB-054123445A9E",
sourceRelativePath: "/TenantResources/Localization/sample.loc.sv-se.json")]

public string SampleLocalizationSvSe { get; set; }

SharePoint masterpages mapping

[TenantResourceFileMapping(id: "69B74E73-CDA2-4BB9-A917-C16F2FACB5D1",
sourceRelativePath: "/TenantResources/MasterPages/sample.master")]

[ContentTypeId(typeof(Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.
→˓MasterPage))]
[SharePointFileProperty("MasterPageDescription", "")]
[SharePointFileProperty("UIVersion", "15")]
public string PortalMaster { get; set; }

SharePoint webparts mapping

[TenantResourceFileMapping(id: "5486D161-E899-4AC5-BBCE-2F4B093B788C",
sourceRelativePath: "/TenantResources/WebParts/sample.webpart")]

[SharePointFileProperty("Group", Omnia.Foundation.Core.Constants.WebPartGroups.Omnia)]
public string SampleWebPart { get; set; }

SharePoint pagelayouts mapping

[TenantResourceFileMapping(id: "94D169CF-B8F0-4A55-9767-5F410DBAC9F5",
sourceRelativePath: "/TenantResources/PageLayouts/SamplePageLayout.aspx")]

[ContentTypeId(typeof(Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.
→˓PageLayout))]
[PublishingAssociatedContentType(typeof(ArticlePage))]
[SharePointFileProperty("Title",

"$Localize:MyOmniaExtension.Sample.PageLayouts.SamplePageLayout.Title;")]
public string SamplePageLayout { get; set; }

1.2. Omnia Foundation Fundamentals 23

Omnia Foundation Documentation

Working with resource mappings

When developing new extension, after you have all the resources ready, you can create a new resource mapping class
using Omnia tooling

After the resource mapping class has been created, you can manually write code to map your resource files following
that sample pattern here, or you can again use Omnia toolings to generate the mapping code for you. Right-click on
the folder contains your new resources and select Create Resource Mappings

24 Chapter 1. Topics

Omnia Foundation Documentation

The generated mapping code has been copy to your clipboard, now go to the new ScriptMappings class you have
created ealier and replace the sample code with the correct mapping

1.2. Omnia Foundation Fundamentals 25

Omnia Foundation Documentation

.. include:: /../common/authors.txt

Localization

Omnia Foundation has a powerful localization engine that is using localization strings stored in JSON. By usin json
which is a language neutral format we can use it both server-side and client-side.

26 Chapter 1. Topics

Omnia Foundation Documentation

Sections:

• Creating localization files

• Localization in client-side code

• Localization in server-side code

• Override localization in the Omnia admin app

Creating localization files

You can create new localization file using the template from Omnia toolings

Note:

• Public Localization - Used to store localization strings for UI in SharePoint

• Admin Localization - Used to store localization strings for UI in Omnia admin app

Each localization file contains the localization strings for only one language, and it need to follow this naming con-
vention:

• *.loc.json for default language (English) localization. Example: sample.loc.json

• *.loc.[culture code].json for other langauge localization. Example: sample.loc.sv-se.json

1.2. Omnia Foundation Fundamentals 27

Omnia Foundation Documentation

Most of the cases, localization files with the same name but different culture code should contain the same JSON
structure with different string values.

Note: The first level of the JSON will aways be “Public” or “Admin” depend on the localization target. You do not
need to include “Public” or “Admin” part when getting localized strings.

sample.loc.json

{
"Public": {

"MyOmniaExtension": {
"Sample": {

"SiteCollection": "Site Collection",
"Site": "Site"

}
}

}
}

sample.loc.sv-se.json

{
"Public": {

"MyOmniaExtension": {
"Sample": {

"SiteCollection": "Webbplatssamling",
"Site": "Webbplats"

}
}

}
}

Localization in client-side code

Once the localization resources have been deployed, your client-side code can get the localized strings in three ways:

• Using the global variable $localize. This should only be used if you are writing non-Angular code. For Angular
code you should use the other ways for better support.

• Using the filter omfLocalization for Angular

• Using the service localizationService for Angular

constructor(private $scope: ISystemLogScope,
private localizationService: Omnia.Foundation.Services.LocalizationService) {

this.init();
}

private init = () => {
this.$scope.logTypes = new Array<Log>();
this.$scope.logTypes.push({

source: this.localizationService.getText("System.SystemLogs.LogTypes.Info"),
logType: LogTypes.Info

(continues on next page)

28 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

});
this.$scope.logTypes.push({

source: this.localizationService.getText("System.SystemLogs.LogTypes.Warning
→˓"),

logType: LogTypes.Warning
});
this.$scope.logTypes.push({

source: this.localizationService.getText("System.SystemLogs.LogTypes.Error"),
logType: LogTypes.Error

});
}

Localization in server-side code

Server-side code can also use localized strings. Typical examples are localized email content in Omnia timer jobs and
localized title of SharePoint fields and content types.

Note: Currently the title of Omnia features cannot be localized. This may become possible in future version.

Example: Localized SharePoint content type

[ContentType(id: "78FBA358-10D6-459A-ABD9-6E1539EFF8C0",
name: "$Localize:MyOmniaExtension.Sample.ContentTypes.SampleContentType.Name;",
Group = "Sample Content Type Group",
Description = "$Localize:MyOmniaExtension.Sample.ContentTypes.SampleContentType.

→˓Description;")]
public class SampleContentType : Omnia.Foundation.Extensibility.ContentTypes.BuiltIn.
→˓Item
{

[FieldRef(typeof(SampleField))]
public string SampleField { get; set; }

}

Example: Get localized strings in timer jobs

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{

try
{

string language = "en-US";

string[] localizationKeys = new string[] {
"$Localize:MyOmniaExtension.Sample.EmailSubject;",
"$Localize:MyOmniaExtension.Sample.EmailContent;" };

ILocalizationService localizationService = WorkWith().Localization();
Dictionary<string, string> localizationsResult =

localizationService.GetLocalization(localizationKeys, language);

string localizedEmailSubject = "";
localizationResult.TryGetValue(localizationKeys[0], out

→˓localizedEmailSubject);

(continues on next page)

1.2. Omnia Foundation Fundamentals 29

Omnia Foundation Documentation

(continued from previous page)

string localizedEmailContent = "";
localizationResult.TryGetValue(localizationKeys[1], out

→˓localizedEmailContent);
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

Override localization in the Omnia admin app

End users can change the localized strings using the Omnia admin app at System > Localization

Note: Once a localized string has been changed in the admin app it will not be updated when a newer version of
extension package is deployed. To make get the latest version of the localization users need to undo the customization.
On the otherhand, when an extension package is removed all customization will also be removed.

.. include:: /../common/authors.txt

Permissions

Omnia permission roles

Omnia permission roles are security groups for managing access rights to Omnia resources. Permission roles can also
be used to limit the access to the API of Omnia extensions. An Omnia permission role can be assign to a user or a
security group in Office 365 and can be apply to site, site collection or tenant scope.

Create form for managing permission roles in Omnia extension

Omnia toolings provides a template for managing permission roles in admin app for each feature

30 Chapter 1. Topics

Omnia Foundation Documentation

The permission settings page is the same as any other admin app settings page in an Omnia extensions. The first
notable part is the navigationNode. In the navigationNode, along with other metadata, you need to specify the
authorizedRoles: the permission roles that can access this page and manage other permission roles. Usually, the
authorizedRoles for permission settings pages are set to the OmniaAdmin.

static navigationNode: NavigationNode = {
title: "",
state: "AdminSettingsPermissionsPagePermissions",
url: "permission",
controller: AdminSettingsPermissionsPagePermissionsController.ngName,
viewId: "",
iconClass: "fa-key",
authorizedRoles: [

{
name: Omnia.Foundation.Security.PermissionRoles.OmniaAdmin,
scope: Omnia.Foundation.Security.PermissionScopes.Tenant

}
]

};

You will need to register this navigationNode to the navigation system of admin app. For more information about this
read the article admin settings pages.

var node: NavigationNode = SampleSettings.SampleSettingsController.navigationNode;
if (node.children == null)

node.children = [];

(continues on next page)

1.2. Omnia Foundation Fundamentals 31

Omnia Foundation Documentation

(continued from previous page)

node.children.push(SampleSettings.AdminSettingsPermissionsPagePermissionsController.
→˓navigationNode);
$admin.Navigation.addNode(NavigationScope.tenant, node);

The last and most important part is the roleDefinitionList property on $scope where you define all permission roles
that can be managed on this page.

private init = () => {
this.$scope.roleDefinitionList = [

{
name: "AdminSettingsPermissionsPage.Admin",
scope: PermissionScopes.Tenant,
label: "AdminSettingsPermissionsPage.Permissions.Admin.Label",
description: "AdminSettingsPermissionsPage.Permissions.Admin.Description"

}
];

}

Deploy the extension and the permissions settings should be available

Secured extension API

The API of extensions can limit the access to certain endpoints by using the RequiredPermissionRoles attribute

[HttpGet]
[Route("api/settings")]
[RequiredPermissionRoles(""AdminSettingsPermissionsPage.Admin"",

PermissionScopes.Tenant)]
public ApiOperationResult<Settings> GetSettings()
{ }

.. include:: /../common/authors.txt

32 Chapter 1. Topics

Omnia Foundation Documentation

Configuration

Omnia configuration API provides a key-value storage that can be accessed from both server-side and client-side code.

A configuration can have the following properties:

Property Type Description
Name String

Name of the configuration
(case-insensitive)

Region String

Group or category of the
configuration (case-insensitive)

ExtensionPackageId Guid

ID of the extension package that the
configuration
belongs to

Value String

Value of the configuration

UIEditable Boolean

Specify whether the configuration
is editable in
Omnia admin app

IncludedInClient Boolean

Specify whether the configuration
should be included
in the client-side context in

_omniaContextInfo.customConfigurations

A configuration “key” is the unique combination of its name, region and extension ID. Configuration value is string-
based so it can be anything from plain string to URL or JSON.

Configuration API for server-side code

Note: To use Omnia configuration API in server-side code you need to install the NuGet package Om-
nia.Foundation.Extensibility.Core to you project.

In server-side code, the configuration API can be called by using OmniaApi factory

1.2. Omnia Foundation Fundamentals 33

Omnia Foundation Documentation

IConfigurationService configurationService = OmniaApi.WorkWith(tenantId).
→˓Configurations();

When working with configuration API, you can specify the extension ID that the configuration belongs to,
or you can omit it. When omitted, the extension package ID will be read from the app setting Om-
nia.Foundation.Settings.ExtensionId of the current app domain.

Example: Get a single configuration by name and region

// Get a built-in configuration from Omnia Foundation
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(

name: "configuration-name",
region: "configuration-region",
extensionPackageId: Extensibility.Core.Constants.Extensions.

→˓BuiltInExtensionPackageId);

// Get a configuration from your extension. When omitted, the extension package ID
→˓will be read
// from the app setting 'Omnia.Foundation.Settings.ExtensionId' of the current app
→˓domain
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(

name: "configuration-name",
region: "configuration-region");

// Get a configuration from another extension.
OmniaApi.WorkWith(tenantId).Configurations().GetConfiguration(

name: "configuration-name",
region: "configuration-region",
extensionPackageId: "extension-id");

Example: Get all configurations in a region

OmniaApi.WorkWith(tenantId).Configurations().GetConfigurationsInRegion(
name: "configuration-region",
extensionPackageId: "extension-id");

Example: Add or update a configuration

MyModel myModel = new MyModel();

OmniaApi.WorkWith(tenantId).Configurations().AddOrUpdateConfiguration(
name: "configuration-name",
value: JsonConvert.SerializeObject(myModel),
region: "configuration-region",
includedInClient: false,
uiEditable: false,
extensionPackageId: "extension-id");

Example: Delete a configuration

OmniaApi.WorkWith(tenantId).Configurations().DeleteConfiguration(
name: "configuration-name",
region: "configuration-region",
extensionPackageId: "extension-id");

34 Chapter 1. Topics

Omnia Foundation Documentation

Configuration for extension

You can automatically set the configurations for your extension when it is deployed by specifying those configurations
in the extension.json file

{
"Id": "3847fb18-8cb7-4597-83d8-6bcb7136ce7a",
"Title": "MyOmniaExtension",
"Description": "",
"Version": "1.0.0",
"PackageName": null,
"TenantResourceFolders": [

"TenantResources"
],
"Configurations": [

{
"Name": "MyWebApiUrl",
"Region": "MyOmniaExtension",
"IncludedInClient": true,
"UIEditable": true,
"Required": true,
"DefaultValue": "https://localhost:44300/api/"

},
{

"Name": "TermSetId",
"Region": "MyOmniaExtension",
"IncludedInClient": true,
"UIEditable": true,
"Required": true,
"DefaultValue": "888F3B90-9A90-4F77-B64D-305EFF1EB3D5"

}
]

}

Configuration default values will be used when the extension package is deployed the first time from Visual Studio.
When the package is uploaded from Omnia admin app user will need to fill in the configuration values.

