
OGitM Documentation
Release 0.0.1

Jonathan Frere

April 11, 2015

Contents

1 Installing OGitM 3

2 The Tutorial 5
2.1 Using The OGitM Model . 5
2.2 Using GitDB Directly . 6

3 Searching In GitDB 9
3.1 Scalar Searches . 9
3.2 Comparison . 9
3.3 String Checks . 10
3.4 Existence . 10

4 OGitM API Documentation 11
4.1 API Docs: OGitM . 11
4.2 API Docs: Fields . 12
4.3 API Docs: GitDB . 14
4.4 API Docs: Search Functions . 18

5 Indices and tables 19

Python Module Index 21

i

ii

OGitM Documentation, Release 0.0.1

Contents:

Contents 1

OGitM Documentation, Release 0.0.1

2 Contents

CHAPTER 1

Installing OGitM

Todo
Actually write this page

3

OGitM Documentation, Release 0.0.1

4 Chapter 1. Installing OGitM

CHAPTER 2

The Tutorial

2.1 Using The OGitM Model

Starting with OGitM is usually as simple as writing out the model declaration.

>>> import tempfile; db_directory = tempfile.TemporaryDirectory()
>>> import ogitm

>>> class Person(ogitm.Model, db=db_directory.name):
...
... name = ogitm.fields.String()
... age = ogitm.fields.Integer(min=0)
... hobby = ogitm.fields.Choice(["football", "karate", "knitting"],
... default="karate")

Note that the db parameter is mandatory - it specifies the place that the git repository will be stored. Currently, this
system uses bare repositories. Multiple models stored in the same database location will be stored in individual tables
by default. (The current implementation uses the inflection library’s tableize method (based on RoR’s tableize
method).)

Here, we’ve used a string as the path to the directory. However, we can also separately instantiate a
ogitm.gitdb.GitDB instance, and use that instead. Note that opening two databases with the same directory
means that the two databases will point to the same place.

>>> db = ogitm.gitdb.GitDB(db_directory.name)
>>>
>>> class AlternatePerson(ogitm.Model, db=db):
... pass

The next thing to do is to start inserting documents into the database. That’s exactly as simple as it should be.

>>> bob = Person(name="bob", age=32, hobby="football")
>>> geoff = Person(name="geoff", age=18, hobby="knitting")
>>> roberta = Person(name="roberta", age=42, hobby="football")
>>> print(bob.age)
32
>>> print(geoff.hobby)
knitting
>>> print(roberta.name)
roberta

>>> bob.age = 33 # Ah, how time changes us all
>>> bob.hobby = "knitting"

5

http://inflection.readthedocs.org/en/latest/index.html#inflection.titleize

OGitM Documentation, Release 0.0.1

>>> bob.save() == bob.id
True

The limitations on the fields will also stop you doing anything stupid by raising errors all over the place. They’ll also
automatically insert default values.

>>> roberta.age = -3
Traceback (most recent call last):

...
ValueError: ...

>>> roberta.hobby = "this is not a recognised hobby"
>>> # Note lack of error message here
>>> print(roberta.hobby) # defaults to "karate" as specified in model
karate

More useful than just storing data is being able to retrieve it later. The easiest way to do that is by searching for it.

>>> Person.find(name="bob").first() == bob
True
>>> Person.find(age=19).all() # No people aged 19
[]
>>> Person.find(hobby="knitting").all() == [bob, geoff]
True

Note that this also works for more complex queries. We can also chain queries together.

>>> len(Person.find(age={’gt’: 2})) # Matches all current documents
3
>>> len(Person.find(age={’gt’: 2}, hobby={’startswith’: ’kn’}))
2
>>> # same as
>>> len(Person.find(age={’gt’: 2}).find(hobby={’startswith’: ’kn’}))
2
>>> # complex queries may contain more than one operator at a time
>>> len(Person.find(age={’gt’: 2, ’lt’: 40}))
2

2.2 Using GitDB Directly

Note that OGitM is essentially a wrapper around GitDB. If you need access to GitDB as a simple document store, this
is possible using the ogitm.gitdb module.

