

 Navigation

 	
 index

 	
 next |

 	OE-lite Handbook 0.1 documentation

OE-lite Developers Handbook

Contents

	Host Setup
	Requirements

	Install Bakery

	Install Manifest Dependencies

	Goodbye dash

	Project Setup
	From Scratch

	From Template

	Repository Setup

	Cloning

	Building

	Source Mirrors
	Prerequisites

	The mirror class

	Creating and maintaining a source mirror

	Synchronizing mirror directory to remote server

	Build from source mirror

	Release Management
	Metadata Releases

	Release Cherry-Picking

	BSP Versioning

	Branching and Tagging

	Working with Upstream
	Mailing Lists

	Commit Message Guidelines

	Submitting Changes

	Recipes
	Naming conventions

	Language

	include and require

	Syntax

	Examples of recipes
	Trigonometric utilities

	Dissection of an existing recipe

	Tasks
	Environment

	Metadata

	Task types

	OE-lite Terminology

	Syntax
	Formal grammar

	Semantics

	Attribution-ShareAlike 3.0 Unported
	License

	1. Definitions

	2. Fair Dealing Rights

	3. License Grant

	4. Restrictions

	5. Representations, Warranties and Disclaimer

	6. Limitation on Liability

	7. Termination

	8. Miscellaneous

	Authors:	Esben Haabendal, esben@haabendal.dk

Kim Højgaard-Hansen kimrhh@gmail.com

Preface

The purpose of this document is to serve as a handbook for developers working
on projects using OE-lite.

License

Copyright (C) 2013 Esben Haabendal.

Copyright (C) 2016 Kim Højgaard-Hansen.

Permission is granted to copy, distribute and/or modify this document under
the terms of the link: Creative Commons Attribution-ShareAlike 3.0 Unported [http://creativecommons.org/licenses/by-sa/3.0/] as published by Creative Commons.

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Host Setup

This chapter describes how to setup a host machine (your development PC,
server or whatever) for working with OE-lite development.

Requirements

The only officially supported host OS is Linux, but at least one
developer is also using Mac OS X with some luck.

Install Bakery

To do any kind of OE-lite development, you need to have the OE-lite
Bakery tool installed. OE-lite Bakery depends on Python (2.6 or 2.7) and
git.

There are several ways of installing OE-lite Bakery on your host
machine.

	Install from source.

	Run from source.

	Install from Ubuntu PPA (Ubuntu based distributions only).

	Install on Exherbo Linux.

If installing or running from source, you need to install additional
required host software tools manually. If installing from a host OS
package, the package should pull in the required software automatically.

Install Additional Tools

In order to run OE-lite Bakery, you need a few additional software
packages which you might not have installed. This is currently limited
to Git and PLY.

Git

OE-lite Bakery uses the git command when fetching OE-lite manifests.

The easiest way is most likely to simply install the git command
provided by your host OS.

Debian GNU/Linux, Ubuntu Linux, …

sudo apt-get install -y git

PLY (Python Lex-Yacc)

OE-lite Bakery uses PLY for parsing configuration files.

The easiest way is most likely to simply install the PLY version
provided by your host OS.

Debian GNU/Linux, Ubuntu Linux, …

sudo apt-get install -y python-ply

Install from source

To install OE-lite Bakery, you need to have Python setuptools installed.

To install Python setuptools on Debian GNU/Linux, Ubuntu Linux and so
on, use

sudo apt-get install -y python-setuptools

After that, you should be able to install it with the following command:

wget -qO- http://oe-lite.org/download/bakery/oe-lite-bakery-4.0.2.tar.gz \
 | tar -xz \
 && sudo oe-lite-bakery-4.0.2/setup.py install

Run from source

OE-lite Bakery also supports running directly from source distribution.

Download and extract the latest release from
http://oe-lite.org/download/bakery/

wget -qO- http://oe-lite.org/download/bakery/oe-lite-bakery-4.0.2.tar.gz \
 | tar -xz

or clone the bakery repository with

git clone git://oe-lite.org/oe-lite/bakery.git

You can use the oebakery/oe.py script directly, but you should probably
symlink it to “oe” somewhere in your $PATH or setup a shell alias so you
can just type “oe” when using bakery.

Something like

ln -s ../src/bakery/oebakery/oe.py $HOME/bin/oe

(assuming you have the bakery source distribution in $HOME/src/bakery
and have $HOME/bin in your $PATH)

Install from Ubuntu PPA

This method is only for use on Ubuntu Linux or distributions compatible
with Ubuntu Linux (like Mint).

To install bakery from the PPA, you can use the following commands:

sudo apt-get install -y python-software-properties
sudo add-apt-repository ppa:esben-haabendal/oe-lite
sudo apt-get update
sudo apt-get install -y oe-lite

Install on Exherbo Linux

Since Exherbo is a source based distribution, most dependencies are
installed already. The rest is pulled in by the oe-bakery package.

sudo cave resolve oe-bakery

Install Manifest Dependencies

Depending on the OE-lite manifest(s) you
will be working with, and what you will build with it, you will
require some additional host tools. If you installed bakery from PPA,
you most likely already have all you need, and you can skip this
section.

If you installed bakery in another way, you might want to install some
additional development tools.

