

Organic Electronic Device Simulator (oedes) documentation

Contents:

	Introduction

	Features

	Installation

	Tutorial: PN junction

	Physical models

	Optical models

	Examples

Indices and tables

	Index

	Module Index

	Search Page

Introduction

oedes (Open Electronic DEvice Simulator) is a Python software package for modeling of electronic devices. It is primarily focused on emerging electronic devices. It is applicable to organic electronic, electrochemical, bioelectronic, and Peroskvite based devices.

oedes was written to take into account both the special aspects of non-conventional electronic devices, and modern trends in software development. The result a small but powerful package, which is tightly integrated with standard scientific software stack. This simplifies both running and sharing the simulations.

oedes mission is to:

	enable open science research in emerging electronic devices, by enabling full disclosure of numerical simulations;

	allow reuse of established device models, which were usually published without a runnanble implementation;

	accelerate research by providing a platform for parameter extraction from measurements and for device optimization driven by simulation;

	simplify development of new simulation models and tools, by providing a library of robust components;

	provide a standard way of running and sharing device simulations.

oedes is released as open-source under GNU Affero General Public License v3. It is free to use and distributed with complete source code.

Conventions

Code which is intended to execute in system command-line starts with $, for example:

$ python

All code which is indendent to be run in Python starts with >>> or ..., for example:

>>> print('hello world')

Sequences of characters which can be copied into code in current context are emphasized as print or 1+2+3. oedes formatted in that way refers to name of Python software package, or to Python symbol in current example.

General concepts are emphasized as params. oedes written in that way refers to the software project.

Features

General

	Pure Python implementation

	Reliable fully implicit solver

	Flexible precision

Electric

	Cell centered finite-volume with arbitrary mesh spacing

	Scharfetter-Gummel discretization

	Conservation of charge guaranteed in a converged solution

	Arbitrary number of layers

	Ramo-Shockley calculation of terminal current

	Arbitrary temperature

	Support for multidimensional discretizations

	Arbitrary number of transported species

Optical

	Transfer matrix approach

	Arbitrary illumination

Analysis

	DC

	Transient

	AC small signal

	Sensitivity analysis

Models

	Gaussian DOS

	Extended Gaussian Disorder Model

	Generalized Einstein’s relation

	Transient traps

	Shockley-Read-Hall recombination

	Langevin recombination

	Image-force barrier lowering

	Doping (also position dependent)

	Generation (also position dependent)

	Onsager-Braun model of exciton dissociation

	User supplied mobility model

	User supplied DOS

Outputs

	Current-voltage

	Current-voltage-light

	SCL

	Transient SCL

	Capacitance-voltage

	Impedance spectroscopy

	Efficiency (photovoltaic)

	Fill factor (photovoltaic)

	Dark current (photodetector)

	Responsivity (photodetector)

	Light output (light emitting diodes)

Installation

Requirements

	Python 2.7 or Python 3.4+

	sparsegrad

	Python scientific stack

Installation from PyPI

It is recommended to use Python Package Index (PyPI) [https://pypi.org/] to install oedes package. This is done using command-line by pip program, which is normally installed together with Python. Using this method, all dependencies are resolved automatically.

Two variants of the installation are possible:

	system wide installation:

$ pip install oedes

	local installation not requiring administrator’s rights:

$ pip install oedes --user

In the case of local installation, oedes is installed inside user’s home directory. In Linux, this defaults to $HOME/.local.

Verifying the installation

After installing, it is advised to run the test suite to ensure that oedes works correctly on your system:

>>> import oedes
>>> oedes.test()
Running unit tests for oedes...
OK
<nose.result.TextTestResult run=15 errors=0 failures=0>

If any errors are found, oedes is not compatible with your system. Either your Python scientific stack is too old, or there is a bug.

oedes is evolving, and backward compatibility is not yet offered. It is recommended to check which version is in use by running:

>>> import oedes
>>> oedes.version
'0.0.18'

Upgrading/downgrading

By default, pip does not upgrade packages unless required. To change this behavior, option --upgrade should be used. For example, oedes is updated to the most recent version by running

$ pip install oedes --upgrade

It is also possible to upgrade/downgrade oedes by specifying an exact version to be installed. For example, to ensure that installed version is 0.0.18, run

$ pip install oedes==0.0.18

Again, --user option can be given to restrict changes to users’ home directory.

Development installation (advanced)

Current development version of sparsegrad can be installed from the development repository by running

$ git clone https://github.com/mzszym/oedes.git
$ cd oedes
$ pip install -e .

The option -e tells that oedes code should be loaded from git controlled directory, instead of being copied to the Python libraries directory. As with the regular installation, --user option should be appended for local installation.

Building documentation

Documentation of oedes is generated by sphinx [http://www.sphinx-doc.org/en/master/]. Its source files are placed in doc folder.

To produce HTML and PDF documentation, run

$ cd doc
$ make html
$ make latexpdf

Tutorial: PN junction

In this tutorial a simple model of PN junction will be constructed. The same model is used in example included in oedes distribution in file examples/interactive/pn.ipynb.

oedes contains models of typical devices. However, in this tutorial, the model will be constructed equation-by-equation to demonstrate basic functionality.

Importing oedes

Before starting, oedes package must be imported

>>> import oedes

The drift-diffusion system

For simulating transport, a model of temperature distribution must be assumed. In the simplest case of isothermal simulation, the same effective temperature is assumed equal everywhere inside the device. The model is created as follows:

>>> temperature = oedes.models.ConstTemperature()

The specification of model is separated from the specification of parameter values. The actual value of temperature, in Kelvins, will be given later.

The next step is to create Poisson’s equation of electrostatics

>>> poisson = oedes.models.PoissonEquation()

Constructed objects poisson and temperature must are passed as arguments when creating transport equations:

>>> electron = oedes.models.equations.BandTransport(poisson=poisson, name='electron', z=-1, thermal=temperature)
>>> hole = oedes.models.equations.BandTransport(poisson=poisson, name='hole', z=1, thermal=temperature)

Above creates two conventional drift-diffusion equations for electrons and holes respectively. By default, the mobility is assumed constant and the DOS is modeled by using the Boltzmann approximation. name arguments are names which are used to identify parameters and outputs. z are charges of species expressed in units of elementary charge. oedes allows arbitrary number of species, and arbitrary values of name and z. This allows to construct complicated models with, for example, mixed ionic-electronic transport.

The doping profile

To model the PN junction, a doping profile must be defined. In the example, left half of the device is doped with ionized donor concentration given by parameter Nd, and right half of device is doped with doped with ionized acceptor concentration given by parameter Na.

The pn_doping function is called during model evaluation and is given as parameters the mesh, the evaluation context object ctx, and the discretized equation object eq. In the example, it uses ctx object to access parameters values of the dopant concentations ('Na', ''Nd').