.. include:: /../common/authors.txt

1.2. Omnia Foundation Fundamentals 35

Omnia Foundation Documentation

Bundling

Bundling is the process of concatinate multiple files into a single file. In web development, bundling can increase
performance significantly, especially in high latency networks, by reducing the number of requests and round trips to
the server.

In Omnia feature you can specify which JavaScript and CSS resources to be bundled and which application the bundle
is targeted for (more on this in bundle targets section). When that feature is activated, those resources will be add to
the bundle corresponding to the feature’s scope and the target application.

Sections:

• Creating bundles

• Bundle scopes

• Bundle targets

• Bundle sequence number

• Bundle minification

Creating bundles

To bundle resources, override the method OnTenantResourceMappings in your Omnia feature and use the method
CreateBundleFor of the resourceMapper.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper
.CreateBundleFor(Models.Features.BundleTargets.SharePoint)
.Include<ResourcesMapping.Core>()
.Include<ResourcesMapping.Services>(q => q.AjaxService)
.Include<ResourcesMapping.Services>();

}

You can add specific file from the resources mapping

.Include<ResourcesMapping.Services>(q => q.AjaxService)

Or you can add a whole folder and the resourceMapper will recursively include every files in that folder. The resource
mapper will be smart enough to not include a file again if it is already in the bundle

.Include<ResourcesMapping.Services>(q => q.AjaxService)

.Include<ResourcesMapping.Services>()

The resources will be bundled in the same order as they were included here. In this example, the resources will be
bundled in the following order:

• All the files (recursively including child folders) in Core folder

• The ajaxService file in Services folder

• All the files in Services folder (recursively including child folders) except for ajaxService

36 Chapter 1. Topics

Omnia Foundation Documentation

Bundle scopes

There are 3 bundle scopes: Tenant, Site Collection and Site. These scopes map with Omnia feature scopes, meaning
an tenant-scope feature can only add resources to the tenant-scope bundle, etc.

On each Omnia page load (in SharePoint or in admin web), these 6 bundle files that will be loaded:

Scope Bundle Content
Site

• site.js
• site.css All resources bundled by site-scope

features
activated on the current site

SiteCollection
• sitecollection.js
• sitecollection.css All resources bundled by

sitecollection-scope features
activated on the current site
collection

Tenant
• tenant.js
• tenant.css All resources bundled by activated

tenant-scope
features

Bundle targets

Currently there are only two bundle targets, SharePoint and OmniaAdmin. As the names imply, resources bundles
targeting SharePoint will only be loaded in SharePoint and the resources bundle targeting OmniaAdmin will only be
loaded in Omnia admin web.

A general guideline on bundle targets would be:

• JavaScript services and directives usually can target both SharePoint and Omnia Admin.

• Omnia controls should only target SharePoint.

• Admin settings should only target OmniaAdmin.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper
.AddOrUpdateTenantResourcesFrom<TenantResources>();

resourceMapper
.CreateBundleFor(Models.Features.BundleTargets.SharePoint)
.Include<ResourcesMapping.Enums>()
.Include<ResourcesMapping.Core>()
.Include<ResourcesMapping.Services>()
.Include<ResourcesMapping.Directives>()
.Include<ResourcesMapping.Styles>();

resourceMapper

(continues on next page)

1.2. Omnia Foundation Fundamentals 37

Omnia Foundation Documentation

(continued from previous page)

.CreateBundleFor(Models.Features.BundleTargets.OmniaAdmin)

.Include<ResourcesMapping.Enums>()

.Include<ResourcesMapping.Core>()

.Include<ResourcesMapping.Services>()

.Include<ResourcesMapping.Directives>()

.Include<ResourcesMapping.Styles>()

.Include<ResourcesMapping.AdminSettings.Controllers>()

.Include<ResourcesMapping.AdminSettings>();
}

Bundle sequence number

While you can specify the order of resources in your feature just by order they were included, sometimes you will also
need to ensure the resources of one feature is loaded before the resources of other features. For that purpose you can
set the sequence number for your feature bundle:

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper
.AddOrUpdateTenantResourcesFrom<TenantResources>();

resourceMapper
.CreateBundleFor(Models.Features.BundleTargets.SharePoint)
.Include<ResourcesMapping.Enums>()
.Include<ResourcesMapping.Core>()
.Include<ResourcesMapping.Services>()
.Include<ResourcesMapping.Directives>()
.Include<ResourcesMapping.Styles>();

resourceMapper
.CreateBundleFor(Models.Features.BundleTargets.OmniaAdmin)
.Include<ResourcesMapping.Enums>()
.Include<ResourcesMapping.Core>()
.Include<ResourcesMapping.Services>()
.Include<ResourcesMapping.Directives>()
.Include<ResourcesMapping.Styles>()
.Include<ResourcesMapping.AdminSettings.Controllers>()
.Include<ResourcesMapping.AdminSettings>();

resourceMapper
.SetBundlesSequence(90000, Models.Features.BundleTargets.SharePoint)
.SetBundlesSequence(80000, Models.Features.BundleTargets.OmniaAdmin);

}

The bundle with lower sequence number will be included first in the bundle. The default sequence number is 100000.
You should not set the sequence number to lower than 100 because the sequence numbers from 0 to 100 are reserved
for core features of Omnia Foundation.

Also, from the example you can see that the sequence number can be different for bundling targets.

Bundle minification

In non-development environments, all JavaScript bundles will be minified to reduce the size of the bundles and further
improve performance. However, this sometimes can cause issues if the code was not written in a way that is compatible

38 Chapter 1. Topics

https://en.wikipedia.org/wiki/Minification_(programming)

Omnia Foundation Documentation

with minification. If you have errors happened only in non-development environments and you suspect it could be
from the minification, use the querystring parameter “debug=true” to un-minify your code.

One common issue with minification is Angular dependencies injection. For example, this code will not work when
minified

var app = angular.module('bigApp', []);

app.controller('mainController', function($scope) {
$scope.message = 'OH NO!';

});

But this will code will

var app = angular.module('bigApp', []);

app.controller('mainController', ['$scope', function($scope) {
$scope.message = 'HOORAY!';

}]);

To understand why the second code block works with minification while the first does not, read this article.

.. include:: /../common/authors.txt

Logging

Omnia provides a logging API for extensions to write logs to Omnia Foundation’s logs database. There are three
different types of logs in Omnia: System Logs, Queue Logs and Feature Logs.

System Logs is a general-purpose place for information or error logs from both Omnia Foundation and extensions.
System Logs can be viewed in Omnia admin app at System > Logs

Queue Logs contains logs from queue messages jobs. For errors related to long-running operations like uploading
extension packages or creating site collection, check the Queue Logs. Queue Logs can be viewed in Omnia admin app
at System > Queues

1.2. Omnia Foundation Fundamentals 39

https://scotch.io/tutorials/declaring-angularjs-modules-for-minification

Omnia Foundation Documentation

The last type of logs is Feature Logs, which contains logs from custom code in feature activation, upgrade or deacti-
vation. Feature Logs can be viewed in the feature detail page.

Logging in extension Web API

In extension API that inherit from SharePointContextProvidedController you can use the built-in Logging service
to write to the System Logs.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments()
{

try
{

// Web API code here
}
catch (Exception ex)
{

// The built-in Logging service can be used to write to System Logs
this

.Logging

.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
}

}

For API that does not inherit from SharePointContextProvidedController, you can use OmniaApi factory to create the

40 Chapter 1. Topics

Omnia Foundation Documentation

Logging service.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments(

string tokenKey, string spUrl, string language)
{

try
{

// Web API code here
}
catch (Exception ex)
{

// For controller that does not inherit from
→˓SharePointContextProvidedController

// we need to create the ClientContext first.
ClientContext ctx = SharePointContextProvider

.CreateUserClientContext(tokenKey, spUrl, language);

OmniaApi
.WorkWith(Ctx.Omnia())
.Logging()
.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
}

}

Logging in extension features

In Omnia feature you can write to System Logs using OmniaApi factory or write to Feature Logs using the built-in
Log method

[FeatureDefinition(
id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
name: "MyOmniaExtension Sample Feature Core",
version: "0.1.0",
scope: FeatureScopes.Tenant

)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature
{

/// <summary>
/// Activates the OmniaFeature
/// </summary>
public override void Activate()
{

// This will write to System Logs
this.WorkWith().Logging()

.AddLog("SampleFeatureCore", "Feature activation", DefaultLogTypes.Info);

// This will write to Feature Logs
this.Log("Feature activation", "Success", FeatureInstanceLogTypes.

→˓Information);
}

}

1.2. Omnia Foundation Fundamentals 41

Omnia Foundation Documentation

Logging in extension jobs

Similar to features, in jobs you can use the OmniaApi factory to write to System Logs. One important thing to note is
that currently any uncachted error in queue job will be write to the Queue Logs, but for timer jobs you need to handle
the error and explicitly write to the System Logs in your code.

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

public void SampleJobQueue([QueueTrigger("SampleJob")] object queueMessage)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("SampleJobQueue", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

.. include:: /../common/authors.txt

1.3 SharePoint Provisioning

Note: This documentation is a work in progress and contributions can be made on our Github repo

1.3.1 Topics

.. include:: /../common/authors.txt

Field

Fields are used in Lists and Content Types in SharePoint and Omnia Foundation makes it easy to create field definitions
by using attributes that can be provisioned using a, Omnia feature or referenced in a List definition.

All field attributes are located in the Omnia.Foundation.Extensibility.Fields namespace and the following list con-
tains the different attributes that can be used to create field definitions.

42 Chapter 1. Topics

Omnia Foundation Documentation

Attribute Description
FieldAttribute The base attribute that all field attributes inherits from containing generic properties

like title, description etc
BooleanFieldAttribute Boolean field definition
CalculatedFieldAttribute Calculated field definition
DateTimeFieldAttribute DateTime field definition
HTMLFieldAttribute HTML field definition
LookupFieldAttribute Lookup field definition
ManagedMetadataField-
Attribute

Managed metadata field definition

NoteFieldAttribute Note field definition
NumberFieldAttribute Number field definition
TextFieldAttribute Text field definition
UrlFieldAttribute Url field definition
UserFieldAttribute User field definition

Field definitions can be referenced both in list definitions and content type definitions, so they are defined using class
level attribute decoration. Below is an example of how to define a basic NoteField using the NoteFieldAttribute

[NoteField(id: "37643EF6-2BB9-429B-BD19-4684FC7879DD", internalName: "MyNoteField",
Title = "My Title", Group = "Custom Group")]

public class MyNoteField : FieldBase
{

}

Note: Even if the attribute is called NoteFieldAttribute its not necessary to include Attribute in the name, NoteField
is enough and that will make the code look more clean.

All field definitions requires the minimal id and internalName parameters since this is required to be able to create
the field. For the different field attributes there are always minimal required parameters that need to be provided but
there is also optional properties that can be specified. Below is an example of all the optional properties that can be
specified on the NoteFieldAttribute

Now that we have a field definition we can either use a site-scoped or sitecollection-scoped Omnia feature to deploy it
to a site or use it in a List definition.

.. include:: /../common/authors.txt

1.3. SharePoint Provisioning 43

Omnia Foundation Documentation

Content Type

Content Types are used in SharePoint to classify information. Omnia Foundation makes it easy to create content type
definitions by using attributes that can be provisioned using an Omnia feature or referenced in a List definition.