>>> import tempfile; db_directory = tempfile.TemporaryDirectory()
>>> from ogitm import gitdb
>>> db = gitdb.GitDB(db_directory.name)

A GitDB database is split up into tables. GitDB automatically creates the __defaulttable__ table, and passes any
methods called on it straight to an internal copy of that table. This allows for very simple usage of GitDB. However,
it is more likely that a user would want to split up their data into multiple tables.

>>> db.default_table.name
’__defaulttable__’
>>> db.table(’Table Name’)
<ogitm.gitdb.Table object at ...>
>>> table = db.table(’Table Name’)
>>> doc = table.insert({’my doc’: ’your doc’})

6 Chapter 2. The Tutorial

OGitM Documentation, Release 0.0.1

>>> table.get(doc)
{’my doc’: ’your doc’}
>>> table.find_items({’my doc’: ’your doc’}) # Using simple query
[{’my doc’: ’your doc’}]
>>> table.find_items({’my doc’: {’exists’: True}}) # Using advanced query
[{’my doc’: ’your doc’}]

2.2. Using GitDB Directly 7

OGitM Documentation, Release 0.0.1

8 Chapter 2. The Tutorial

CHAPTER 3

Searching In GitDB

Similarly to MongoDB, GitDB queries can either be really simple checks of equality, or more complex tests of a value
using Python’s extensive set of methods and functions. This page will describe how to use the search functions, for
information on writing your own, see gitdb.search_functions. There is also an extensive testing suite for
searching in the tests/test_gitdb.py file.

We will use a model that looks like this:

>>> import tempfile; db_directory = tempfile.TemporaryDirectory()
>>>
>>> import ogitm
>>> class MyModel(ogitm.Model, db=db_directory.name):
... name = ogitm.fields.String()
... age = ogitm.fields.Integer()
... has_hair = ogitm.fields.Boolean()
>>> bob = MyModel(name="Bob", age=93, has_hair=False)
>>> bert = MyModel(name="Bert", age=23, has_hair=True)
>>> bex = MyModel(name="Bex", age=32, has_hair=True)
>>> bub = MyModel(name="Bubba", age=3243, has_hair=False)

3.1 Scalar Searches

Checking if something equals something else is the easiest check of all.

>>> MyModel.find(name="Bex").first() == bex
True
>>> MyModel.find(age=34).all()
[]
>>> len(MyModel.find(has_hair=True))
2

3.2 Comparison

The comparison operators (>, <, >=, <=, and ==) are supported with aliases. Generally, the query a={’>’: b}
will return all values of a such that a > b.

9

OGitM Documentation, Release 0.0.1

Operator Shorthand Longhand
> ’gt’ ’greater-than’
< ’lt’ ’less-than’
>= ’gte’ ’greater-than-equal’
<= ’lte’ ’less-than-equal’
== ’eq’ ’equal’

>>> len(MyModel.find(age={’lt’: 30}))
1
>>> len(MyModel.find(age={’gte’: 32}))
3

>>> # Note that this also works for any
>>> # other type with a total ordering
>>> len(MyModel.find(name={’lt’: ’Bf’}))
2
>>> # ’eq’ will work for any two equivalent items
>>> MyModel.find(name={’eq’: ’Bert’}) == MyModel.find(name=’Bert’)
True

3.3 String Checks

String types can be checked using the various is*() string methods, as well as startswith() and endswith().
These are hardcoded, but delegate to the string’s natural methods. If you can think of some way of automatically
selecting all string methods that return a boolean, please let me know!

>>> len(MyModel.find(name={’startswith’: ’B’}))
4
>>> len(MyModel.find(name={’isalpha’: True}))
4

3.4 Existence

Testing for existence isn’t usually necessary when using models, as (assuming that you only use the model to insert
documents), you know that the only fields that will exist will be the fields you inserted. It is more useful when using
arbitrary documents with the raw GitDB instance. However, the syntax of the check is the same in both cases.

>>> len(MyModel.find(name={’exists’: True}))
4
>>> len(MyModel.find(name={’exists’: False}))
0

10 Chapter 3. Searching In GitDB

CHAPTER 4

OGitM API Documentation

Contents:

4.1 API Docs: OGitM

class ogitm.Model(*args, **kwargs)
Base class for models

Subclass this class to declare a model. Model provides a default initialiser, an equivalence function, and the
save() and find() methods.