>>> def pn_doping(mesh, ctx, eq):
... return oedes.ad.where(mesh.x<mesh.length*0.5,ctx.param(eq, 'Nd'),- ctx.param(eq, 'Na'))
>>> doping = oedes.models.FixedCharge(poisson, density=pn_doping)

The dopants are assumed to be fully ionized and therefore it is modeled as fixed charge. The FixedCharge adds calculated doping profile to the previously created Poisson’s equation poisson.

Above code uses a specialized version of function where is used instead of version from numpy. This is required for support of sensitivity analysis with respect to parameter values.

The Ohmic contacts

To keep the example simple, Ohmic contacts are assumed on both sides of the device. They are created as follows:

>>> semiconductor = oedes.models.Electroneutrality([electron, hole, doping],name='semiconductor')
>>> anode = oedes.models.OhmicContact(poisson, semiconductor, 'electrode0')
>>> cathode = oedes.models.OhmicContact(poisson, semiconductor, 'electrode1')

Ohmic contacts require knowledge of equilibrium charge carrier concentrations in semiconductor. This is calculated by Electroneutrality. Note that since concentrations in doped semiconductor are of interest, all charged species are passed to Electroneutrality. 'electrode0' and 'electrode1' refers to names of boundaries in the mesh.

Putting all together

To avoid divergence of the simulation due to infinitely large lifetime of electrons and holes, recombination should be added. Duirecrecombination model is created by

>>> recombination = oedes.models.DirectRecombination(semiconductor)

The calculation of terminal current is a non-trivial post-processing step. It is recommended to use Ramo-Shockley current calculation in most cases, which is created by

>>> current = oedes.models.RamoShockleyCurrentCalculation([poisson])

The discrete model is constructed and initialized by calling oedes.fvm.discretize. It takes two arguments: the system of equations and terms to solve, and the specification of domain. Below oedes.fvm.mesh1d creates a 1-D domain with length specified as argument.

>>> all_equations_and_terms = [poisson, temperature, electron, hole, doping, current, semiconductor, anode, cathode, recombination]
>>> domain = oedes.fvm.mesh1d(100e-9)
>>> model = oedes.fvm.discretize(all_equations_and_terms, domain)

Parameters

The physical parameters are provided as dict.

>>> params={
... 'T':300,
... 'epsilon_r':12,
... 'Na':1e24,
... 'Nd':1e24,
... 'hole.mu':1,
... 'electron.mu':1,
... 'hole.energy':-1.1,
... 'electron.energy':0,
... 'electrode0.voltage':0,
... 'electrode1.voltage':0,
... 'hole.N0':1e27,
... 'electron.N0':1e27,
... 'beta':1e-9
... }

Above, 'T' key is used to specify temperature in Kelvins. It is used by ConstTemperature object. 'epsilon_r' specifies the relative dielectric permittivity. It is used by discretized PoissonEquation object. 'Na' and 'Nd' are parameters accessed by pn_doping function, the concentrations of dopants. 'beta' is used by DirectRecombination.

Other parameters are in form name.parameter. name is passed to the equation, and they can be nested. For example, if a transport equation were created as

something = oedes.models.BandTransport(name='zzz',...)

then the corresponding mobility parameter would be identified by key 'zzz.mu'.

The mobilities electron.mu and hole.mu are given in [image: \mathrm{m^2 V^{-1} s^{-1}}], therefore are equal to 1000 [image: \mathrm{cm^2 V^{-1} s^{-1}}] each. In the example above, instead of specifying electron affinity and band-gap, the energies of both bands are specified directly by energy parameters, in eV. The voltages are applied to Ohmic contacts are specified by 'electrode0.voltage' and 'electrode1.voltage', in Volts. N0 denotes the total density of states, in [image: \mathrm{m^{-3}}].

params

By convention, values of physical parameters are specified in dict object named params, with string keys, and float values. All values of given in SI base units, except for small energies which are specified in eV.
oedes currently does not assume default values of parameters. If any necessary parameter is not specified in params, exception KeyError is raised.

Solving

oedes.context objects binds models with their parameters and solutions. It also provides convenience functions for solving, post-processing and plotting the data.

The following calculates soltuion for parameters specified in dict params

>>> c = oedes.context(model)
>>> c.solve(params)

Examining output

The solution can be investigated by calling output function, which returns a dict of available outputs:

>>> out=c.output()
>>> print(sorted(out.keys()))
['.meta', 'D', 'Dt', 'E', 'Et', 'J', 'R', 'c', 'charge', 'electrode0.J', 'electrode1.J', 'electron.Eband', 'electron.Ef', 'electron.J', 'electron.Jdiff', 'electron.Jdrift', 'electron.c', 'electron.charge', 'electron.ct', 'electron.j', 'electron.jdiff', 'electron.jdrift', 'electron.phi_band', 'electron.phi_f', 'hole.Eband', 'hole.Ef', 'hole.J', 'hole.Jdiff', 'hole.Jdrift', 'hole.c', 'hole.charge', 'hole.ct', 'hole.j', 'hole.jdiff', 'hole.jdrift', 'hole.phi_band', 'hole.phi_f', 'potential', 'semiconductor.Ef', 'semiconductor.electron.c', 'semiconductor.hole.c', 'semiconductor.phi', 'total_charge_density']

The outputs are numpy arrays. For example, the electrostatic potential is

>>> print(out['potential'])
[-0.17857923 -0.17858006 -0.17858115 -0.17858258 -0.17858445 -0.17858693
 -0.17859023 -0.17859468 -0.1785994 -0.17860442 -0.17860982 -0.17861567
 ...
 -0.92141696 -0.92141772]

To access additional information about output (such as its mesh), use .meta subdictionary.

>>> out['.meta']['potential']
OutputMeta(mesh=<oedes.fvm.mesh.mesh1d object at ...>, face=False, unit='V')

outputs

Most useful outputs are given below. Just as for params, all values are in SI base units, except for small energies in eV. * denotes prefix identifying the equation, such as electron or hole.

	*.c: concentration of particles, in [image: \mathrm{m^{-3}}]

	*.j: flux of particles, in [image: \mathrm{m^{-2} s^{-1}}]

	*.Ef: quasi Fermi level, in eV

	*.Eband: band energy, in eV

	R: recombination density, in [image: \mathrm{m^{-3} s^{-1}}]

	J: total electric current density, in [image: \mathrm{A m^{-2}}]

	E: electric field, in V/m

	potential: electrostatic potential, V

Plotting

oedes.context object simplifies plotting results using matplotlib. For example, bands and quasi Fermi levels are plotted as

>>> import matplotlib.pylab as plt
>>> fig,ax = plt.subplots()
>>> p=c.mpl(fig, ax)
>>> p.plot(['electron.Eband'],label='E_c')
>>> p.plot(['hole.Eband'],label='E_v')
>>> p.plot(['electron.Ef'],linestyle='--',label='E_{Fn}')
>>> p.plot(['hole.Ef'],linestyle='-.',label='E_{Fp}')
>>> p.apply_settings({'xunit':'n','xlabel':'nm'})

[image: _images/tutorial-pn.png]

Physical models

Concentrations of charges in thermal equilibrium

Probability [image: f_{FD}] that an electronic state with energy [image: E] is occupied is given by the Fermi-Dirac distribution:

[image: f_{FD} \left (E - E_F \right) = \frac{1} {1+\exp \frac{E-E_F}{k_B T}}]

with [image: E_F] denoting the Fermi energy, [image: k_B] denoting the Boltzmann constant and [image: T] denoting the temperature.