Content Types are hierarchical, meaning that new content types needs to inherit from an existing one. The base content
type in SharePoint is Item.

Create a Content Type

1. In your Visual Studio project, right click and choose Add -> New item

2. From the Omnia group, choose the Content Type template and give your content type class a name. Click Add

When doing this a new class is created in your project, inheriting from Om-
nia.Foundation.Extensibility.ContentTypes.BuiltIn.Item. This class represents the Item content type in
SharePoint.

Inheritance

To make your content type inherit from another content type than Item, you can either choose to inherit from another
class in the Omnia.Foundation.Extensibility.ContentTypes.BuiltIn or from any other content type class in your
project.

Properties

The content type class is also decorated with a ContentType attribute. This attribute tells Omnia that your class should
be treated as a content type and contains a number of required properties:

Attribute Description
id A unique GUID for the content type, adds as part of the ContentTypeId
name The name of the content type. Could be a Localization string or a plain text string
Group The group of the content type
Description The description of the content type. Could be a Localization string or a plain text string

There is also a large number of optional properties that can help you configure the content type the way you want.

Adding fields

To add fields to your content type you add properties to your class:

[FieldRef(typeof(Preamble))]
public string Preamble { get; set; }

In the FieldRef attribute you supply the class of an existing Field

In the FieldRef attribute you can also specify a number of optional properties, to for example make the field required
or hidden:

[FieldRef(typeof(Preamble), Required = true)]
public string Preamble { get; set; }

44 Chapter 1. Topics

Omnia Foundation Documentation

Provisioning

As mentioned, a content type can be provisioned directly via an Omnia feature. This way the content type will be
created as a Site Content Type.

It can also be provisioned via a List definition class. This way the content type will be a List Content Type.

Provision Site Content Type

In a site scoped feature, in the OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper)
method, add the following code

public override void OnSharePointArtifactMappings(SharePointArtifactMapper
→˓artifactMapper)
{

artifactMapper.MapToContentType<MyContentTypeClass>().
ApplyChangeOn(Ctx.Web);

}

You can also tell Omnia to add the content type to a list:

public override void OnSharePointArtifactMappings(SharePointArtifactMapper
→˓artifactMapper)
{

artifactMapper.MapToContentType<MyContentTypeClass>().
ApplyChangeOn(Ctx.Web).
AddToList<Omnia.Foundation.Extensibility.Lists.Builtin.Pages>();

}

Provision List Content Type

In a List class find the public IEnumerable<ContentTypeBase> ContentTypes property.

Decorate this property with a ContentTypeRef attribute

[ContentTypeRef(typeof(MyContentTypeClass))]
public IEnumerable<ContentTypeBase> ContentTypes
{

get { return GetContentTypes(); }
}

In the ContentTypeRef attribute, supply the class of your content type, or the ContentTypeId of an existing content
type.

The ContentTypeRef attribute also contains a number of optional parameters to allow you to for example make the
content type the default one for the list.

.. include:: /../common/authors.txt

List

A List is one of the core SharePoint artifacts and Omnia Foundation makes it easy to create list definitions by using
attributes that can be provisioned using Omnia features.

Create a List

1. In your Visual Studio project, right click and choose Add -> New item

1.3. SharePoint Provisioning 45

Omnia Foundation Documentation

2. From the Omnia group, choose the List template and give your list class a name. Click Add

When doing this a new class is created in your project, inheriting from Om-
nia.Foundation.Extensibility.Lists.ListBase and implementing the Omnia.Foundation.Extensibility.Lists.IListBase
interface.

The class is also decoreated with a List attribute with a number of required properties

Properties

The List attribute has the following required properties

Attribute Description
url The site relative path of the list
title The title of the list. Could be a Localization string or a plain text string
listTemplate The list template type to inherite from, defaults to ListTemplateType.GenericList

There is also a large number of optional properties that can help you configure the list the way you want.

Adding Fields

You can add Fields to your list by following the steps below.

In the List class find the public IEnumerable<FieldBase> Fields property.

Decorate this property with a FieldRef attribute

[FieldRef(typeof(LinkTitle))]
public IEnumerable<FieldBase> Fields
{

get { return GetFields(); }
}

In the FieldRef attribute, supply the class of your field or a class from Om-
nia.Foundation.Extensibility.Fields.BuiltIn.

The FieldRef attribute also contains a number of optional parameters to allow you to for example make the field
required in the list.

Adding Content Types

You can add Content Types to your list by following the steps below.

In the List class find the public IEnumerable<ContentTypeBase> ContentTypes property.

Decorate this property with a ContentTypeRef attribute

[ContentTypeRef(typeof(MyContentTypeClass))]
public IEnumerable<ContentTypeBase> ContentTypes
{

get { return GetContentTypes(); }
}

46 Chapter 1. Topics

Omnia Foundation Documentation

In the ContentTypeRef attribute, supply the class of your content type, or the ContentTypeId of an existing content
type.

The ContentTypeRef attribute also contains a number of optional parameters to allow you to for example make the
content type the default one for the list.

Setup the default view

Omnia also provides logic to configure the default view of the list.

In the Lists class find the public IEnumerable<FieldBase> DefaultView property. Decorate it with FieldRef at-
tributes where you supply the type for the field and the index you want the field to have in the view.

[FieldRef(typeof(DocIcon), 1)]
[FieldRef(typeof(LinkTitle), 2)]
[FieldRef(typeof(Modified), 3)]
[FieldRef(typeof(Author), 4)]
public IEnumerable<FieldBase> DefaultView
{

get { return GetDefaultViewFields(); }
}

Provisioning

A list is provisioned directly via a site scoped Omnia feature

In the OnSharePointArtifactMappings(SharePointArtifactMapper artifactMapper) method, add the following
code

public override void OnSharePointArtifactMappings(SharePointArtifactMapper
→˓artifactMapper)
{

artifactMapper
.MapToList<MyListClass>()
.DeployTo(Ctx.Web);

}

.. include:: /../common/authors.txt

Image Rendition

By using attributes it is easy to specify and provision Image Renditions to SharePoint

1.3. SharePoint Provisioning 47

Omnia Foundation Documentation

To create Image Renditions start by creating a new class that inherits from ImageRenditionBase then apply the
ImageRendition attribute on your class. The id of your Image Rendition should start on a higher number so that it
wont conflict with the built in SharePoint and Omnia Image Renditions. SharePoint starts with Id 1 and ends on 4
and Omnia on 1001 and ends on 1004 but your customization could start on 2000 to be sure not to write over existing
renditions. If you want the height to be dynamic then you can set it to 0

[ImageRendition(id: 1001, name: "$Localize:OMF.Core.ImageRenditions.Landscape;",
→˓width: 600, height: 300)]
[ImageRendition(id: 1002, name: "$Localize:OMF.Core.ImageRenditions.Square;", width:
→˓300, height: 300)]
[ImageRendition(id: 1003, name: "$Localize:OMF.Core.ImageRenditions.Portrait;",
→˓width: 300, height: 450)]
[ImageRendition(id: 1004, name: "$Localize:OMF.Core.ImageRenditions.
→˓LandscapeSmallSize;", width: 300, height: 150)]
public class PortalCoreImageRendition : ImageRenditionBase
{
}

Now that we have the specification of the Image Renditions all we need to do is to add the mapping code in the
OnSharePointArtifacts method of an Omnia feature that will perform the deployment.

Note: The provisioning must be done from a Site Collection scoped feature

public override void OnSharePointArtifactMappings(SharePointArtifactMapper
→˓artifactMapper)

{
artifactMapper.MapToImageRendition<PortalCoreImageRendition>();

}

.. include:: /../common/authors.txt

File

Using Omnia it is easy to provision different kinds of files to SharePoint. You can for example provision Page Layouts
and Webpart Definitions, but also any other file you need.

The first thing you need to do is to add the file to your Visual Studio Project, inside a Tenant Resources folder. Then
add the file to a Resource Mappings class as described here.

48 Chapter 1. Topics

Omnia Foundation Documentation

Note: You need to decorate your mappings differently based on the type of file you are adding (ex. for Page Layouts).

After creating the needed Resource Mappings, follow the steps in the section below matching your file type.

.. include:: /../common/authors.txt

Page Layout

Page layouts in SharePoint are stored in the Master Page gallery on the root web of a site collection. Therefore it is
recommended to provision page layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMap-
pings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.PageLayouts with the class name of your Page layout
in the Resource Mappings class, and StartPage with the property representing your page layout.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.PageLayouts>(q => q.
→˓StartPage)

.WithSettingsForPageLayout()

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

Note that this is a fluent API where you after the .WithSettingsForPageLayout() can modify a number of additional
things about how the file will be provisioned, for example the file name

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.PageLayouts>(q => q.
→˓StartPage)

.WithSettingsForPageLayout()

.SetFileName("StartPageLayout.aspx")

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

.. include:: /../common/authors.txt

Glue Layout

Glue layouts in Omnia are used as layouts for Quick Pages.

They are stored in the Master Page gallery on the root web of a site collection. Therefore it is recommended to
provision page layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMap-
pings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.GlueLayouts with the class name of your Glue layout
in the Resource Mappings class, and StartPage with the property representing the specific glue layout.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.
→˓StartPage) (continues on next page)

1.3. SharePoint Provisioning 49

Omnia Foundation Documentation

(continued from previous page)

.WithSettingsForGlueLayout()

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

Note that this is a fluent API where you after the .WithSettingsForGlueLayout() can modify a number of additional
things about how the file will be provisioned, for example the file name

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.
→˓StartPage)

.WithSettingsForGlueLayout()

.SetFileName("StartPageLayout.aspx")

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

or make it the default layout for new quick pages

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.
→˓StartPage)

.WithSettingsForGlueLayout()

.SetAsDefault()

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

You can also add tokens in your layouts that can be replaced when the file is provisioned to SharePoint

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.GlueLayouts>(q => q.
→˓StartPage)

.WithSettingsForGlueLayout()

.TokenReplace("[WeWantTheWebsTitleHere]", Ctx.Web.Title)

.DeploysTo(SharePointFileDeploymentTargets.MasterPageGallery);
}

.. include:: /../common/authors.txt

Webpart Definition

Deploying a webpart definition is very similar to provisioning a page layout. Web part definitions are also stored in
the root web of a site collection, but in the Webpart gallery library. Therefore it is recommended to provision page
layout files in a Site Collection scoped feature.

In a Site Collection scope feature, locate the public override void OnTenantResourceMap-
pings(TenantResourcesMapper resourceMapper) method.

Add the following code, replacing TenantResourcesMapping.Webparts with the class name of your Webpart in the
Resource Mappings class, and MyWebPart with the property representing your webpart definition.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.Webparts>(q => q.
→˓MyWebPart)

(continues on next page)

50 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

.WithSettingsForWebPart()

.DeploysTo(SharePointFileDeploymentTargets.WebPartGallery);
}

Note: This is a fluent API, see the Page layout section for more information about how to for example change the file
name of the webpart definition file when it is provisioned.

.. include:: /../common/authors.txt

Generic File

There could be a need in your project to provision other kinds of files than the ones outlined in the previous sections.
This can be done in either a Site Collection scoped feature or a Site scoped feature.

Locate the public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
method.

Add the following code, replacing TenantResourcesMapping.Files with the class name of your Files in the Resource
Mappings class, and MyFile with the property representing your file.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
.WithSettingsForGenericFile()
.SetFileName("MyFile.html")
.DeploysTo(SharePointFileDeploymentTargets.StyleLibrary);

}

Notice that in the SetFileName you can decide the filename of the uploaded file.

You can also use the RenameFile(“OldFileName.aspx”) to update an already provisioned file, where you have
changed the file name in your resource mapping.

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
.WithSettingsForGenericFile()
.RenameFile("OldFileName.html")
.DeploysTo(SharePointFileDeploymentTargets.StyleLibrary);

}

The DeploysTo() method can either be called,like above with a predefined library from the SharePointFileDeploy-
mentTargets class, or with a site (web) relative path to a library

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
.WithSettingsForGenericFile()
.SetFileName("MyFile.html")
.DeploysTo("/MyLibrary");

}

Or even to a specific folder in a library

1.3. SharePoint Provisioning 51

Omnia Foundation Documentation

public override void OnTenantResourceMappings(TenantResourcesMapper resourceMapper)
{

resourceMapper.MapTenantResource<TenantResourcesMapping.Files>(q => q.MyFile)
.WithSettingsForGenericFile()
.SetFileName("MyFile.html")
.DeploysTo("/MyLibrary", "AFolder");

}

.. include:: /../common/authors.txt

Provisioning Pipeline

Omnia provides a way of doing modifications to resources provisioned as part of core Omnia features.