Parameters

• model_id (int) – If this is provided, the model will be initialised with the attributes specified
by the document with that id in the database. This is generally for internal use (i.e, creating
the object after a search has been completed) but it may be useful.

• kwargs (mixed) – This is the more usual way of initialising the model - that is, by passing in
key=val pairs describing the values passed to the fields specified by the model. The default
initialiser will then go through all of the arguments, check that they are known fields, and
assign them.

Attribute id The instance will always have this attribute referring to the id that it refers to in the
database. It will be None if the instance has not been inserted into the database (this should
never happen, though!)

classmethod find(**kwargs)
Finds documents in the database.

Given keyword arguments (which have the same format as the arguments given to
gitdb.GitDB.find()), this method returns a ReturnSet containing all of the matching
documents.

Parameters kwargs (mixed) – See gitdb.GitDB.find() for the full finding syntax.

Returns ReturnSet of all of the matching documents.

classmethod get_table()
Returns the table associated with this model.

save()
Saves this instance to the database.

If this instance has been saved before, this will update the database document corresponding to the current
id. Otherwise, it will insert a new document into the database, storing the document id.

11

OGitM Documentation, Release 0.0.1

class ogitm.ReturnSet(ids, cls)
A class representing the documents returned by a particular query.

This class can be used to further narrow down the search (find()), or return initialised instances of the model
that found them (first(), all(), __getitem__()). It can also tell you how many items the set currently
contains (__len__())

The documents are returned sorted in order of the ids. This ensures that further operations on a set will preserve
order, but should not be relied on, as the specifics of document ids is not part of the public interface.

all()
Returns a list of all of the documents.

find(**kwargs)
Refine the terms of the original search

Using the model that created this set, find which documents match the new queres, then update this set to
point to the intersection of both the old and new queries.

Parameters kwargs (mixed) – See Model.find().

Returns This set, to allow for chaining method calls.

first()
Returns the first document, or None

class ogitm.MetaModel(name, bases, dct, **kwargs)
Metatype for OGitM Models

Generally, a user should subclass Model instead of touching this class. However, it is useful to be aware of
the functions that MetaModel can perform. Firstly, upon instantiation it removes all class attributes that extend
BaseField, and assigns them to an internal dict. It also ensures that any class that overrides __init__()
calls the super method. This makes sure that the Model should always be in a useable state.

It also provides the get_attributes() class method which can be used to get the data for any particular
class.

classmethod get_attributes(instance)
Get fields for a Model class or instance

Parameters instance (type or instance) – An instance or class that has MetaModel as a
metatype.

Returns Dictionary of key -> field pairs

Raises KeyError if the type or instance is not recognised

4.2 API Docs: Fields

class ogitm.fields.BaseField(**kwargs)
Abstract Base Class for field types.

Cannot be instantiated, but should be inherited to provide all the useful information that a field might need.

Parameters

• default (any) – A default value to provide if the input is ever None. If not provided, and
nullable is False, a field will not accept None as an argument.

• nullable (bool) – True if this field can be None/null, False otherwise. Defaults to True.

12 Chapter 4. OGitM API Documentation

OGitM Documentation, Release 0.0.1

• coerce – A function that can coerce any input into input of a valid type. If it cannot coerce,
it should either return “False” or raise a ValueError. Defaults to a no-op.

Example: coerce=int would convert values to int where possible.

check(val)
Base case method to check if a value is allowed by this field.

Must be overriden. Currently only returns True, but may do its own checking in future, and so should
probably be checked before any overriden method.

Parameters val (any) – Value to check

Returns Whether that value is allowed by the parameters given to this field.

coerce(val)
Attempt to coerce a value using the pre-defined function.

If no function was passed in, the default operation is to return the value straight through. If the function
fails to coerce (i.e. raises ValueError), the value is returned unchanged. (type_check should therefore
always be used to check the type of a coerced value.)

Parameters val (any) – Value to coerce

Returns Coerced value

type_check(val, typ=None)
Check if value is of a certain type (using nullability).

If this field instance can be nulled, checks if the val is either of type typ or of the None type. Otherwise,
it just checks if the val is of type typ. Note that typ is passed straight through to isinstance, so it
can be any value allowed by the second parameter of isinstance.

Parameters

• val (any) – Value to check

• typ – Type(s) to check against

Returns Whether val is of type typ.

class ogitm.fields.String(**kwargs)
A field representing string types.