The states in the conduction band are distributed in energy according to the density of states function [image: DOS_n \left(\epsilon = E - E_c \right)]. The total concentration [image: n] of electrons is given by integral

[image: n \left(E_F \right) = \int_{-\infty}^{+\infty} DOS_n \left(E - E_c \right) f_{FD}(E - E_F) dE]

In the valence band, almost all states are occupied by the electrons. It is therefore useful to track unoccupied states, holes, instead of the occupied states. The concentration of holes is given by:

[image: p \left(E_F \right) = \int_{-\infty}^{+\infty} DOS_p \left(E_v - E \right) \left[1 - f_{FD}(E - E_F) \right] dE]

Noting that

[image: 1 - f_{FD}(E - E_F) = f_{FD}(E_F - E)]

and changing the integration variable, both concentrations can be written in a common form as:

(1)[image: c_i \left(\eta \right) = \int\limits_{-\infty}^{+\infty} DOS_i \left(\epsilon \right) f_{FD} \left(\epsilon - \eta \right) d \epsilon n = c_n \left(\eta = E_F - E_c \right) p = c_p \left(\eta = E_v - E_F \right)]

Practical note: The SI base unit of energy is Joule (J), however the energies such as [image: E_F] are very small and should be expressed in electronvolts (eV). The SI basic unit of concentration is [image: \mathrm{meter^{-3}}], although [image: \mathrm{{cm}^{-3}}] is often encountered. The value of [image: k_B T] at the room temperature is approximately 26 meV. The SI unit of temperature is Kelvin, [image: 27^{\circ} \mathrm{C} \approx 300 \mathrm{K}].

Band energies

In an idealized case, the energies [image: E_c] and [image: E_v] of the conduction and valence bands are

(2)[image: E_c = -q \psi - \chi E_v = E_c - E_g]

where [image: \chi > 0] is the electron affinity energy, and [image: E_g > 0] is the bandgap energy. [image: \psi] is the electrostatic potential. q is the elementary charge.

Electrostatic potential

The electric field [image: \mathbf{E}] is related to the elestrostatic potential [image: \psi] as

(3)[image: \mathbf{E} = - \nabla \psi]

In linear, isotropic, homogeneous medium the electric displacement field is

[image: \mathbf{D} = \varepsilon \mathbf{E}]

with permittivity

[image: \varepsilon = \varepsilon_0 \varepsilon_r]

where [image: \varepsilon_0] is the vacuum permittivity, and [image: \varepsilon_r] is the relative permittivity of the material.

The electric displacement field satisfies the electric the Gauss’s equation

(4)[image: \nabla \cdot \mathbf{D} = \rho_f]

where [image: \rho_f] is the density of free charge

[image: \rho_f = q \left(p - n + \dots \right)]

with [image: q] denoting the elementary charge. Above, [image: \dots] denotes other charges, such as ionized dopants.

Combining the above equations gives the usual Poisson’s equation for electrostatics:

(5)[image: \nabla^2 \psi = - \frac{q}{\varepsilon} \left(p - n + \dots \right)]

The SI unit of electrostatic potential is Volt, and the unit of electric field is Volt/meter. The unit of permittivity is Farad/meter. The unit of charge density is [image: \mathrm{Coulomb/{{meter}^3}}].

Approximation for low concentrations

If the concentration of charge carriers is low enough, only states on the edge of band gap are important. In such case, the density of states can be assumed as a sharp energetic level,

[image: DOS_n \left(\epsilon \right) = N_c \delta \left(\epsilon \right)]

in case of electrons and

[image: DOS_p \left(\epsilon \right) = N_v \delta \left(\epsilon \right)]

in case of holes. Substiting into (1) gives

[image: n = N_c\, f_{FD} \left(E_c - E_F \right) p = N_v\, f_{FD} \left(E_F - E_v \right)]

At low charge carrier concentrations, Fermi-Dirac distribution [image: f_{FD}] is simplified as

[image: f_{FD}(x)=\frac{1}{1+\exp \frac{x}{k_B T}} \approx \exp -\frac{x}{k_B T}]

The approximation is considered valid when [image: x > 4 k_B T].

Approximate charge carrier concentrations are

(6)[image: n = N_c \exp \frac{E_F - E_c}{k_B T} p = N_v \exp \frac{E_v - E_F}{k_B T}]

Gaussian density of states

In the case of Gaussian DOS, the density of states shape function [image: DOS_i] is the Gaussian distribution function scaled by total density of states [image: N_i]:

[image: DOS_i \left(\epsilon \right) = N_i \frac{1}{\sqrt{2 \sigma^2 \pi}} \exp \frac{-\epsilon^2}{2 \sigma^2}]

Concentrations of species are given by integral

[image: c_i \left(\eta \right) = N_i \frac{1}{\sqrt{2 \sigma^2 \pi}} \int\limits_{-\infty}^{+\infty} \exp \frac{-\epsilon^2}{2 \sigma^2} f_{FD}(\epsilon - \eta) d \epsilon]

Conservation equation

The conservation equation is:

[image: \frac{\partial c_i}{\partial t} + \nabla \cdot \mathbf{j_i} = S_i]

where [image: c_i] denotes the concentration, [image: t] is time, and [image: j_i] is the flux density. [image: S_i] denotes source term, which is positive for generating particles, and negative for sinking particles of type i. The SI unit of source term is [image: \mathrm{1/\left({meter}^3 second\right)}].

The conservation equation must be satisfied for each species separately. In the case of transport of electrons and holes, this gives

(7)[image: \frac{\partial n}{\partial t} + \nabla \cdot \mathbf{j_n} = S_n \frac{\partial p}{\partial t} + \nabla \cdot \mathbf{j_p} = S_p]

where the source S term contains for example generation [image: G] and recombination [image: R] terms

[image: S_{n,p} = G - R]

The conservation of electric charge must be satisfied everywhere. Therefore, the source terms acting at given point must not create a net electric charge. In the case of system of electron and holes, this requires

[image: S_n = S_p]

Current density

Current density [image: \mathbf{J_i}] is related to the density flux [image: \mathbf{j_i}] by the charge of single particle [image: z_i q]. Obviously, for electrons [image: z = -1] and for holes [image: z=1], therefore

(8)[image: \mathbf{J_n} = -q \mathbf{j_n} \mathbf{J_p} = q \mathbf{j_p}]

Note that a convention is adopted to denote the electric current with uppercase letter [image: \mathbf{J}], and the flux density with lowercase letter [image: \mathbf{j}]. The SI unit of density flux [image: \mathbf{j_i}] is [image: \mathrm{1/({meter}^2\, second)}], while the unit of electric current density [image: \mathbf{J_i}] is [image: \mathrm{Amper / {meter}^2}].