A Provisioning Pipeline makes it possible to modify the content of a resource file at the time it is provisioned to a
SharePoint site. This enables you to adapt those resources to specific needs.

Add a Provisioning Pipeline

To add a new Provisioning Pipline to your project, add a new class inheriting from SharePointFileProvisioning-
Pipeline (found in Omnia.Foundation.Extensibility.TenantResources).

Decorate it with a SharePointFileProvisioningPipelineDefinition attribute and a unique GUID:

using Omnia.Foundation.Extensibility.TenantResources;

[SharePointFileProvisioningPipelineDefinition(id: "2F5450A8-8C6E-4C8F-A907-
→˓4F285691BEEB")]
public class MyMasterPageProvisioningPipeline : SharePointFileProvisioningPipeline
{

}

Methods

The SharePointFileProvisioningPipeline class has two overridable methods:

public override string BeforeContentReplacements(string content, TenantResource
→˓tenantResource)

public override string AfterContentReplacements(string content, TenantResource
→˓tenantResource)

The content parameter of the methods contains the full file content in a string format. This allows you to do string
operations like Contains and Replace. Omnia also provides a number of extensions to the String object in C#, like
InsertBefore and InsertAfter.

The tenantResource parameter contains information about the resource that is currently being processed. You can do
comparisons with properties in this object to make sure your modifications only affects a specific Omnia resource:

public override string BeforeContentReplacements(string content, TenantResource
→˓tenantResource)
{

(continues on next page)

52 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

if (tenantResource.Id == portalMasterPageId)
{

// Do code modifications to content here
}

}

The main difference between the BeforeContentReplacements and AfterContentReplacements is that in the Be-
foreContentReplacements the internal tokens Omnia uses to insert functionality to the files are still present in the
content string.

The content in the AfterContentReplacements resembles exactly the content of the file that is provisioned to Share-
Point.

Example of a BeforeContentReplacements method

public override string BeforeContentReplacements(string content, TenantResource
→˓tenantResource)
{

var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

if (tenantResource.Id == portalMasterPageId)
{

try
{

content = content.InsertBefore(ProvisioningPipelineTokens.
→˓BodyContainerTop, "<div class=\"myClass\">Hello World</div>");

}
catch(Exception ex)
{

return content.InsertBefore(ProvisioningPipelineTokens.GlobalNavLeft, ex.
→˓Message);

}
}

return content;
}

Note: The ProvisioningPipelineTokens class contains the internal tokens still present in the resource files in the
BeforeContentReplacements method

Example of an AfterContentReplacements method

public override string AfterContentReplacements(string content, TenantResource
→˓tenantResource)
{

var portalMasterPageId = new Guid(BuiltInResources.MasterPages.Omnia);

if (tenantResource.Id == portalMasterPageId)
{

(continues on next page)

1.3. SharePoint Provisioning 53

Omnia Foundation Documentation

(continued from previous page)

try
{

content = content.InsertBefore("<div class=\"myClass\">", "<div>This is
→˓added in front of the Hello World tag added in the BeforeContentReplacements method
→˓</div>");

}
catch (Exception ex)
{

content.InsertBefore("</head>", "<div>" + ex.Message + "</div>");
}

}

return content;
}

.. include:: /../common/authors.txt

1.4 Omnia API

Omnia contains various API’s designed to simplify various tasks.

The API’s are located in the OmniaApi class in the Omnia.Foundation.Extensibility.Core namespace.

The basic C# code needed to begin working with the API’s from an Omnia Feature or a Custom Web API for Omnia
extensions looks like below.

OmniaApi.WorkWith(Ctx.Omnia());

By adding a . after WorkWith(Ctx.Omnia()) you will reach the available API services listed below. E.g.

OmniaApi.WorkWith(Ctx.Omnia()).Caching();

1.4.1 Services

.. include:: /../common/authors.txt

Caching

The Caching API makes it easy to work with object caching, either locally on one server or distributed to all servers
in an Omnia server cluster (similar to Distributed Cache used in SharePoint).

You reach the Caching API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Caching();

The API contains the following methods:

• AddOrUpdateMemoryCache

• GetFromMemoryCache

• GetFromMemoryCache<T>

54 Chapter 1. Topics

Omnia Foundation Documentation

• MemoryCacheContains

• RemoveFromMemoryCache

• AddOrUpdateDistributedCache

• GetFromDistributedCache

• GetFromDistributedCache<T>

• RemoveFromDistributedCache

AddOrUpdateMemoryCache

Adds or updates an already existing object in the memory cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key,
→˓object value);

Optionally you can supply an expiration time as a DateTimeOffset

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key,
→˓object value, DateTimeOffset expires);

GetFromMemoryCache

Gets an object from the memory cached by suppling the key the object was stored with

object OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromMemoryCache(string key);

GetFromMemoryCache<T>

Gets an object from the memory cached by suppling the key the object was stored with. Casts the object to the supplied
type

T OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromMemoryCache<T>(string key);

MemoryCacheContains

Checks if an object with the given key is present in the memory cache

bool OmniaApi.WorkWith(Ctx.Omnia()).Caching().MemoryCacheContains(string key);

RemoveFromMemoryCache

Deletes the object with the given key from the memory cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().RemoveFromMemoryCache(string key)

1.4. Omnia API 55

Omnia Foundation Documentation

AddOrUpdateDistributedCache

Adds or updates an already existing object in the distributed cache

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateDistributedCache(string key,
→˓object value, DateTimeOffset expires);

Optionally you can cache the data encrypted

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateMemoryCache(string key,
→˓object value, bool encrypted, DateTimeOffset expires);

You can also cache multiple objects at once by creating a List<CachedItem> (CachedItem is found in the Om-
nia.Foundation.Extensibility.Core.Caching namespace

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().AddOrUpdateDistributedCache(List
→˓<CachedItem> objectsToCache);

GetFromDistributedCache

Gets objects from the distributed cache by supplying a list of the keys the items are stored with

List<CachedItem> OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromDistributedCache(List
→˓<string> keys);

GetFromDistributedCache<T>

Gets an object from the distributed cache, cast to the specified type

T OmniaApi.WorkWith(Ctx.Omnia()).Caching().GetFromDistributedCache<T>(string key);

RemoveFromDistributedCache

Deletes objects from the distributed cache by supplying a list of keys

void OmniaApi.WorkWith(Ctx.Omnia()).Caching().RemoveFromDistributedCache(List<string>
→˓keys);

.. include:: /../common/authors.txt

Configurations

The Configurations API allows you to read, store, update and delete configurations for you solution.

Use Configurations as a means for allowing certain values in your solution to be configurable, via code or from the
Omnia Admin app, to make it more adaptable.

You reach the Configurations API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Configurations();

56 Chapter 1. Topics

Omnia Foundation Documentation

The API contains the following methods:

• AddOrUpdateConfiguration

• AddOrUpdateConfigurations

• DeleteConfiguration

• GetConfiguration

• GetConfigurations

• GetConfigurationsInRegion

• GetOmniaInstanceMode

• GetParentSiteConfigurations

AddOrUpdateConfiguration

Adds a new configuration, or updates an existing one.

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.AddOrUpdateConfiguration(Configuration configuration);

You find the Configuration class in the Omnia.Foundation.Models.Configurations namespace

You can also add or update a configuration with the following overload

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.AddOrUpdateConfiguration(string key, dynamic value, [string region = ""],

→˓[bool includedInClient = false], [bool uiEditable = false], [string permissionRoles
→˓= ""]);

AddOrUpdateConfigurations

To add / update multiple configurations at once, use the following method

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.AddOrUpdateConfigurations(IEnumerable<Configuration> configurations);

You find the Configuration class in the Omnia.Foundation.Models.Configurations namespace

DeleteConfiguration

Deletes an existing configuration by passing the name and region of it.

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.DeleteConfiguration(string name, string region);

Optionally you can also pass in an extension id as the last parameter, to target configurations for a specific extension

void OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.DeleteConfiguration(string name, string region, [Guid? extensionPackageId =

→˓null]); (continues on next page)

1.4. Omnia API 57

Omnia Foundation Documentation

(continued from previous page)

GetConfiguration

Gets a specific configuration by name and region.

Configuration OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfiguration(string name, string region);

Optionally you can also pass in an extension id as the last parameter, to target configurations for a specific extension

Configuration OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfiguration(string name, string region, Guid?

→˓extensionPackageId = null]);

GetConfigurations

To get all existing configurations, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfigurations();

You can also scope this to only get configurations for a specific extension by supplying the Id of the solution

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfigurations([Guid? extensionPackageId = null]);

To specify which configurations to get, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfigurations(List<string> names, string region);

Where you pass in the names and region of the configurations to retrieve.

GetConfigurationsInRegion

To get all configurations in a given region, use the following method

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfigurationsInRegion(string region);

You can also scope this to only get configurations for a specific extension by supplying the Id of the solution

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetConfigurationsInRegion(string region, [Guid? extensionPackageId = null]);

GetOmniaInstanceMode

In some scenarios you might need know if Omnia is running in Site collection or Tenant mode. To get this informa-
tion, call the following method

58 Chapter 1. Topics

Omnia Foundation Documentation

OmniaInstanceModes OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetOmniaInstanceMode();

This will return a value from the enum Omnia.Foundation.Models.Shared.OmniaInstanceModes, either SiteCol-
lection or Tenant

GetParentSiteConfigurations

Gets configurations from a specified parent site, based on the site URL and region of the configuration.

IEnumerable<Configuration> OmniaApi.WorkWith(Ctx.Omnia()).Configurations()
.GetParentSiteConfigurations(string fromSiteUrl, string region);

.. include:: /../common/authors.txt

Controls

The Controls API contains methods that makes it easier to work with Omnia Controls.

You reach the Controls API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Controls();

The API contains the following methods:

• GetControlSettings

GetControlSettings

Use this method to get the stored settings for a given instance of an Omnia Control

string OmniaApi.WorkWith(Ctx.Omnia()).Controls()
.GetControlSettings(string scope, Guid controlId, string siteCollectionUrl,

→˓string siteUrl, int? pageItemId, Guid? featureResourceId);

Pass in the scope of the control (“masterpage”, “site”, “page” or “webpart”), the Guid of the control, the url of the site
collection and site.

To target a control on a certain page pass the a item ID of the page.

You can also pass in the feature resource Id of your control.

.. include:: /../common/authors.txt

Email

The Email API allows you to send email from your solution.

You reach the Caching API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Email(Ctx);

1.4. Omnia API 59

Omnia Foundation Documentation

The API contains the following methods:

• SendEmail

SendEmail

Sends an email message

void OmniaApi.WorkWith(Ctx.Omnia()).Email(Ctx).SendEmail(string subject, string body,
→˓List<string> emailTo);

You can add multiple email addresses in the emailTo list

There is also two optional input parameters: emailCC and emailBcc, both of type List<string>.

• Add email addresses to emailCC to add them to the the carbone copies list of the email .

• Add email addresses to emailBCC to add them to the the blind carbone copies list of the email.

.. include:: /../common/authors.txt

Features

The Features API allows you to Activate, Deactivate and in other ways work with Omnia Features.

Note: This API works with Omnia Features, not SharePoint Features.

You reach the Features API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Features();

The API contains the following methods:

• ActivateFeature

• DeactivateFeature

• GetFeature

• GetFeatures

• GetFeatureActivationStatus

• GetFeatureInstanceLogs

• GetFeatureInstances

• UpgradeFeature

ActivateFeature

To activate an Omnia Feature, use the following method

60 Chapter 1. Topics

Omnia Foundation Documentation

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
.ActivateFeature(Guid id, string spUrl, bool force);

Supply the unique Guid of the feature, the URL of the tenant authority / site collection / web where the feature should
be activated. Set the force parameter to true to ignore errors on activation.