Parameters

• regex (str or regex) – Regular expression that this string must match. If not present, any
string will match. Can be either a regular expression object, or a string.

• maxlen (int) – Maximum length of the string. ‘None’ (default) for no length restrictions.

class ogitm.fields.Number(**kwargs)
A field representing real numeric types.

Parameters

• min (numeric) – The minimum (inclusive) value that this field can contain. If not specified,
there is no minimum.

• max (numeric) – The maximum (inclusive) value that this field can contain. If not specified,
there is no maximum.

class ogitm.fields.Float(**kwargs)
A field representing floating point numbers.

Parameters

4.2. API Docs: Fields 13

OGitM Documentation, Release 0.0.1

• min (numeric) – See Number

• max (numeric) – See Number

class ogitm.fields.Integer(**kwargs)
A field representing integers.

Parameters

• min (numeric) – See Number

• max (numeric) – See Number

class ogitm.fields.Boolean(**kwargs)
A field representing boolean values

See coerce_boolean() for a useful coercion function for this field.

ogitm.fields.coerce_boolean(val)
A useful function for coercing various types to boolean.

Unlike the usual Python bool() function which simply tests if a value is empty, this matches boolean True,
strings in the set {’yes’, ’y’, ’true’, ’t’, ’on’} and the integer 1 for True, or boolean False,
strings in the set {’no’, ’n’, ’false’, ’f’, ’off’} and the integer 0 for False.

This is done in a case-insensitive manner. If the value is a string not in the described sets, a number that doesn’t
equal 1 or 0, or any other type (excepting boolean of course), this function will raise ValueError.

class ogitm.fields.Choice(choices=None, **kwargs)
A field representing a single item from a set of items.

Parameters choices (collection) – A required collection of items. The check method will then
ensure that the value must be in this collection.

4.3 API Docs: GitDB

class ogitm.gitdb.GitDB(location)
The raw database class.

This class constructs a database instance in the location described. This is automatically created under the covers
by ogitm.Model, but it can also be created and used outside the confines of Object-Model mappings. Total
freedom!

Any methods called on GitDB that can’t be found will be passed to the default Table instance, so this class
could be used as a simple one-table document store without worrying about tables at all. This isn’t recom-
mended, however.

Parameters location (str) – The path of the database

drop(table_name, force=False)
Completely and irevocably destroy a table.

Parameters

• table_name (str) – The name of the table to destroy

• force (bool) – If true, no errors will be raised if the table does not exist

Raises ValueError – if the table is reserved, or could not be deleted for other reasons

table(table_name)
Create a new table.

14 Chapter 4. OGitM API Documentation

OGitM Documentation, Release 0.0.1

This creates a new table in the current database. You can also use the form gitdb[’table name’],
which delegates to this method. If a table exists, this method will return a new instance of Table pointing
to the same table. (Note that two tables pointing to the same location will always return equal.)

Parameters table_name (str) – The name this table will take

Raises ValueError – if the name is a reserved table name

class ogitm.gitdb.Table(name, location)
A class to represent an individual table in a database

This class should only really be created by a GitDB instance, although instantiating it manually won’t actually
change the way this class operates.

Parameters

• name (str) – The name of the table

• path (str) – The path of the table (Note that this is the path to this particular table’s location,
not the root path of the database.)

begin_transaction()
Opens a new transaction.

Raises ValueError – if a transaction is already open

See also:

transaction() a context manager that automatically handles most of the details of a transaction

commit() and rollback() methods for closing the transaction created here

commit()
Commits all work performed during a transaction.

Raises ValueError – if this method is called inside the transaction() context manager,
or if there is no open transaction when this method is called

See also:

transaction() a context manager that automatically handles most of the details of a transaction

begin_transaction() opens up a transaction

rollback() rolls back instead of committing

find(where)
Finds the documents that match a given query.

For details on searching, see Searching In GitDB. Searches in the raw GitDB should be documents, rather
than keyword arguments, but otherwise searches are the same.

This method returns (id, document) pairs. There are also the convenience methods find_ids() and
find_items(), which just return the ids and documents respectively.

Parameters where (dict) – Search definition

Returns list[(int, dict)] – A list of matching documents

find_ids(where)
Find the ids that match a given query.