Equilibrium conditions

In the equilibrium conditions, Fermi level energy [image: E_F] has the same value everywhere. The electrostatic potential [image: \psi] can vary, and the density of free charge [image: \rho_f] does not need to be zero. Equations (1), (2), (4) are satisfied simultaneously. The current flux, the source terms, and the time dependence are all zeros, so conservation (7) is trivially satisfied.

Nonequilibrium conditions

In the non-equilibrium conditions, the transport is introduced as a perturbation from equilibrium. The Fermi energy level is replaced with quasi Fermi level, which is different for each species. In (1), the equilibrium Fermi level for electrons [image: E_F] is replaced with a quasi Fermi level [image: E_{Fn}]. Similarly,, the equilibrium Fermi level for holes is replaced wuth quasi Fermi level for holes [image: E_{Fp}], giving

(9)[image: n = c_n \left(E_{Fn} - E_c \right) p = c_p \left(E_v - E_{Fp} \right)]

Quasi Fermi levels have associated quasi Fermi potential according to the formula for energy of an electron in electrostatic field [image: E_F=-q \phi]:

(10)[image: E_{Fn} = -q \phi_n E_{Fp} = -q \phi_v]

The transport is modeled by approximating electric current density as

(11)[image: \mathbf{J_n} = \mu_n n \nabla E_{Fn} \mathbf{J_p} = \mu_p p \nabla E_{Fp}]

where [image: \mu] denotes the respective mobilities. The SI unit of mobility is [image: \mathrm{{meter}^2/(Volt\, second)}], although [image: \mathrm{cm^2/(V\, s)}] is often used.

Equations (2), (5), (9), (11), (7) are simultaneously satisfied in non-equilibrium conditions.

Drift-diffusion system

Standard form of density fluxes in the drift-diffusion system is

(12)[image: \mathbf{j_n} = - \mu_n n \mathbf{E} - D_n \nabla n \mathbf{j_p} = \mu_p p \mathbf{E} - D_p \nabla p]

or more generally, allowing arbitrary charge [image: z_i q] per particle

(13)[image: \mathbf{j_i} = z_i \mu_i c_i \mathbf{E} - D_i \nabla c_i]

[image: D_i] is the diffusion coefficient, with SI unit [image: \mathrm{{meter}^2 {second}^{-1}}].

Drift-diffusion system: low concentration limit

To obtain the conventional drift-diffusion formulation (12), the the low concentration approximation (6) should be used. After introducing quasi Fermi levels, as it is done in (9), one obtains

[image: n = N_c \exp \frac{E_{Fn} - E_c}{k_B T} p = N_v \exp \frac{E_v - E_{Fp}}{k_B T}]

From that, the quasi Fermi energies are calculated as

[image: E_{Fn} = E_c + k_B T \log \frac{n}{N_c} E_{Fp} = E_v - k_B T \log \frac{p}{N_v}]

Using (2), and assuming constant ionization potential [image: \nabla \chi = 0], bandgap [image: \nabla E_g = 0], constant total densities of states [image: \nabla N_c = \nabla N_V = 0], and constant temperature [image: \nabla T = 0], substituting into (11), and using (3)

[image: \mathbf{J_n} = q \mu_n n \mathbf{E} + \mu_n k_B T \nabla n \mathbf{J_p} = q \mu_p p \mathbf{E} - \mu_p k_B T \nabla p]

In terms of density flux (8), this reads

(14)[image: \mathbf{j_n} = - \mu_n n \mathbf{E} - \mu_n V_T \nabla n \mathbf{j_p} = \mu_n n \mathbf{E} - \mu_p V_T \nabla p]

where thermal voltage

[image: V_T = \frac{k_B T}{q}]

Einstein’s relation

Equation (14) is written in the standard drift-diffusion form (12) when the diffusion coefficient satisfies

(15)[image: \frac{D_{n,p}}{\mu_{n,p}} = V_T]

This is called Einstein’s relation.

Drift-diffusion system: general case

Using functions defined in (1), bands (2) and approximation (9)

[image: E_{Fn} = -q \phi - \chi + c_n^{-1} \left(n \right) E_{Fp} = -q \phi - \chi - E_g - c_p^{-1} \left(p \right)]

current densities under assumptions [image: \nabla \chi = \nabla E_g = 0] are

(16)[image: \mathbf{J_n} = \mu_n n \mathbf{E} + \mu_n n \nabla c_n^{-1} \left(n \right) \mathbf{J_p} = \mu_p p \mathbf{E} - \mu_p p \nabla c_p^{-1} \left(p \right)]

Generalized Einstein’s relation

In equation (16), assuming [image: \nabla T = \nabla N_c = \nabla N_v = 0]

[image: n \nabla c_n^{-1} \left(n \right) = \frac{n}{\frac{\partial c_n}{\partial \eta_n}} \nabla n p \nabla c_p^{-1} \left(p \right) = \frac{p}{\frac{\partial c_p}{\partial \eta_p}} \nabla p]

In order to express equation (16) in the standard drift-diffusion form (12), the diffusion coefficient must satisfy

[image: \frac{D_i}{\mu_i} = \frac{1}{q} \frac{c_i}{\frac{\partial c_i}{\partial{\eta_i}}}]

This is so called generalized Einstein’s relation .

Intrinsic concentrations

Intrinsic concentrations [image: n_i], [image: p_i], and intrinsic Fermi level [image: E_{Fi}] satisfy electric neutrality conditions

[image: n_i = c_n \left(E_{Fi} - E_c \right) p_i = c_p \left(E_v - E_{Fi} \right) n_i = p_i]

Direct recombination

Direct recombination introduces source term

[image: R = \beta \left(n p - n_i p_i \right)]

where [image: \beta] can be chosen freely.

Unidimensional form

By substituting [image: \nabla \rightarrow \frac{\partial}{\partial x}] and [image: \nabla^2 \rightarrow \frac{\partial^2}{\partial x^2}], the equations (5), (7), (12) of the basic drift-diffusion device model are

[image: \frac{\partial^2 \psi}{\partial x^2} = - \frac{q}{\varepsilon} \left(p - n + \dots \right) E = - \frac{\partial{\psi}}{\partial{x}} j_n = - \mu_n n E - D_n \nabla \frac{\partial{n}}{\partial{x}} j_p = \mu_p p E - D_p \nabla \frac{\partial{p}}{\partial{x}} \frac{\partial n}{\partial t} + \frac{\partial{j_n}}{\partial{x}} = G - R \frac{\partial p}{\partial t} + \frac{\partial{j_p}}{\partial{x}} = G - R]

Total electric current density

Total electric current [image: \mathbf{J}] is a sum of currents due to transport of each species and the displacement current [image: \mathbf{J_d}]

[image: \mathbf{J} = \mathbf{J_n} + \mathbf{J_p} + \mathbf{J_d} + \dots \mathbf{J_d} = \frac{\partial \mathbf{D}}{\partial t}]

Total electric current satisfies the conservation law

[image: \nabla \cdot \mathbf{J} = 0]

This can be verified by taking time derivative (4), using (7) and considering that the sum of all charge created by the source terms must be zero.