DeactivateFeature

To deactivate an Omnia Feature, use the following method

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
.DeactivateFeature(Guid id, string spUrl);

Supply the unique Guid of the feature and the URL of the tenant authority / site collection / web where the feature
should be deactivated.

GetFeature

To get more information about a specific feature, use the following method

FeatureModel OmniaApi.WorkWith(Ctx.Omnia()).Features()
.GetFeature(Guid id);

Supply the unique Guid of the feature. In return you get a Omnia.Foundation.Models.Features.FeatureInstance
object containing feature details like Name, Description and Scope

GetFeatures

To get more information about a all existing features, use the following method

IEnumerable<FeatureModel> OmniaApi.WorkWith(Ctx.Omnia()).Features()
.GetFeatures();

GetFeatureActivationStatus

To check if a given feature is activated or not on a site / site collection / tenant, use the following method

FeatureInstanceStatus OmniaApi.WorkWith(Ctx.Omnia()).Features()
.GetFeatureActivationStatus(Guid id, string spUrl);

This will return a value from the Omnia.Foundation.Models.Features.FeatureInstanceStatus enumeration.

This can have any of the following values:

• NotActivated

• Activating

• Activated

• Upgrading

• Deactivating

1.4. Omnia API 61

Omnia Foundation Documentation

• Error

GetFeatureInstanceLogs

To get the log messages written for a specific feature, use the following method

IEnumerable<FeatureInstanceLog> OmniaApi.WorkWith(Ctx.Omnia()).Features()
.GetFeatureInstanceLogs(Guid id, DateTimeOffset? startingBefore =

→˓default(DateTimeOffset?), int take = -1);

GetFeatureInstances

To get all instances of a feature (e.g. all places where a feature is activated), use the following method

IEnumerable<FeatureInstance> OmniaApi.WorkWith(Ctx.Omnia()).Features()
.GetFeatureInstances(Guid id);

This will return a collection of Omnia.Foundation.Models.Features.FeatureInstance, containing for example Status
and Target of the feature

UpgradeFeature

To upgrade a feature on one target (Tenant / Site collection / Site), use the following method

FeatureInstance OmniaApi.WorkWith(Ctx.Omnia()).Features()
.UpgradeFeature(Guid id, string spUrl);

To upgrade features in multiple places at once, you can use the following method

Dictionary<string, ApiOperationResult> OmniaApi.WorkWith(Ctx.Omnia()).Features()
.UpgradeFeature(Guid id, List<string> spUrls);

This will update the feature in all of the instances specified by the list of URLs supplied in the spUrls parameter.

.. include:: /../common/authors.txt

Lists

The Lists API contains methods that makes it easier to work with lists and libraries in SharePoint.

You reach the Lists API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx);

The API contains the following methods:

• AddFileToList

• GetAllDocumentLibraries

• GetAllImageLibraries

62 Chapter 1. Topics

Omnia Foundation Documentation

• GetDocuments

• GetDocumentsByFolder

• GetListItems

• GetPageList

• GetPageListId

• GetPageListUrl

AddFileToList

Use this method to create a file in a library based on a supplied byte array containing the file data.

void OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.AddFileToList(Guid listId, string folderServerRelativeUrl, string fileName,

→˓byte[] data);

Pass in the GUID of the library, a server relative Url to a folder (or empty string to add in root folder) and a file name.

Optionally, you can also supply a boolean indicating if the file should be published or not

void OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.AddFileToList(Guid listId, string folderServerRelativeUrl, string fileName,

→˓byte[] data, bool publish);

GetAllDocumentLibraries

To get information about all document libraries on the current web, use the following method

IEnumerable<ListIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetAllDocumentLibraries();

The returned array contains ListIdentifier objects containing for example Title, Id and ListUrl for the document
libraries.

GetAllImageLibraries

To get information about all image libraries on the current web, use the following method

IEnumerable<ListIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetAllImageLibraries();

The returned array contains ListIdentifier objects containing for example Title, Id and ListUrl for the image libraries.

GetDocuments

To get documents from a library, you can use the following method

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetDocuments(Guid listId, ListQuery listQuery, bool recursive = true, string

→˓folderServerRelativeUrl = ""); (continues on next page)

1.4. Omnia API 63

Omnia Foundation Documentation

(continued from previous page)

Supply a ListQuery object to filter the results.

To get a paged subset of the documents, you can instead use the following method

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
GetDocuments(Guid listId, string searchString = null, int skipId = 0, int

→˓take = -1, string orderBy = null, bool ascending = true, bool isGetAbsoluteUrl =
→˓false);

Passing in a skipId decides from which item to start fetching, and take sets the number of documents to return. You
can also supply orderBy and ascending parameters to decide the sort order.

The returned DocumentIdentifier class contains basic information about the documents in the library, for example Id,
Title, FileName, DocumentUrl and more.

GetDocumentsByFolder

Much like the GetDocuments method, you can use this method to get a paged subset of documents, but in a specific
folder

IEnumerable<DocumentIdentifier> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
GetDocumentsByFolder(Guid listId, string folderUrl, string searchString =

→˓null, int skipId = 0, int take = -1, string orderBy = null, bool ascending = true);

Pass in site relative folderUrl

GetListItems

Use this method to get list items from a list

IEnumerable<ListItem> OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetListItems(Guid listId, ListQuery listQuery);

Note that this returns the full ListItem objects. Use the listQuery parameter to filter what items are returned.

GetPageList

Note: Publishing webs only

To get the Pages list of the current web use one of the following methods

List OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetPageList(Web web, string webUrl);

or (to target a specific list)

List OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
.GetPageList(Web web, string webUrl, string listId);

64 Chapter 1. Topics

Omnia Foundation Documentation

GetPageListId

Note: Publishing webs only

To get the Guid of the Pages library on a publishing web, use the following method

Guid OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
GetPageListId(Web web, string webUrl);

GetPageListUrl

Note: Publishing webs only

To get the URL of the Pages library on a publishing web, use the following method

string OmniaApi.WorkWith(Ctx.Omnia()).Lists(Ctx)
GetPageListUrl(Web web, string webUrl);

.. include:: /../common/authors.txt

Logging

Omnia provides a logging API for extensions to write logs to Omnia Foundation’s logs database. There are three
different types of logs in Omnia: System Logs, Queue Logs and Feature Logs.

System Logs is a general-purpose place for information or error logs from both Omnia Foundation and extensions.
System Logs can be viewed in Omnia admin app at System > Logs

Queue Logs contains logs from queue messages jobs. For errors related to long-running operations like uploading
extension packages or creating site collection, check the Queue Logs. Queue Logs can be viewed in Omnia admin app
at System > Queues

1.4. Omnia API 65

Omnia Foundation Documentation

The last type of logs is Feature Logs, which contains logs from custom code in feature activation, upgrade or deacti-
vation. Feature Logs can be viewed in the feature detail page.

Logging in extension Web API

In extension API that inherit from SharePointContextProvidedController you can use the built-in Logging service
to write to the System Logs.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments()
{

try
{

// Web API code here
}
catch (Exception ex)
{

// The built-in Logging service can be used to write to System Logs
this

.Logging

.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
}

}

For API that does not inherit from SharePointContextProvidedController, you can use OmniaApi factory to create the

66 Chapter 1. Topics

Omnia Foundation Documentation

Logging service.

[HttpGet]
[Route("api/documents")]
public ApiOperationResult<IEnumerable<Document>> GetDocuments(

string tokenKey, string spUrl, string language)
{

try
{

// Web API code here
}
catch (Exception ex)
{

// For controller that does not inherit from
→˓SharePointContextProvidedController

// we need to create the ClientContext first.
ClientContext ctx = SharePointContextProvider

.CreateUserClientContext(tokenKey, spUrl, language);

OmniaApi
.WorkWith(Ctx.Omnia())
.Logging()
.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error, ex);

return ApiUtils.CreateErrorResult<IEnumerable<Document>>(ex);
}

}

Logging in extension features

In Omnia feature you can write to System Logs using OmniaApi factory or write to Feature Logs using the built-in
Log method

[FeatureDefinition(
id: "85544C6C-9EB9-4F99-9410-95F1EA3D07B5",
name: "MyOmniaExtension Sample Feature Core",
version: "0.1.0",
scope: FeatureScopes.Tenant

)]
public class SampleFeatureCore : Omnia.Foundation.Extensibility.Features.OmniaFeature
{

/// <summary>
/// Activates the OmniaFeature
/// </summary>
public override void Activate()
{

// This will write to System Logs
this.WorkWith().Logging()

.AddLog("SampleFeatureCore", "Feature activation", DefaultLogTypes.Info);

// This will write to Feature Logs
this.Log("Feature activation", "Success", FeatureInstanceLogTypes.

→˓Information);
}

}

1.4. Omnia API 67

Omnia Foundation Documentation

Logging in extension jobs

Similar to features, in jobs you can use the OmniaApi factory to write to System Logs. One important thing to note is
that currently any uncachted error in queue job will be write to the Queue Logs, but for timer jobs you need to handle
the error and explicitly write to the System Logs in your code.

public void SampleJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("SampleJobTimer", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

public void SampleJobQueue([QueueTrigger("SampleJob")] object queueMessage)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("SampleJobQueue", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

.. include:: /../common/authors.txt

Security

Note: This is a draft version of the documentation, it is not yet complete. Feel free to contribute to it via GitHub.

The Security API allows you to work with permissions, both Omnia permissions and SharePoint permissions.

You can for example check if the current user has a certain permission on a web, or a certain role in Omnia.

You reach the Security API through the following service

OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx);

The API contains the following methods:

• AddOrUpdateOmniaPermissionRoles

• DeleteOmniaPermissionRolesForExtensionPackage

• DoesUserHavePermissionOnWeb

• GetAllOmniaPermissionRoles

68 Chapter 1. Topics

Omnia Foundation Documentation

• GetCurrentUserADGroups

• GetPermissionRoles

• IsUserAuthorized

• SearchOmniaPermissionRoles

AddOrUpdateOmniaPermissionRoles

Documentation in progress

DeleteOmniaPermissionRolesForExtensionPackage

Documentation in progress

DoesUserHavePermissionOnWeb

Use this method to check if the user has the specified permission on the current web.

bool OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.DoesUserHavePermissionOnWeb(PermissionKind permissionKind);

Returns true if the user has the supplied permissionKind, otherwise false.

GetAllOmniaPermissionRoles

Use this method to get all available Omnia Permission roles for a given URL.

IEnumerable<PermissionRole> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.GetAllOmniaPermissionRoles(string targetUrl);

Returns an array of PermissionRole for the given targetUrl.

GetCurrentUserADGroups

If you need to get all AD groups the current user is a member of, use the following end-point.

Note: Only AD groups used somewhere in Omnia Foundation will be returned, e.x. groups used for security in
Omnia Administration or as part of targeting definitions.

IEnumerable<string> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.GetCurrentUserADGroups(string[] groups);

If you supply and empty groups parameter, you will get all AD groups, used somewhere in Omnia, that the user is a
member of.

var allGroups = OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.GetCurrentUserADGroups(new string[0]());

1.4. Omnia API 69

Omnia Foundation Documentation

To only check specific AD groups, pass their names in the groups parameter

var someGroups = OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.GetCurrentUserADGroups(new string{ "ADGroup1", "ADGroup2" });

GetPermissionRoles

To get Permissions Roles for given Permission Role Definitions you can use the following method, passing in a
List<PermissionRoleDefinition> containing the role definitions of interest.

IEnumerable<PermissionRole> OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
GetPermissionRoles(List<PermissionRoleDefinition> requestedRoles);

This will return an array containing all permissions roles existing for the supplied definitions.

IsUserAuthorized

Use this method to check if the user is authorized, e.g. is a member of the required Omnia PermissionRoleDefinition

bool OmniaApi.WorkWith(Ctx.Omnia()).Security(Ctx)
.IsUserAuthorized(PermissionRoleDefinition requiredRole);

Returns true if the user is a member of the required Omnia role, else false.