This method is the same as find(), but returns the ids rather than (id, doc) pairs.

Parameters where (dict) – Search definition (see find())

4.3. API Docs: GitDB 15

OGitM Documentation, Release 0.0.1

Returns list[int] – A list of matching document ids

find_items(where)
Find the documents that match a given query.

This method is the same as find(), but returns the documents rather than (id, doc) pairs.

Parameters where (dict) – Search definition (see find())

Returns list[dict] – A list of matching documents

find_one(where)
Finds one document

This method functions the same as find(), but returns just one element, or None if no element found.

Parameters where (dict) – Search definition (see find())

Returns (int, document) or None

get(doc_id)
Gets a document given it’s document id.

This is the simplest but least useful way of getting information out of the database. It returns the document.

Parameters doc_id (int) – The document ID to fetch

Returns dict – The document

insert(document)
Inserts a document into this database.

Documents are key-value python dicts. Nested documents are not currently tested, and will probably
break everything. Documents also can’t be scalar objects, although again that is untested and behaviour is
therefore undefined in that area as well. Those should probably be tested and defined more rigorously.

Oh, and also the only allowed keys and values are the standard primitives (str, int, bool, float, etc), not
other objects or collections.

If a transaction is not open, this method will commit all changes into the database.

Parameters document (dict) – A key-val single-level dictionary

Returns int – Document ID

revert_steps(steps, doc_id=None)
Reverts the whole database a number of steps.

Parameters

• steps (int) – The number of steps to revert

• doc_id (int) – Not implemented yet

See also:

revert_to_state() Another way of reverting changes to the database

revert_to_state(state, doc_id=None)
Reverts the whole database to a previously stored state.

Parameters

• state (oid) – The state to return to

• doc_id (int) – Not implemented yet

16 Chapter 4. OGitM API Documentation

OGitM Documentation, Release 0.0.1

See also:

revert_steps() Another way of reverting changes to the database

save_state() A method that allows saving the state of the database

rollback()
Rolls back all work performed during a transaction.

Raises ValueError – if this method is called inside the transaction() context manager,
or if there is no open transaction when this method is called.

See also:

transaction() a context manager that automatically handles most of the details of a transaction

begin_transaction() opens up a transaction

commit() commits instead of rolling back

save(msg=’‘)
Commits all current unsaved changes

Normally, this will be automatically called by any methods that make changes, or by the transaction meth-
ods. This shouldn’t be called otherwise, unless in exceptional circumstances (in which case, file an issue
because something’s probably gone wrong.)

Parameters msg (str) – This will become git’s commit message

save_state()
Returns a marker that can be used later to revert to the same state.

Because the database is built on top of git, all states are saved, and can be checked out. This method returns
a marker to the particular commit that refers to the current database. Note that if the database is reverted
to a position before this marker, the database can still be “for-verted” back to the marker position.

Returns A save state marker of arbitrary type

See also:

revert_to_state() Reverts to states saved by this method

transaction()
A context manager for transactions.

Sometimes it’s more convenient to use with-blocks for transactions. This is a context manager to allow
that. When entering the context, it calls begin_transaction(). When leaving the context due to
normal execution, it will commit all changes. When leaving the context due to an error or exception being
raised, it will revert all changes, and pass the error on up.

See also:

begin_transaction(), commit(), rollback() Methods for manually managing a transaction

transaction_open
Returns whether there is currently a transaction open.

Read-only

4.3. API Docs: GitDB 17

OGitM Documentation, Release 0.0.1

update(d_id, document)
Updates the document at d_id with a new document

This method replaces the document at d_id with a new document, completely deleting the old document
to replace it with the new version. This is not very efficient.

See the documentation for insert() for a discussion on what actually counts as a document.

Parameters

• d_id (int) – A previously-saved document id

• document (dict) – The document to replace with

Returns int – Document ID

Raises ValueError – if the document id does not exist

4.4 API Docs: Search Functions

class ogitm.gitdb.search_functions.SearchFunction
A list of all search functions.

To add a function, use the SearchFunction.add() decorator. This passes the function itself through (so
multiple invocations of the add decorator can be called on the same item), and appends it to the internal store of
search functions.

To get a function, use the SearchFunction.get() classmethod. This returns the function described by the
given name, or raises KeyError if no function is available.