Electrode current

Current [image: I_\alpha] passing through a surface [image: \Gamma_\alpha] of electrode [image: \alpha] is

(17)[image: I_{\alpha}=\int_{\Gamma_\alpha}\boldsymbol{J}\cdot d\mathbf{S}]

Metal

In metal, the relation between the electrostatic potential [image: \psi], the workfunction energy [image: W_F > 0] and the Fermi level [image: E_F] is

[image: E_F = -q \psi - W_F]

On the other hand, the Fermi potential corresponds to the applied voltage [image: V_{appl}]

[image: E_F = -q V_{appl}]

This leads to electrostatic potential at metal surface

[image: \psi = V_{appl} - W_F / q]

Ohmic contact

Ohmic contact is an idealization assuming that there is no charge accumulation at the contact, and the applied voltage [image: V_{appl}] is equal to quasi Fermi potentials (10) of charged species

[image: \phi_n = V_{appl} \phi_p = V_{appl} n + N_A^{-} = p + N_D^{+}]

Above three conditions uniquely determine the charge concentrations [image: n], [image: p], and the electrostatic potential [image: \psi] at the contact.

Electrochemical transport

Electrochemical potential for ionic species is

[image: \mu_i^{el} = z_i q \psi + k_B T \log c_i + \dots]

It should be noticed that so defined “potential” has the unit of energy, unlike the electrostatic potential and quasi Fermi potentials. Above [image: \dots] denote corrections, for example due to steric interactions. Electrochemical potential [image: \mu_i^{el}] should not be confused with mobility [image: \mu_i].

Density flux is approximated as

[image: \mathbf{j_i} = - \frac{1}{q} \mu_i c_i \nabla \mu_i^{el}]

yielding the standard form (13) using Einstein’s relation (15).

Electrochemical species should be included in Poisson’s equation, by including proper source terms of form [image: q z_i c_i]. A variant of Poisson’s equation (5) where are free charges are ions can be written as

[image: \nabla^2 \psi = - \frac{q}{\varepsilon} \sum z_i c_i]

Steric corrections

To account for finite size of ions, the electrochemical potential in the form introduced in [LE13] is useful

[image: \mu_i^{el} = z_i q \psi + k_B T \log \frac{v_i c_i}{\Gamma}]

where [image: v_i] denotes volume of particle of type [image: i]. [image: \Gamma] is the unoccupied fraction of space

[image: \Gamma = 1 - \sum_k v_k c_k]

where summing is taken over all species occupying space, including solvent.

	LE13

	Jinn-Liang Liu and Bob Eisenberg. Correlated Ions in a Calcium Channel Model: A Poisson–Fermi Theory. The Journal of Physical Chemistry B, 117(40):12051–12058, 2013. PMID: 24024558. URL: https://doi.org/10.1021/jp408330f, arXiv:https://doi.org/10.1021/jp408330f [https://arxiv.org/abs/https://doi.org/10.1021/jp408330f], doi:10.1021/jp408330f [https://doi.org/10.1021/jp408330f].

Optical models

Photon energy

[image: E_p = h \nu]

with [image: h] Planck constant and [image: \nu] is photon frequency.

Coherent transfer matrix method

Transfer matrix method a convenient way of modeling thin film stacks. It is assumed that layers are
stacked along [image: x] axis, with [image: x_{i,i+1}] being interface between layer [image: i] and
layer [image: i+1]. Optical properties of each layer are specified by wavelength dependent complex
refraction coefficient [image: \tilde{n}_i(\lambda)].

Optical field inside layer [image: i] at given point along [image: x] axis is specified by column vector
[image: \left[E_{i}^{+}(x),E_{i}^{-}(x)\right]^T], with [image: E_{i}^{+}(x)] being complex amplitude
of forward traveling wave, and [image: E_{i}^{-}(x)] being complex amplitude of backward traveling
wave.

Snell law is determines angles of propagation in each layer

[image: n_0 \sin \theta_0 = n_i \sin \theta_i]

where index 0 refers to medium before first layer. [image: \theta_0] is angle of illuminating wave.
All angles can be complex numbers. Since [image: \arcsin] is multivalued function, angle of forward
traveling wave is found from conditions that forward wave has forward pointing Poynting vector,
or alternatively, that the amplitude of forward wave decays in absorbing medium.

In this convention, interface between layers is described by matrix [image: \mathbf{M}] as

[image: \left[\begin{array}{c} E_{i}^{+}(x)\\ E_{i}^{-}(x) \end{array}\right]=\mathbf{M_{i,i+1}}\left[\begin{array}{c} E_{i+1}^{+}(x)\\ E_{i+1}^{-}(x) \end{array}\right]]

with entries of matrix [image: \mathbf{M}] specified as

[image: \mathbf{M_{i,i+1}}=\frac{1}{t_{i,i+1}}\left[\begin{array}{cc} 1 & r_{i,i+1}\\ r_{i,i+1} & 1 \end{array}\right]]

where transmission coefficient [image: t_{i,i+1}] and reflection coefficient [image: r_{i,i+1}] are given by Fresnel equations for complex amplitudes of light passing from layer i to layer i+1. Coefficients for backward propagating wave [image: t_{i+1,i}] and [image: r_{i+1,i}] are eliminated using Stokes relations.

For s-polarized wave:

[image: r_{i,i+1}=\frac{n_{i}\cos\theta_{i}-n_{i+1}\cos\theta_{i+1}}{n_{i}\cos\theta_{i}+n_{i+1}\cos\theta_{i+1}} t_{i,i+1}=\frac{2n_{i}\cos\theta_{i}}{n_{i}\cos\theta_{i}+n_{i+1}\cos\theta_{i+1}}]

For p-polarized wave:

[image: r_{i,i+1}=\frac{n_{i+1}\cos\theta_{i}-n_{i}\cos\theta_{i+1}}{n_{i+1}\cos\theta_{i}+n_{i}\cos\theta_{i+1}} t_{i,i+1}=\frac{2n_{i}\cos\theta_{i}}{n_{i+1}\cos\theta_{i}+n_{i}\cos\theta_{i+1}}]

Propagation inside layer is described by matrix [image: \mathbf{P}] as

[image: \left[\begin{array}{c} E_{i}^{+}(x)\\ E_{i}^{-}(x) \end{array}\right]=\mathbf{P_{i}(x)}\left[\begin{array}{c} E_{i}^{+}(x=x_{i,i+1})\\ E_{i}^{-}(x=x_{i,i+1}) \end{array}\right]]

[image: \mathbf{P_{i}(x)}=\left[\begin{array}{cc} \exp-i\delta_{i}(x) & 0\\ 0 & \exp i\delta_{i}(x) \end{array}\right]]

with phase-shift

[image: \delta_{i}(x)=\left(\frac{2\pi}{\lambda_{0}}\tilde{n}_{i}\cos\theta_{i}\right)\left(x_{i,i+1}-x\right)]

Light entering layer [image: i], on side of layer [image: i-1] has vector of complex amplitudes

[image: \mathbf{v_k} \left(x=x_{k-1,k} \right) =\left(\Pi_{k\le i\le n}\mathbf{M_{i-1,i}}\mathbf{P_{i}}(x_{i-1,i})\right)\mathbf{M_{n,n+1}}\left[\begin{array}{c} t\\ 0 \end{array}\right]]

with vector [image: \left[t,0\right]] denoting light leaving the device on the side opposite to illumination, with [image: t] being complex amplitude of transmitted wave.