SearchOmniaPermissionRoles

Documentation in progress

.. include:: /../common/authors.txt

1.5 Custom Web API for Omnia extensions

Note: This documentation is a work in progress and contributions can be made on our Github repo

1.5.1 Topics

.. include:: /../common/authors.txt

Omnia base controller

When building Web API for Omnia extension it’s recommended to use the base class SharePointContextProvided-
Controller from Omnia. This base class provides many useful services when working with SharePoint and Omnia.

70 Chapter 1. Topics

Omnia Foundation Documentation

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{

[HttpGet, Route("api/items")]
public ApiOperationResult<IEnumerable<Item>> GetItems()
{

try
{

// Your controller logic here
}
catch (Exception ex)
{

this
.Logging
.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error,

→˓ex);

return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
}

}
}

SharePoint ClientContext

The base class SharePointContextProvidedController will enforce the parameters SPUrl and TokenKey on every
endpoints in the controller, either in querystring or in the request headers. These paramters will be used to authenticate
who is calling the API and create a SharePoint user ClientContext. This client context can be accessed using the base
controller’s property Ctx. This way the Web API developers will not need to think about authentication and how to
communicate with Omnia Foundation services.

The base controller class also provides a helper method, named CreateContextFor, to create ClientContext for another
SharePoint site than the site specified by SPUrl paramter, or to create ClientContext with elevated permission.

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{

[HttpGet, Route("api/items")]

(continues on next page)

1.5. Custom Web API for Omnia extensions 71

Omnia Foundation Documentation

(continued from previous page)

public ApiOperationResult<IEnumerable<Item>> GetItems()
{

try
{

// Use the current ClientContext
this.Ctx.Load(this.Ctx.Web, w => w.Url);
thix.Ctx.ExecuteQuery();

// Create ClientContext with elevated permission
using (ClientContext appContext = CreateContextFor(this.Ctx.Web.Url,

→˓elevated: true))
{

}
}
catch (Exception ex)
{

this
.Logging
.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error,

→˓ex);

return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
}

}
}

To Create ClientContext with elevated permission you need to have a valid ClientId and ClientSecret in web.config
(for Office 365) or have a high-trust certificate configured (for on-premise).

<appSettings>
<add key="ClientSecret" value="DljsSY31wlsZFytMRhjr4xE11NynROTf0K1p/9XDWnM=" />
<add key="ClientId" value="62669ea8-15f0-4b24-83e4-1e99fce5ecd5" />
...

</appSettings>

Omnia Foundation Services

SharePointContextProvidedController has a built-in Logging service which write to Omnia Foundation logs database.
Other Omnia Foundation services can be accessed using the factory method WorkWith()

using Omnia.Foundation.Extensibility.Core;
using Omnia.Foundation.Extensibility.Core.Utilities;
using Omnia.Foundation.Extensibility.WebApi;
using Omnia.Foundation.Extensibility.Core.Configurations;
using Omnia.Foundation.Models.Shared;
using Omnia.Foundation.Models.Logging;
using System;
using System.Web.Http;
using System.Collections.Generic;
using Microsoft.SharePoint.Client;

public class MyController: SharePointContextProvidedController
{

[HttpGet, Route("api/items")]
(continues on next page)

72 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

public ApiOperationResult<IEnumerable<Item>> GetItems()
{

try
{

// Use Omnia configuration service
var configuration = WorkWith().Configurations().GetConfiguration(

name: "configuration-name",
region: "configuration-region");

}
catch (Exception ex)
{

// Built-in logging service
this

.Logging

.AddLog(this.GetType().ToString(), ex.Message, DefaultLogTypes.Error,
→˓ex);

return ApiUtils.CreateErrorResult<IEnumerable<Item>>(ex);
}

}
}

Other contextual information are also provided:

• TenantId: ID of the Omnia tenant that the current SharePoint site belongs to.

• LoginName: SharePoint loginname of the current user.

• OmniaInstanceMode: The mode that Omnia Foundation is running in, either Tenant or SiteCollectionOnly

.. include:: /../common/authors.txt

1.6 Omnia Jobs

Omnia Jobs are pieces of code for handling long-running operations that can be run either as a message queue or as a
scheduled timer job.

1.6.1 Create new Omnia Job

You can create Omnia Job using the template from Omnia Tooling

1.6. Omnia Jobs 73

Omnia Foundation Documentation

[JobDefinition(
id: "368D7722-9F75-4789-A1BA-460DBB6595F8",
name: "MyJob",
description: ""

)]
public class MyJob : OmniaJob
{

// Scheduled Job job function
public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

// Message Queue job function
public void MyJobQueue([QueueTrigger("MyJob")] object queueMessage)
{

try
{

// Your job code here

(continues on next page)

74 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

}

The job metadata is defined by the attribute JobDefinition. Each Omnia Job can contains any number of independent
job functions, each can be of one of the two types Scheduled Job or Message Queue.

1.6.2 Built-in methods and properties

Similar to Omnia Feature and Omnia Web API, Omnia common services are available through the built-in Work-
With method. The code in Omnia Jobs is run at tenant scope so there is no user context, you can get an app-only
ClientContext using the method CreateContextFor

Properties Type Description
Tenant Tenant

The current tenant.

OmniaInstanceMode Enum

The mode of the current tenant.
could be Tenant or Sitecollection

Methods Type Description
CreateContextFor(string spUrl) ClientContext

Create an app-only context

WorkWith() ApiFactory

Return the ApiFactory that can call
Omnia API
Example: Work-
With().Logging().AddLog(log)

1.6.3 Manage jobs in a tenant

Unlike tenant resources, jobs are available and running immediately after the extension is deployed, there is no need
to activate any feature.

All jobs deployed by extensions can be viewed in admin app at Systems > Jobs. You can also change the interval of
scheduled jobs or stop/force run them from this interface. Note that built-in jobs will not be displayed here.

1.6. Omnia Jobs 75

Omnia Foundation Documentation

1.6.4 Job Types

.. include:: /../common/authors.txt

Scheduled Job

// Scheduled Job job function
public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.Error,
→˓ex);

}
}

Scheduled jobs will run at the interval defined in the TimerTrigger. There are 2 different contructors you can use:

Note: The minimum interval supported by Omnia Jobs is 10 seconds

Note: TimerInfo is a place-holder for future features, currently it contains no information

public void MyJobTimer([TimerTrigger("01:00:00")] TimerInfo timerInfo)

public void MyJobTimer([TimerTrigger(1, 0, 0)] TimerInfo timerInfo)

.. include:: /../common/authors.txt

76 Chapter 1. Topics

Omnia Foundation Documentation

Message Queues

public void MyJobQueue([QueueTrigger("MyQueue")] object queueMessage)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.Error,
→˓ex);

}
}

Message queue jobs will be triggered everytime a message is added to the queue that the jobs listen to (“MyQueue” in
this example).

Queue messages can be added when a feature is activated/deactivated, when an web api endpoint is called or from
another Omnia Job. To add a queue message, use the Queues service:

public void MyJobTimer([TimerTrigger(1, 0, 0)] TimerInfo timerInfo)
{

try
{

// Add a queue message to the queue "MyQueue" every hour, triggering the
→˓queue message job.

WorkWith().Queues().AddQueueMessage("MyQueue", new MyModel());
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobTimer", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

// The content of the queue message will de deserialized to type MyModel
public void MyJobQueue([QueueTrigger("MyQueue")] MyModel queueMessage)
{

try
{

// Your job code here
}
catch (Exception ex)
{

WorkWith().Logging().AddLog("MyJobQueue", ex.Message, DefaultLogTypes.
→˓Error, ex);

}
}

Dequeue Mode

When adding a queue message you can set the transaction ID for the message, so that multiple messages can be
grouped together in the same transaction. By default, the message queue job will be triggered immediately when a new
message is added, however you can change this behavior by setting the dequeue mode to SynchronousTransaction.

When running synchronous dequeue mode, all messages in the same transaction will be processed sequentially by

1.6. Omnia Jobs 77

Omnia Foundation Documentation

the order that they was added. In other words, if a new message of the same transaction is added while the previous
message was being processed, the new message will not be processed until the previous message has been finished.

public void MyJobQueue([QueueTrigger("MyJob", DequeueMode = Models.Queues.
→˓DequeueModes.SynchronousTransaction)] MyModel queueMessage)

.. include:: /../common/authors.txt

1.7 Client-Side Development

Note: This documentation is a work in progress and contributions can be made on our Github repo

1.7.1 Topics

.. include:: /../common/authors.txt

Live reload

When doing client side development, you can enable a mode called “Live reload”. In this mode, the page is automati-
cally updated to reflect your new HTML, TypeScript and Less code when you save a file in Visual Studio.

Sections:

• Enable Live reload

• Working in Live reload mode

• Disable Live reload

Enable Live reload

1. Open Visual Studio as Administrator

2. In the environment.json file of your Omnia extension, do the following

• In the Hosting section set Enabled to true, and UseLiveReload to true

• Note the Port number (ex 9900)

• Save the file

78 Chapter 1. Topics

Omnia Foundation Documentation

3. In the Output window of Visual Studio, select “Omnia Tooling” in the Show output from dropdown

4. Make sure the Hosting server has started correctly by reading the output.

Note: If you get an error message in the output, you need to make sure that the IIS Express SSL certificate is installed
on your computer.

You can trigger the installation by creating an MVC project, Enable SSL and then start Debugging the project. You
will now get a dialog asking if you want to trust the IIS Express SSL certificate. Click “Yes”

3. In your web browser

• Navigate to a site in the Office 365 Tenant used for developing your Omnia Extension

• Add ?console=on to the URL of the page, ex /somepage?console=on. If you are on a quick page,
instead add |console=on, ex /#/somepage|console=on

• This will display the Omnia Console on the current page. Type help in the console to get a list of all
available commands

• To enable Live reload, type hosting enable https://localhost:9900 where 9900 is the port number
you noted in Step 2, from the environment.json

1.7. Client-Side Development 79

Omnia Foundation Documentation

• The page should now be reloaded and after some time your controls should be displayed, now served
from https://localhost:9900 instead of the Omnia server

Working in Live reload mode

Edit your LESS, TypeScript or HTML files as you normally would. When saved, the browser will update to instantly
display the changes.

Disable Live reload

To disable Live reload, do the following:

1. In the Omnia console in the browser window, write hosting disable

2. In the Visual Studio project, in the environment.json file, set the Enabled parameter in the Hosting section to
false

.. include:: /../common/authors.txt

Angular 1

Note: This documentation is a work in progress and contributions can be made on our Github repo

Topics

.. include:: /../common/authors.txt

UI Components

Note: This documentation is a work in progress and contributions can be made on our Github repo

Topics

.. include:: /../common/authors.txt

Single Picker

Note: This component is an Angular 1 directive registered in module Omnia.Foundation.Core.Module

The single picker is a dropdown component that supports type-ahead search and customizable UI.

80 Chapter 1. Topics

Omnia Foundation Documentation

Sample

$scope.employees = [
{ id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
{ id: 2, firstName: 'John', lastName: 'Smith', age: 36 }

];

$scope.department = {
id: 1,
name: "Marketing",
managerId: 1

}

<omf-single-picker
items="employees"
title-expression="[firstName] [lastName]"
id-prop="id"
bind-selected-item-id="department.managerId"
pre-selected-item-id="department.managerId">

</omf-single-picker>

Properties

Name Bind-
ing

Description

items = The list of options in the dropdown
titleProp @ The property on model to be used as the display text
titleExpression @ The format string for display text. Example: [firstName] [lastName] ([email])
idProp @ The property on model to be used as the value
onSelect & Callback when an option is selected. Parameters: (selectedItem, parentItem)
onDeselect & Callback when the dropdown is cleared.
onOpen & Callback when the dropdown is opened.
bindSelectedItemId = The selected value. This property is only one-way binding from the dropdown to

the consumer scope.
preSelectedItemId = The initial selected value.
updateSelectedIte-
mEvent

@ The event name used to update selected value of the dropdown from outsite scope.

preSelectFirstItem @ true or false - whether to preselect the first option if no initial selected value is
provided.

parentItem = An object to be pass along the selected item on the onSelect callback.

.. include:: /../common/authors.txt

1.7. Client-Side Development 81

Omnia Foundation Documentation

Multi Picker

Note: This component is an Angular 1 directive registered in module Omnia.Foundation.Core.Module

The multi picker is a dropdown component that supports multiple selected values, type-ahead search and customizable
UI.