This class should basically be used as a singleton instance - all methods are class methods, and operate on a
shared store of data. This probably isn’t best practice, but it works for now.

See SearchFunction.add() for details on what a search function should actually look like.

classmethod add(*funcnames)
Add a function to the current list of functions.

The function should have the following signature:

Parameters

• key (any) – The key for which a value should be found. This is usually not important - the
function is also passed the index that pertains to this particular key.

• operator (str) – The operator/name that this function has been called under. Sometimes
it is simpler if different operators all map to the same function (for example, all string
methods map to one function that dynamically calls the method on a string instance). This
can be then used to work out the specific operation.

• argument (any) – The argument passed to this particular operator.

• index (dict[any: list[id]]) – The index related to the key being searched against. This is
basically a dict mapping every value that has been assigned to this key to a list of the ids
of the documents where this key-value mapping exists.

• all (set[id]) – The set of all ids that are currently stored. This is useful in the case where
you want to search for, say, non-existance of a key, in which case the set of ids that should
be returned is the set of all ids that aren’t in the index that the function has been passed.

18 Chapter 4. OGitM API Documentation

CHAPTER 5

Indices and tables

• genindex

19

OGitM Documentation, Release 0.0.1

20 Chapter 5. Indices and tables

Python Module Index

o
ogitm, 11
ogitm.fields, 12
ogitm.gitdb, 14
ogitm.gitdb.search_functions, 18

21

OGitM Documentation, Release 0.0.1

22 Python Module Index

Index

A
add() (ogitm.gitdb.search_functions.SearchFunction class

method), 18
all() (ogitm.ReturnSet method), 12

B
BaseField (class in ogitm.fields), 12
begin_transaction() (ogitm.gitdb.Table method), 15
Boolean (class in ogitm.fields), 14

C
check() (ogitm.fields.BaseField method), 13
Choice (class in ogitm.fields), 14
coerce() (ogitm.fields.BaseField method), 13
coerce_boolean() (in module ogitm.fields), 14
commit() (ogitm.gitdb.Table method), 15

D
drop() (ogitm.gitdb.GitDB method), 14

F
find() (ogitm.gitdb.Table method), 15
find() (ogitm.Model class method), 11
find() (ogitm.ReturnSet method), 12
find_ids() (ogitm.gitdb.Table method), 15
find_items() (ogitm.gitdb.Table method), 16
find_one() (ogitm.gitdb.Table method), 16
first() (ogitm.ReturnSet method), 12
Float (class in ogitm.fields), 13

G
get() (ogitm.gitdb.Table method), 16
get_attributes() (ogitm.MetaModel class method), 12
get_table() (ogitm.Model class method), 11
GitDB (class in ogitm.gitdb), 14

I
insert() (ogitm.gitdb.Table method), 16
Integer (class in ogitm.fields), 14

M
MetaModel (class in ogitm), 12
Model (class in ogitm), 11

N
Number (class in ogitm.fields), 13

O
ogitm (module), 11
ogitm.fields (module), 12
ogitm.gitdb (module), 14
ogitm.gitdb.search_functions (module), 18

R
ReturnSet (class in ogitm), 12
revert_steps() (ogitm.gitdb.Table method), 16
revert_to_state() (ogitm.gitdb.Table method), 16
rollback() (ogitm.gitdb.Table method), 17

S
save() (ogitm.gitdb.Table method), 17
save() (ogitm.Model method), 11
save_state() (ogitm.gitdb.Table method), 17
SearchFunction (class in ogitm.gitdb.search_functions),

18
String (class in ogitm.fields), 13

T
Table (class in ogitm.gitdb), 15
table() (ogitm.gitdb.GitDB method), 14
transaction() (ogitm.gitdb.Table method), 17
transaction_open (ogitm.gitdb.Table attribute), 17
type_check() (ogitm.fields.BaseField method), 13

U
update() (ogitm.gitdb.Table method), 17

23

	Installing OGitM
	The Tutorial
	Using The OGitM Model
	Using GitDB Directly

	Searching In GitDB
	Scalar Searches
	Comparison
	String Checks
	Existence

	OGitM API Documentation
	API Docs: OGitM
	API Docs: Fields
	API Docs: GitDB
	API Docs: Search Functions

	Indices and tables
	Python Module Index