Applying above to whole device gives

[image: \left[\begin{array}{c} 1\\ r \end{array}\right] = \mathbf{v_1}]

with amplitude of illuminating wave set arbitrarily to [image: 1] and [image: r] being complex amplitude of reflected wave.

When analyzing stack, firstly, solution [image: t], [image: r] is found. Then intensity of light anywhere inside the device is calculated using found vectors [image: \mathbf{v_i}] and propagation matrices [image: \mathbf{P_i}]. Total intensity is found by applying Poynting formula. Absorbed energy is found by differentiating with respect to [image: x].

Incoherent light

Incoherent light is described by spectrum [image: S(\lambda)]. Absorption of incoherent light is calculated as

[image: A = \int A_{\mathrm{coherent}}\left(\lambda\right)S\left(\lambda\right)d\lambda]

where [image: A_{\mathrm{coherent}}\left(\lambda\right)] is calculated using coherent transfer matrix method.

Examples

oedes comes with examples demonstrating typical use. Each example shows usage of oedes and is used as a test suite to check for correctness. Many examples additionally partially or completely reproduce published papers. They therefore allow to experiment with published models.

The examples provided as files with extension .ipynb run in Jupyter Notebook. Before running the examples, oedes should be installed.

The examples are included in oedes source distribution, and can also be downloaded from oedes repository on github. Also, they can be browsed on oedes website.

Index

 _images/math/7a6315ff1b679e45c0ec26c76a26a4aeaaa58f13.png
=>U

_images/math/7aa43c57303f79fe815e2ae7e87f3291a46c1218.png

_images/math/75e4fdcef230e9b0beff1c13d8137f4348d52844.png
arcsin

_images/math/77d76ec819817938b244345e255fdb97d854b71b.png

_images/math/7af97c9947ce54ea7b2e0e559e75bcd054d2e6b9.png
n= N frp (Ec — EF)

_images/math/d839e144267ecbb8a87acbc8a7dfda7824a1693e.png

_images/math/7b7736c963eb25d347231810733da627dfcbdf23.png
VD = py

_images/math/db98bbc73b3f4061978d1d9b1c2be508c89171df.png

_images/math/d872993ed0c7c420e73e77a1d285ac100c516806.png

_images/math/dd72d1a7d0d85bf590d3e625a6d0d392c0a0cf90.png

_images/math/dbc01f28cd8a665a3649dad7f5d32eec82f67b5f.png
N

_images/math/dee63237674afc3154c2e33b7b68d67f85f2ee0a.png

_images/math/de31fdd9cb7bc486d7b683fbea066d8854c33e22.png

_images/math/dfbeb1447ff778d8c07a779a80739da7273f3d69.png

_images/math/df0deb143e5ac127f00bd248ee8001ecae572adc.png

_images/math/d79e8a2c7ce54906c2b25549da38bdbe02cf40d6.png

_images/math/cff72bd83f615ad423231f0ee0dc133003861177.png
meter

_images/math/737ebc6101ec75702677f02d45347cf497f6df3f.png

_images/math/757b7d4547769a386a22e522c0f7a87bd60a693c.png
frp() = ———— ~ exp ———
Trow g P kT

_images/math/6cf6e540f7e4e3214880b4c80cb87f4451596ec5.png
Fia+1

_images/math/6db8e9f710c297af9a37f601857ffb693dda4f85.png
LFn — Be
ksT
E, —Epy
Y

n = N.exp

p=N,exp

_images/math/bf406f5eb15ea04c04df617ac90c43f15b35f3e8.png

_images/math/bed19f981dfdc4c16f58689a8d1a9e22a9b6c399.png
Nit+1 CO80; —n;cosbiyy

Tzt c0S0; + 1;C08 fieg
2n; cos b
1 €08 0; + 108 Oiag

_images/math/c315cbda618f4ea549920ca65d736ab7851b0421.png
/ Acoherent (A) S (A) dA

_images/math/c1934ec20de5220b1950ac6236c258343060e159.png

_images/math/ca3b8fa4180eee2dfc3af9d13fae1da451cd2c31.png

_images/math/c44451cac249be050f88cc92e50429f3079e3371.png

_images/math/cb007b765e55828fb1d5baab334e81b385ed98e3.png

_images/math/caf3a607148f9c2be3982c011813773ced80b78f.png

_images/math/bd1023e0dd13bdbe3d19b92e13f6be73212f0af7.png

_images/math/bb32961546e644a5f353f78c798ba7a180a09aab.png
cm®/(V s)

_images/math/be47a2ae33a050f9d1a26cb84e463927b4e3c2ad.png

_images/math/f2d283a2071f9d043c9e0b0f794a8880fa0d3ce9.png

_images/math/f35e6b0b41e5a111a45b902f2e022ef5440e039f.png
E—Fp)=——
frp (E - Er) T ew L

_images/math/f33ab17d82b56eb81b916c557acbe6170410df25.png
! = zqy + kT log —*

_images/math/f9dfafaeeae7611ff28d59a50e5da88b6375d23a.png
J=Jn+Jp+Ja+

_images/math/f74dc73288b45835d07fff2b041971059d27777e.png
Ui 1o
g oa

p g

_images/math/fb3c41a9a30bddef43f2e990beafe42151ccc93b.png
ty

_images/math/fa2de8aa32e585c0ffaaf627b0258485b6a19aec.png
Jn= panE + pnnVe, " (n)
Jp = pppE — pppVe; (p)

_images/math/fc0b7038b03a657bb9c72d5204d0eb064bd8d468.png
N COS 0 — Nty COSUivq
7508 6; + N+1 €08 Bie1
2n; cos b
713 C080; + 11301 008 031

_images/math/fb8ccc4c36b68e38680b68016473a630edc0e0f4.png

_images/math/fca605e5a314dbe104a7dde024d555ffda598276.png
Ern=—q$ —x+c, (n)
Erp=—qb—x — Ey — ;" (p)

_images/math/e11f2701c4a39c7fe543a6c4150b421d50f1c159.png

_images/math/e0fc77cab24bfd0b463c8bf2d557693c187fc048.png
DOS, (B, — E)[1 — frp(E — Er)] dE