Sample

$scope.employees = [
{ id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
{ id: 2, firstName: 'John', lastName: 'Smith', age: 36 }

];

$scope.department = {
id: 1,
name: "Marketing",
managerId: 1,
members: [
{ id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
{ id: 2, firstName: 'John', lastName: 'Smith', age: 36 }
]

}

<omf-multi-picker items="employees"
title-expression="[firstName] [lastName]"
selected-items="department.members">

</omf-multi-picker>

Properties

Name Bind-
ing

Description

items = The list of options in the dropdown
titleProp @ The property on model to be used as the display text
titleExpres-
sion

@ The format string for display text. Example: [firstName] [lastName] ([email])

idProp @ The property on model to be used as the value
onSelect & Callback when an option is selected. Parameters: (selectedItem)
onDeselect & Callback when the dropdown is cleared.
onOpen & Callback when the dropdown is opened.
selecte-
dItems

= The selected value. This property is only two-way binding between the dropdown and
the consumer scope.

82 Chapter 1. Topics

Omnia Foundation Documentation

.. include:: /../common/authors.txt

Client-Side Services

Note: This documentation is a work in progress and contributions can be made on our Github repo

Topics

.. include:: /../common/authors.txt

Angular 2

Note: This documentation is a work in progress and contributions can be made on our Github repo

Topics

.. include:: /../common/authors.txt

Components

Note: This documentation is a work in progress and contributions can be made on our Github repo

Topics

.. include:: /../common/authors.txt

DropDownList

Note: This documentation is a work in progress and contributions can be made on our Github repo

DropDownList is a dropdown component that supports type-ahead search and customizable UI.

How it looks like

1.7. Client-Side Development 83

Omnia Foundation Documentation

Selector

<omf-dropdown-list></omf-dropdown-list>

Parameters

- items: Array<any>
The list of options for the dropdown. Could be an array of string or an array of object.

allowMultipleValues: boolean
Flag for allowing multiple values to be selected. Default value is false.

textProperty: string
The name of property to be used as the display text of the options. Only applicable if items is an array of object.

textExpression: string
The expression for formatting the display text of the options. textProperty will be ignored if textExpression is set.
Only applicable if items is an array of object.

Example: text-expression=”[firstName] [lastName] ([email])”

valueProperty: string
The name of the property to be used as the selected value. Only applicable of items is an array of object.

preSelectFirstItem: boolean
Flag for setting the first item in items as selected if no selected value is provided. Default value is false.

onItemSelected: (selectedItem: any, parentItem?: any) => void
Event handler for item selected event. If items is an array of object, selectedItem will be the object that was selected,
not just the value property.

84 Chapter 1. Topics

Omnia Foundation Documentation

onItemDeselected: (deselectedItem: any, parentItem?: any) => void
Event handler for item deselected event. If items is an array of object, deselectedItem will be the object that was
selected, not just the value property.

onDropDownOpen: () => void
Event handler for dropdown open event.

onInputChange: (newValue: string) => void
Event handler for

showLoading: boolean
Flag for showing the loading indicator. Should be set to true while items is being loaded. Default value is false.

selectedItemValue: any
Two-way bind selected value(s). If items is an array of object then the selected value(s) will be taken from the
valueProperty of the selected item.
If allowMultipleValues is true then selectedItemValue will be an array, otherwise it will be a single value.

parentItem: any
The related object to be passed in onItemSelected and onItemDeselected.

Examples

import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
selector: 'my-component'

})
export class MyComponent {

(continues on next page)

1.7. Client-Side Development 85

Omnia Foundation Documentation

(continued from previous page)

employees = [
{ id: 1, firstName: 'Mary', lastName: 'Brown', age: 27 },
{ id: 2, firstName: 'John', lastName: 'Smith', age: 36 }

];

selectedEmployeeId = 1;

constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef) {
}

}

<omf-dropdown-list [items]="employees"
textProperty="firstName"
valueProperty="id"
[(selectedItemValue)]="selectedEmployeeId">

</omf-dropdown-list>

.. include:: /../common/authors.txt

ColorPicker

Note: This documentation is a work in progress and contributions can be made on our Github repo

ColorPicker is a component for selecting color from Omnia corporate colors feature or from custom colors.

How it looks like

86 Chapter 1. Topics

Omnia Foundation Documentation

Selector

<omf-color-picker></omf-color-picker>

Parameters

- color: string
Two-way bind selected color.

onColorChange: (color: string) => void
Even handler for the color selected event.

position: string
The position of the color picker popover. Must be one of these: ‘top’, ‘bottom’, ‘left’, ‘right’

Examples

import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
selector: 'my-component'

})
export class MyComponent {

selectedColor = '#ffffff';

constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef) {
}

}

<omf-color-picker [color]="selectedColor" [position]="'bottom'"></omf-color-picker>

.. include:: /../common/authors.txt

Services

Note: This documentation is a work in progress and contributions can be made on our Github repo

1.7. Client-Side Development 87

Omnia Foundation Documentation

Topics

.. include:: /../common/authors.txt

AJAX Service

Note: This documentation is a work in progress and contributions can be made on our Github repo

AJAX service is a utility for making AJAX requests to Omnia Foundation and Omnia extensions web API. The AJAX
service is usually not used directly in UI components but in other services.

Available Methods

Method Description Parameters
buildRequest

Fluent API for making
an AJAX request

- apiPath (string): The request’s
URL. If apiPath is a relative URL, it
will be direct to Omnia Foundation.
Other extensions can inherit this
AJAX and override the internal
method getFullApiPath to make
calls to it’s API instead

- dataType (string) (optional):
The request’s Content-Type.
Default value is ‘application/json’

Examples

Note: To use the AjaxService, you need to import The module OmniaExtensibilityModule into the NgModule of
your component or add it directly to the list of providers of your compoment

Normal Usage

import { AjaxService } from "Omnia/Foundation/Extensibility/Services";
import { Pipe, Injectable , Inject } from '@angular/core';

@Injectable()
export class ConfigurationService {

constructor(@Inject(AjaxService) private ajaxService: AjaxService) {

}

public getConfiguration = (callback: (result: Configurations.IConfiguration) =>
→˓void, name: string, region: string, extensionPackageId: string = null) => {

(continues on next page)

88 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

var params = {
name: name,
region: region,
extensionPackageId: extensionPackageId

};

this.ajaxService.buildRequest("configuration/configurations")
.addQueryStrings(params)
.doGet<Configurations.IConfiguration>()
.subscribe((result) => { callback(result.json()); });

}
}

Inherit AJAX Service

import { AjaxService as FoundationAjaxService } from 'Omnia/Foundation/Extensibility/
→˓Services'
import { Utils } from "Omnia/Foundation/Extensibility";

@Injectable()
export class AjaxService extends FoundationAjaxService{

static apiBaseUrl: string = "";

public getFullApiPath(apiPath: string): string {
if (Utils.isNullOrEmpty(AjaxService.apiBaseUrl)) {

AjaxService.apiBaseUrl = Utils.ensureTrailingSlash("<my-extension-api-url>
→˓");

}

return AjaxService.apiBaseUrl + apiPath;
}

}

.. include:: /../common/authors.txt

Dialogs Service

Note: This documentation is a work in progress and contributions can be made on our Github repo

Dialogs service is a utility for working with modal dialogs in Angular 2 and Omnia.

1.7. Client-Side Development 89

Omnia Foundation Documentation

90 Chapter 1. Topics

Omnia Foundation Documentation

Available Methods

Method Description Parameters
onConfirmationDialog

Show a confirmation dialog
with yes/no outcome

- title (string): The dialog’s title

- body (string): The dialog’s body
text

- viewContainerRef
(ViewContainerRef): the
viewContainerRef of the calling
component

- okCallback (() => void): The
callback for ‘OK’ outcome

- cancelCallback (() => void): The
callback for ‘Cancel’ outcome

openDialog

Show a custom dialog - componentType (Type<any>):
The component to show in the
dialog

- params (any): the parameters
passed to the dialog

- viewContainerRef
(ViewContainerRef): the
viewContainerRef of the calling
component

- dialogSize (DialogSize): can be
small, medium and large. Default
value is medium

- okCallback (() => void): The
callback for ‘OK’ outcome

- cancelCallback (() => void): The
callback for ‘Cancel’ outcome

blockUI

Show a loading indicator
and block the whole page UI

unblockUI

Remove the UI block from
blockUI method1.7. Client-Side Development 91

Omnia Foundation Documentation

Examples

Note: To use the DialogService, you need to import The module OmniaExtensibilityModule into the NgModule of
your component or add it directly to the list of providers of your compoment

Injection

import { DialogService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
selector: 'my-component',
providers: [DialogService]

})
export class MyComponent {

constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
@Inject(DialogService) private dialogService: DialogService) {

}
}

Open confirmation dialog

private deleteItem(item) {
let dialogTitle = "Delete Item";
let dialogBody = "Are you sure you want to delete this item?";

this.dialogService.onConfirmationDialog(dialogTitle, dialogBody, this.
→˓viewContainer, () => {

// Confirmed, proceed to delete the item
});

}

Open custom dialog

import { EditItemForm } from "MyComponent/EditItemForm";
import { DialogSize } from "Omnia/Foundation/Extensibility/Enums";

// ...

private editItem(item) {
this.dialogService.openDialog(EditItemForm, { item: item },

this.viewContainer, DialogSize.Large);
}

import { Component, Inject, ViewContainerRef, OnDestroy , OnInit } from '@angular/core
→˓';
import { DialogRef} from 'angular2-modal';
import { BaseDialogComponent, BaseDialogModel } from "Omnia/Foundation/Extensibility/
→˓Services";

@Component({
selector: 'edit-item-form'

})
export class EditItemForm extends BaseDialogComponent<BaseDialogModel<any>>
→˓implements OnInit {

(continues on next page)

92 Chapter 1. Topics

Omnia Foundation Documentation

(continued from previous page)

item: Item;

constructor(@Inject(DialogRef) public dialog: DialogRef<BaseDialogModel<any>>) {
super(dialog);

}

ngOnInit() {
this.item = this.context.params.item;

}
}

.. include:: /../common/authors.txt

Configuration Service

Note: This documentation is a work in progress and contributions can be made on our Github repo

Configuration service is a utility for working with Omnia configurations. Read more about configuration in Omnia
here

1.7. Client-Side Development 93

/fundamentals/configuration.html

Omnia Foundation Documentation

94 Chapter 1. Topics

Omnia Foundation Documentation

Available Methods

Method Description Parameters
getConfiguration

Get configuration from
Omnia Foundation API

- callback ((result:
Configurations.IConfiguration)
=> void): The callback with the
requested configuration

- name (string): The name of the
configuration

- region (string): The region of the
configuration

- extensionPackageId (string)
(optional): The ID of the extension
that created the configuration.
Default value is built-in
configurations

getClientConfiguration

Get configuration included
in client-side

- name (string): The name of the
configuration

- region (string): The region of the
configuration

- extensionPackageId (string)
(optional): The ID of the extension
that created the configuration.
Default value is built-in
configurations

addOrUpdateConfigurations

Add or update a list of
configurations

- configurations (Ar-
ray<Configurations.IConfiguration>):
The list of configurations to add or
update

- callback ((isSuccess: boolean)
=> void): The callback function

getConfigurationsInRegion

Get all configurations by
region

- region (string): The region of the
configurations

- callback ((result: Ar-
ray<Configurations.IConfiguration>)
=> void): The callback function
with result

updateConfiguration

Update a configuration - configuration
(Configurations.IConfiguration):
The configuration to be updated

- callback ((isSuccess: boolean)
=> void): The callback function

deleteConfiguration

Remove a configuration - name (string): The name of the
configuration

- region (string): The region of the
configuration

- callback ((isSuccess: boolean)
=> void): The callback function

1.7. Client-Side Development 95

Omnia Foundation Documentation

Examples

Note: To use the ConfigurationService, you need to import The module OmniaExtensibilityModule into the NgMod-
ule of your component or add it directly to the list of providers of your compoment

Injection

import { ConfigurationService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
selector: 'my-component',
providers: [ConfigurationService]

})
export class MyComponent {

constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
@Inject(ConfigurationService) private configurationService:

→˓ConfigurationService) {
}

}

Get configuration

private getDefaultColors() {
this.configurationService.getConfiguration((configuration: Configurations.

→˓IConfiguration) => {
let defaultColors = configuration.value;

}, "defaultcolors", "");
}

.. include:: /../common/authors.txt

Localization Service

Note: This documentation is a work in progress and contributions can be made on our Github repo

Localization service is a utility for getting localized text in Omnia. Read more about localization in Omnia here

Available Methods

Method Description Parameters
getText

Get the localized text
for a label in Omnia

- key (string): The key for the
localization. If no localized text
match, this key will be return

96 Chapter 1. Topics

/fundamentals/localization.html

Omnia Foundation Documentation

Examples

Note: To use the LocalizationService, you need to import The module OmniaExtensibilityModule into the NgModule
of your component or add it directly to the list of providers of your compoment

Injection

import { LocalizationService } from "Omnia/Foundation/Extensibility/Services";
import { Component, Inject, ViewContainerRef } from '@angular/core';

@Component({
selector: 'my-component',
providers: [ConfigurationService]

})
export class MyComponent {

constructor(@Inject(ViewContainerRef) private viewContainer: ViewContainerRef,
@Inject(LocalizationService) private localizationService:

→˓LocalizationService) {
}

}

Get localized text

private getItemTypes() {
return [

{ id: 0, title: this.localizationService.getText('MyExtension.ItemTypes.Small
→˓') },

{ id: 1, title: this.localizationService.getText('MyExtension.ItemTypes.
→˓Medium') },

{ id: 2, title: this.localizationService.getText('MyExtension.ItemTypes.Large
→˓') }

];
}

.. include:: /../common/authors.txt

1.8 Performance

The following sections will guide you in using functionality in Omnia to improve the performance in your solution

1.8.1 ClientContext.LoadIfNeeded and ClientContext.ExecuteQueryIfNeeded

Often, a single SharePoint Client Context is passed between different services and you do not know if the data you
need has already been loaded or if an ExecuteQuery is needed.

To make this process more effective and straight forward, Omnia has implemented two extension methods on Client-
Context: LoadIfNeeded and ExecuteQueryIfNeeded.

By using the above methods, already loaded and fetched data will not trigger a new ExecuteQuery to the server.

Example:

1.8. Performance 97

Omnia Foundation Documentation

public string GetServerRelativeUrl(ClientContext ctx)
{

ctx.LoadIfNeeded(Ctx.Web, x => x.ServerRelativeUrl).ExecuteQueryIfNeeded();

return ctx.Web.ServerRelativeUrl;
}

The ExecuteQueryIfNeeded method also takes an optional parameter of type Mi-
crosoft.SharePoint.Client.ClientContextExtensions.ExecuteOption. This is an enum with two possible values:

• LoadAllIfOneIsNeeded

• LoadOnlyNeeded

This is useful to decide if only missing property should be loaded from the server, or if all loaded properties should be
reloaded if an execute needs to be done.

If this parameter is not supplied, LoadOnlyNeeded is used.

.. include:: /../common/authors.txt

1.9 Release Notes

1.9.1 Topics

.. include:: /../common/authors.txt

Omnia Foundation

Sections:

• 1.0.1.1681 (2016-09-20)

1.0.1.1681 (2016-09-20)

What’s new

• It’s now possible in the API for an extension to change the configuration created by another extension.

• A new feature called “Omnia Statistics Provider” makes it possible to register a third-party analytics script in
the Admin UI to be included on all pages within a specific site collection.

• Targeting api that makes it possible to specify targeting definitions in Omnia Admin using Taxonomy/Profile
Properites or Security Groups and then use the api in extensions to filter content based on selected targeting.

• Omnia Jobs is a new feature that makes it possible to create Jobs in Extensions that can be based on a Timer or
by listening on a Queue.

• OmniaApi support to work with queues.

• Updated font awesome to version 4.6.3.

• Omnia Console now has support to listen to commands. Currently we support two commands that enables
support for the built in webserver in Omnia Tooling for example:

98 Chapter 1. Topics

Omnia Foundation Documentation

– hosting enable https://localhost:9930

– hosting disable

• A new section in Omnia Admin > System called Developers was added. It lists the version of Omnia Foundation
and also displays the nuget version to be used for Extensions.

• OmniaApi now has a SitesService that has the following methods GetSiteRequestById, GetRecentSites, Ad-
dOrUpdateRecentSite.

Bug fixes

• When provisioning a Field without a description an error was thrown.

• Left navigation in admin missing scroll support.

• Slow performance in Features view in Admin.

• Fixed an performance issue where the JobHost was loading all extension packages from database at startup.

• When adding new properties to a site template and performing a migration the migration would stop if a site
was deleted.

• When using approval flow in site requests there was sometimes a timeout error when approving the request.

• When editing site templates deployed by extensions the save button was always disabled.

• The announcements control had a problem with overflow when long text without space was in the message.

• When uploading a extension package with configuration we now always sort it in alphabetic order.

• The customized localization made in the localization editor in Omnia Admin for an extension package was
removed when a feature was upgraded.

• Selected features in site templates was not checked in UI when the template was loaded.

• When specifying a FieldRef using [FieldRef(typeof(Field1), Required = true)] it didn’t listen on the Required
property.

.. include:: /../common/authors.txt

Omnia Tooling

Here you can find the releases of the Omnia Tooling for Visual Studio 2013/2015

Sections:

• Visual Studio 2017 1.0.0

• Visual Studio 2017 1.0.6924 Beta 4 (Vietnam Codebase Edition)

• Visual Studio 2017 1.0.6828 Beta 3 (France Codebase Edition)

• Visual Studio 2017 1.0.6250 Beta 2

• Visual Studio 2017 1.0.5935 Beta 1

• Visual Studio 2017 Preview

• Stable 1.0.1.3965

• Stable 1.0.1.2305-62

• Stable 1.0.1.1699-48

1.9. Release Notes 99

https://localhost:9930

Omnia Foundation Documentation

• Stable 1.0.1.1115-38

Visual Studio 2017 1.0.0

Please report issues with tooling on our Github repo

Download vsix

Visual Studio 2017 1.0.6924 Beta 4 (Vietnam Codebase Edition)

Note:

• To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What‘s new

• Improvement in Resource Mapper

• Its now possible to create new Omnia Controls without any additional setup

• Bugfixes

Please report issues with tooling on our Github repo

Download vsix

Visual Studio 2017 1.0.6828 Beta 3 (France Codebase Edition)

Note:

• To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What‘s new

• Visual Resource Mapper makes it easy adding resources to mapping files

• Support for Visual Resource Mapper when adding TenantResources from item templates

Please report issues with tooling on our Github repo

Download vsix

Visual Studio 2017 1.0.6250 Beta 2

Note:

• To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What‘s new

• Improved Copy to Tenant

100 Chapter 1. Topics

https://github.com/preciofishbone/Omnia-Foundation
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.0.vsix
https://github.com/preciofishbone/Omnia-Foundation
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6924-beta.vsix
https://github.com/preciofishbone/Omnia-Foundation
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6828-beta.vsix

Omnia Foundation Documentation

• Remove extra folder from solution

• Upgrade TypeScript to version 2.4.1

Please report issues with tooling on our Github repo

Download vsix

Visual Studio 2017 1.0.5935 Beta 1

Note:

• To be able to use this Tooling you need to target a Tenant with Omnia Foundation version 1.0.5862 or higher

What‘s new

• Completely new Project Wizard and Item Template Wizard that uses Github as source

• Angular 4 support

• Extensible TaskRunner (angular aot, less etc)

• We now use npm for Foundation (https://www.npmjs.com/package/@omnia/foundation)

Please report issues with tooling on our Github repo

Download vsix

Visual Studio 2017 Preview

What‘s new

• Added support for Visual Studio 2017

Download vsix

Stable 1.0.1.3965

What‘s new

• New extension projects can now build without errors

Download vsix

Stable 1.0.1.2305-62

What‘s new

• Update Omnia Control Item Templates for Angular 2 to comply with Angular 2.0.0

• Update Omnia Extension Sample Project Template with new samples of Angular 2

Download vsix

1.9. Release Notes 101

https://github.com/preciofishbone/Omnia-Foundation
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.6250-beta.vsix
https://www.npmjs.com/package/@omnia/foundation
https://github.com/preciofishbone/Omnia-Foundation
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.5935-beta.vsix
http://nuget.preciofishbone.se/omniatoolings/dev/omniatooling.1.0.1.3965-vs2017.vsix
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.3965.vsix
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.2305-62.vsix

Omnia Foundation Documentation

Stable 1.0.1.1699-48

What‘s new

• Omnia Control Item Templates for Angular 2

• Built in websever for hosting Tenant bundles locally

• Live Reload support for Tenant bundles

Note: The Omnia Control Templates for Angular 2 is only for preview purposes since the Angular 2 RTM was
just released we removed the bootstrapping for Angular 2 in Foundation until we have a working version running on
Angular 2 RTM

Bug fixes

• The item template for Field contained a space in the internalname which could cause problems in provisioning

• Item Template for Omnia Control without settings should have enableSettings value set to false and the con-
structor should not have the ControlConfigService injected

Download vsix

Stable 1.0.1.1115-38

Download vsix

.. include:: /../common/authors.txt

1.10 Contribute to this Documentation

This documentation is a constant work in progress, and contributions can be made on our Github repo. For more
extensive contributions please follow the steps below to get started with using Sphinx.

.. include:: /../common/authors.txt

1.10.1 Get started

Please follow the steps below to install Sphinx and get the source code from our Git repository.

1. Install Python

Download and install Python 3.6.0 from here https://www.python.org/downloads/

Note: Make sure to select pip and Add Python to environment variables during the installation

102 Chapter 1. Topics

http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.1699-48.vsix
http://nuget.preciofishbone.se/omniatoolings/prod/omniatooling.1.0.1.1115-38.vsix
https://www.python.org/downloads/

Omnia Foundation Documentation

2. Install Sphinx

1. Open a command prompt

2. Run

pip install sphinx sphinx-autobuild sphinx_rtd_theme

3. Install Git for Windows

Download and install Git from here https://git-scm.com/download/win

4. Get the Git repository

1. Create a folder in your file system where you would like to keep the documentation source code, for example

C:\Git\OMF-docs

2. In a command prompt, navigate to the folder you just created and execute the following command

git clone https://github.com/preciofishbone/Omnia-Foundation-Docs.git

The source code is now cloned to the current folder

.. include:: /../common/authors.txt

1.10.2 Work with the documentation

To work with the source code locally using Sphinx, follow the steps below

1. Open a command prompt and navigate to the folder containing the source code for the documentation

2. Execute the following command

make livehtml

After a while the console window will settle down, and you will find a link in the window, like this
Serving on http://127.0.0.1:8000

3. In a web browser, enter the link from above. A locally rendered version of the documentation will be displayed.

Now, any time you add a file, or edit an existing file and then save it, Sphinx will rebuild the documentation locally
and reload the browser window to display the latest changes.

You do edits, additions and deletes by just working with the files in the source code folder in your favorite text editor.

Note: The documentation is written with reStructuredText. To learn more about this markup language, you can use
this link http://sphinx-doc.org/rest.html#rst-primer

To stop Sphinx, press Ctrl + C in the command prompt and then select Y

.. include:: /../common/authors.txt

1.10. Contribute to this Documentation 103

https://git-scm.com/download/win
http://sphinx-doc.org/rest.html#rst-primer

Omnia Foundation Documentation

1.10.3 Commit your changes

To commit your change to the Git-repo perform the following steps

1. Open a command prompt and navigate to the folder containing the source code for the documentation

2. Execute the following command

git pull

3. Execute the following command

git commit -a -m "A description of your changes"

4. Execute the following command

git push

You have now successfully contributed to this documentation. Thank you for your time and effort!

104 Chapter 1. Topics

	Topics
	Getting Started
	Omnia Foundation Fundamentals
	SharePoint Provisioning
	Omnia API
	Custom Web API for Omnia extensions
	Omnia Jobs
	Client-Side Development
	Performance
	Release Notes
	Contribute to this Documentation