_images/math/e617b8b0cbafb95640151c72d3d5ad3185b368b0.png

_images/math/e2faf5a2ecca5bdd0fddf76e34635d152b1da464.png
1
ji = ——pici V!
7

_images/math/e9e1f383989d309b044f1b37c5d3cebba395bd71.png

_images/math/e95d3105cda0300e2f6b652407a79daeb6c47e6b.png

_images/math/eaa6ad49a7f78fe5a13b486690163bf2dc7e3e60.png

_images/math/ea4e2a4ab24c23dd0f01c68710deed55179e309b.png
120)5;

_images/math/f0d992b455edcd73ca00091d1521e8abbfab695a.png

_images/math/f02e396f0fd7a3652635c0318c01d650080960a7.png

_images/math/dfc15a6e17c6b6fb58ad7b03c86e1fcf471c7037.png

_images/math/3e539032acc282170d74e3cefb76a7cac0e3a3ac.png

_images/math/40aead6eac4ea6f0779279acca7177561668d1e1.png

_images/math/3463801723cecef4d2a61a9b1a6941daf87e6ebc.png

_images/math/3e368e7b1247e20ebcd954a7ac8f4c1f3c874610.png

_images/math/424c881b0d99ea0cf6e30ed81f414f5b1976d5b3.png

_images/math/43e96561b998b63bc924bb39284fbaefa698c7d1.png

_images/math/410a9d0df9c135dd73b269cba7ef04dcfd932b1f.png

_images/math/41b3c103ba589a7a1dbb0936e9d08de85ccbf1c6.png

_images/math/4479f6b74ba979aca0aa3cab818030c0bd587f75.png
Yy =0

_images/math/8c9c6c803041187402b79fac97e99846ad2be0c0.png
Amper/meter

_images/math/458dfc09ded2ed67c9ff421effac1bfc42d67c52.png

_images/math/8d2a27da7d6aa6913ed4d1f55725518b8dfa334c.png

_images/math/8d16daff8eda5fd8fb9ad7aa3c1691f373e63f95.png
DOSy (E — Ez) frp(E — B)dE

_images/math/8e536876060a2381054d909c5bd9e61aa8bad54f.png

_images/math/8da7ee62dbbb6bddc88f95aa8f13231e76c7a095.png
+oo
) = [DOS: € fro (e~)

n=ca(y=Er - E)
p=cy(n= Ey, — EF)

_images/math/877d234f4cec6974ce218fc2e975a486a7972dfd.png

_images/math/83a514040d2acf3e9fe6d7eb17cf155df3b22aa9.png
Lp = —qVappi

_images/math/899da2c67b53d0ff84fd9787cef3b45b3350d8c5.png

_images/math/88710534094bbb5db09de0db69413cb03a51580a.png

_images/math/8b4582ecac3d98be96a5aa4337d275087968ea98.png
Coulomb /meter”

_images/math/89f5b98a76f017f13a053c048e5177e9d1a3586d.png
Vie(@ = 2i-14) = (MeinMio1iPi(ei1)) Mot [

_images/tutorial-pn.png
ev

1.00

075

050

025

0.00

-0.25

-0.50

-0.75

-1.00

0 20 40 60 80 100

m

_images/math/496e2f9ae613720fe62761acec458d841ed560dc.png

_images/math/499a2ee48b33448e80b97af9df9550828bdbfb59.png

_images/math/46832e8eff2171864496bed218daacc3b7ce0afa.png

_images/math/494812668086bcd93e6def9130d1ff6446f1886a.png
-y

_images/math/4d607c80f1f0f05dd2235fcc21d9371c0a511c64.png

_images/math/4e3556fb17c6e3aa8b1d264a63b5ff4f3f66ab23.png
Lit1.d

_images/math/4b6222b865b812d2a59368cd1629eed6b54454d5.png

_images/math/4b86ac623ad2a6af240bc6931b820ec3ff748531.png
1t = ziqw + kgTloge; +

_images/math/4f1c2c58b3d608ea12d8f0f4c8b4f602482d2ab0.png

_images/math/7cd9fc378e50b73acd76dc90c4c74336898c5598.png
e — DV

_images/math/7bf7611d1b37387f463661e74ffb58e04feb499e.png

_images/math/82664329912624002302e68feb57bc4c21b6bfa5.png
1 /(meter® second)

_images/math/7f94725d00087e185b7383823478f2aeb4678207.png
()

Vappt — WE/q

_images/math/46818f5ef08e164608537ea6c087e41845bddf75.png

_images/math/59ccce6668e1d6407eb941b6189a64ca9ee451f1.png

_images/math/5a43d260d9ab6205cb578f762508a7d0efb10a6f.png

_images/math/56ab9258b3a86c04e1721aa57460cce3cee2f3df.png

_images/math/5899cbb0384aca8bf238447e322ae8af1214c11d.png
—HanE — DpVn
1,pE — D,Vp

_images/math/5ec053cf70dc1c98cc297322250569eda193e7a4.png

_images/math/5fb3b2dc1e3072ba345650dbdbb9e6a364f644f0.png

_images/math/5bfc0417fbe611d12febf1374fa0a26c8850cd16.png

_images/math/5c739fe9dcc22ba2917ce9ca6b4c3018e65c6625.png

_images/math/a63e42e2d1112197783ec75e2fe6f0e0160b0cd8.png

_images/math/ab08c6ea58c33cd9633c1c03fe1480cbff9c6dc2.png
r >4kl

_images/math/a7e6ae36e05e699e930a8f789ed6cabfc9648b2f.png

_images/math/b7d8c32192c7e3f9f77b57c57e9e96eb3c8722ce.png

_images/math/abe6e1c2340931eb8c1a26a121d8a073e5839150.png
Fi+1.a

_images/math/ba4179e880cf2f26347dff263deb5289839a71a0.png

_images/math/b94cea6f5ec803c405b483c78de91323e06c8812.png

_images/math/a49fd3be635808491f661b289471261ed8ab4f8f.png
Acoherent (A)

_images/math/a05518e70679fd7c3be91f014e20981910b20c9a.png

_images/math/a59f68a4202623bb859a7093f0316bf466e6f75d.png

_images/math/a59323145b521eab5558f4ddf7f5de87ad09a2f1.png

_images/math/4fbb0705523f8fdd2c3c5f55e4f8c4a9a46f18a6.png

_images/math/54fd1818e973f81a0eb787dca70e8de78b52bc76.png

_images/math/67d6a2ffb04f87c7d35093dfb2118b4f99edcd4a.png

_images/math/6889ce4c6e8a2fbec1dc16d3c1abc1ff9f5111aa.png

_images/math/620a3ce6403ec82f1347af9985bc03f7a9382f4a.png

_images/math/67205912fb1598908eddf27ea0dbbe6dc6f09351.png
DOS, (e =FE — E.)

_images/math/6ac8dbea69bac094cc5d0c0cca9df673ae3aefdb.png
R = 3(np—n;p;)

_images/math/691baf63566a1c7aff2f0c61b7e600bc426f96c1.png

_images/math/6a9403af9e7b26aa7c54b37e1adf8f4c120fe637.png

_images/math/9b7b651ab6210b690c07d6a9ec9c1c39ec2953fd.png

_images/math/9b1f27d94aa5a00907b56d6c7cf7c26991b14d72.png

_images/math/9e31da6e577204a4a2fe236cd60da0cc0c25d464.png

_images/math/9cc7315987eea08bf1bea74a1f44bb32a8c3771f.png

_images/math/a00254b18ffa992f0ef19f6e6e095b83c8f85e94.png

_images/math/9fbd0f420d111053fb18dfbf3463282af15b0f33.png
kpd

_images/math/91e9b98ea505e55162905dee2becebd44fea4394.png
Lia+1

_images/math/8ee3d0fe688caa3d241fbc2b2137e4daef4ed394.png

_images/math/974c45d7f7e6cb20bba33a974baa6cc188ab3e7c.png

_images/math/92972c436f05fa895380e129042777ed32943897.png

_images/math/97c7745a1f9fcec1606c81e83e67708493856346.png
frplE — Er) = frplEp — F|

_images/math/6154aa39e9ace24a4ee287f24bc8a52b2545b001.png

_images/math/618b9a148a26d86e1ee6c529f9442f481d6be003.png

_images/math/6031e678646c5959fe6bf8ff1f8afa25de982e4a.png

_images/math/023cb3cc3249077e2cc9f596538098be0f9ce335.png
1/ (meter’second)

_images/math/02ef944e04ea036ccbde9b9d74d0a5b70fd3c413.png

_images/math/003de84277dda5b60d070eb7250af961aa77d473.png

_images/math/010546a54c865e18690feab874881152c449d504.png
2 v
=

_images/math/06fed7bdb5f4329376b7444e514bba54bc50240e.png

_images/math/086eed66fe799b3d6b8bc496a66235aaef65e720.png
—HanE — ppVrVn
Jp = panE — p, Vi Vp

_images/math/0431f9d6f4d44bc50540f70e8c87c4303e18b0a7.png
o
Epn = B, + kT log —
i 5T log

P
Epp = By — kg T1
Fp B4 108

_images/math/04b90daabd985bc7b1ec2091e05483ab4295cb21.png
T

_images/math/0a991cfdec4b61e0d8e52704dc50f0c55fd75d42.png

_images/math/0b2728e4438d2a718ef108c4ff952153145e9626.png
n =N, exp

p=N,exp2_F

LF — L
kT

Y

_images/math/0bee64f8d277224f1777222992bfc47cabaf4da0.png

nav.xhtml

 Table of Contents

 		
 Organic Electronic Device Simulator (oedes) documentation

 		
 Introduction

 		
 Conventions

 		
 Features

 		
 Installation

 		
 Requirements

 		
 Installation from PyPI

 		
 Verifying the installation

 		
 Upgrading/downgrading

 		
 Development installation (advanced)

 		
 Building documentation

 		
 Tutorial: PN junction

 		
 Importing oedes

 		
 The drift-diffusion system

 		
 The doping profile

 		
 The Ohmic contacts

 		
 Putting all together

 		
 Parameters

 		
 params

 		
 Solving

 		
 Examining output

 		
 outputs

 		
 Plotting

 		
 Physical models

 		
 Concentrations of charges in thermal equilibrium

 		
 Band energies

 		
 Electrostatic potential

 		
 Approximation for low concentrations

 		
 Gaussian density of states

 		
 Conservation equation

 		
 Current density

 		
 Equilibrium conditions

 		
 Nonequilibrium conditions

 		
 Drift-diffusion system

 		
 Drift-diffusion system: low concentration limit

 		
 Einstein’s relation

 		
 Drift-diffusion system: general case

 		
 Generalized Einstein’s relation

 		
 Intrinsic concentrations

 		
 Direct recombination

 		
 Unidimensional form

 		
 Total electric current density

 		
 Electrode current

 		
 Metal

 		
 Ohmic contact

 		
 Electrochemical transport

 		
 Steric corrections

 		
 Optical models

 		
 Photon energy

 		
 Coherent transfer matrix method

 		
 Incoherent light

 		
 Examples

_images/math/14b31c50d66b37d688c2c18a8fa049fb41e40921.png

_images/math/181399f965681d8a412e75b030317b384caf3c72.png
cm "

_images/math/0cd8b7e1afd22d1a430428d95841309317e6e8c2.png

_images/math/116848b82b431c515bbc5392a1586fa478d5dc1a.png

_images/math/1da0fc3392fad21b166e258ba35f46e4ea2dd705.png
Jn = gpnnE + pnkpTVn
Jy = quppE — pkgTVp

_images/math/1e1cf2534d92284558f413e0202faeceaab6e2e9.png

_images/math/191dcedb23ce0be29bc3cececab5cd9c6c289041.png

_images/math/197b68a46246349caf01f0d04bbe2f8618ba9232.png

_images/math/1e2b1a642552d92bb19fbffd7a2578b169c039ae.png

_images/math/2019b1998fd016103200a56bcb9283d826b56f96.png

_images/math/2175919cf309b66f148b01bad2fbb986d471a754.png
g Sin ty = n; sin o,

_images/math/25904d57599fb2dc6afca97644b844856a24984e.png

_images/math/27d463da4622be5b3ef1d4176ced7d7a323c6425.png

_images/math/223c4411829f11845ad998d6fb1ad015857873d9.png

_images/math/24b68632b58b3294cc8f170cef67b2dd9510e981.png

_images/math/2c39090096fcf723f8486a857cb60aed9cf154de.png

_images/math/2d87016d50554ae4ee0bf885d56c02205789ecfb.png

_images/math/293fb39e1b93282c804a86186e721b32f829f1b2.png

_images/math/2c34f894f5847e8f96761cb92414aec222089c17.png

_images/math/2f093a0047381272b8cad01fff22031798d1dfe5.png
m<V 1g—!

_images/math/309d581b757b1bdee6857acaf1f974285a805970.png
pr=qlp—n+

_images/math/2e1b9128d3c9b8fb56d099ad56863fd3a9137bb9.png

_images/math/31347c30705b230754a1c6c964e5f384fb2418c7.png

_images/math/3144081adb137e1da3d81cef21049f6738c8f3c0.png

_images/math/30ac7a67b54ad5c2d7e46c3aad18c1a3a166fa7b.png
meter2second !

_images/math/311863685048af1c10cfcfbe304e6e2e5a4a22f2.png

_images/math/342ebdd88f7b2a51c7fc4d45eae3e30d8a15aba3.png

_images/math/33114f9358df3157ff20fedf30fe6b1ecd43372b.png
Ff

_images/math/332e5378de791e071e4c73e332d91ae51120deea.png
1+ 1

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_images/math/ff90a5f025d9fd305aac19c8dd64fa15f0c789a1.png

_images/math/fd3907c22ac186aab195aceae87889e4f0c03750.png
meter® /(Volt second)

_static/ajax-loader.gif

_static/comment-close.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment.png

_static/down.png