Installing additional development tools in Fedora 16 (and possibly other
RPM based distributions):

sudo yum install python-magic python-ply python-pycurl \
python-sqlite2 python-devel fakeroot libstdc++-static glibc-static \
gettext-devel ncurses-devel libtool texinfo flex bison coreutils \
sed git-core cvs subversion mercurial quilt gawk texinfo automake \
autoconf curl texi2html openjade groff make gcc-c++ gcc binutils bc \
unzip lzma gtk-doc docbook-utils xml2 xmlto help2man glib2-devel gperf

Install additional development tools in Debian GNU/Linux, Ubuntu Linux
and so on, something like:

sudo apt-get install python python-support python-magic python-ply \
python-pycurl python-pysqlite2 python-pkg-resources python-dev \
coreutils sed git-core cvs subversion mercurial quilt gawk texinfo \
automake autoconf autopoint libtool curl texi2html diffstat \
openjade groff mtd-utils build-essential make gcc g++ binutils \
bison flex bc ncurses-dev unzip lzma gtk-doc-tools docbook-utils \
libxml2-utils xmlto help2man libglib2.0-dev lzop gperf python-svn

Install additional development tools in RHEL 6.2, something like:

sudo yum install python-magic python-ply python-pycurl python-devel \
fakeroot gettext-devel ncurses-devel libtool texinfo flex bison \
coreutils sed git-core cvs subversion mercurial quilt gawk texinfo \
automake autoconf curl openjade groff make gcc-c++ gcc binutils bc \
unzip gtk-doc docbook-utils xmlto glib2-devel intltool glibc-static \
gperf

Goodbye dash

On some systems (fx. Ubuntu Linux), /bin/sh is a symlink to dash,
which not all software packages are fully compatible with. To work with
OE-lite, you therefore have to make sure that /bin/sh is actually
/bin/bash.

You can do this the brute force way

sudo ln -sf bash /bin/sh

Or on Ubuntu Linux, you can do this more nicely with

sudo dpkg-reconfigure dash

and answer “No” to the “Use dash as the default system shell (/bin/sh)?”
question.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Project Setup

This chapter describes how to setup a new OE-lite project, ie. the
creation of a new OE-lite manifest and setup of an
OE-lite repository for it.

From Scratch

To create a new OE-lite manifest from scratch, all you need to do is:

	Create an empty directory.

	Create a conf/bakery.conf file.

	Run oe init.

	Convert layers to be of internal layer type.

Bakery.conf from scratch

The bakery.conf follows the OE-lite metadata syntax, or rather a subset
of it. The primary purpose is to assign a value to the variable called
OESTACK, which defines the OE-lite stack
.

An OE-lite stack is composed of a number of OE-lite layers, with each
layer typically being a seperate git repository.

A small OE-lite stack could look like this:

OE-lite/base
OESTACK += "meta/base"
OESTACK .= ";srcuri=git://oe-lite.org/oe-lite/base.git"
OESTACK .= ";branch=master"

OE-lite/core
OESTACK += "meta/core"
OESTACK .= ";srcuri=git://oe-lite.org/oe-lite/core.git"
OESTACK .= ";branch=master"

OESTACK += "lib/fetching/fetching"
OESTACK .= ";srcuri=git://oe-lite.org/python-fetching.git"
OESTACK .= ";pythonpath=.."

OESTACK += "lib/GitPython"
OESTACK .= ";srcuri=git://oe-lite.org/gitpython/GitPython.git"
OESTACK .= ";pythonpath="

OESTACK += "lib/urlgrabber"
OESTACK .= ";srcuri=git://oe-lite.org/urlgrabber.git"
OESTACK .= ";pythonpath="

The example above uses two different append assignment operators: “+=”
and ”.=”. The “+=” operator adds an extra space before appending the value
whereas the ”.=” operator just appends the value. The two expressions:

HELLO += “world”
HELLO .= ” world”

are the same.

The resulting OESTACK variable is thus a space separated list of
layers. Each layer is specified by a path and a number of parameters,
separated by ”;”.

Note

Add reference to the OE-lite Bakery Manual for full documentation on
the bakery.conf syntax here, when it is actually written…

After the oe init command is done, the my-bsp directory should be
populated with the following structure:

├── conf
│ └── bakery.conf
├── lib
│ ├── fetching
│ ├── GitPython
│ └── urlgrabber
└── meta
 ├── base
 └── core

and all the layers should be cloned from their upstream origin.

Example (for the copy-and-paste hungry):

mkdir my-bsp
cd my-bsp
mkdir conf
emacs conf/bakery.conf
oe init

At this point, you should create the initial git commit of your brand
new OE-lite manifest:

git add conf/bakery.conf
git commit -s -m "Initial commit"

You are now (almost) ready to build something. To try this, see
chapter Building for how to build.

Of-course, you might want to add some more metadata layers, and probably
add your own machine and/or distro configurations and even some custom
recipes, fx. a recipe for building a custom rootfs image. But that is a
different story…

External Layers

Let’s say you are creating an OE-lite manifest for your embedded Linux
BSP project. You of-course need to use OE-lite/core, and the simplest
solution is to just add it to the STACK by adding the following to
bakery.conf:

OESTACK += "meta/core"
OESTACK .= ";srcuri=git://oe-lite.org/oe-lite/core.git"

With this, users of your manifest will get an OE-lite/core layer at
meta/core, using a clone from the git://oe-lite.org/oe-lite/core.git
repository.

While this is definitely a lean and simple approach, it does come with a
few drawbacks.

	You will not be able to create any commits, tags or branches to the
OE-lite/core layer.

	When cloning the OE-lite repository, you depend on both the server
hosting the manifest repository and the oe-lite.org server.

See also appendix OE-lite Terminology for definition of internal layer.

Internal Layers

For each layer you have added to the OE-lite stack as an external
layer, you should consider to convert it to be an internal layer to
address the problems with external layers described above. See
appendix OE-lite Terminology for definition of internal layer.

By converting all external layers to internal layers, and thus having a
manifest consisting of only embedded and internal layers, you will have
a number of advantages:

	When creating a clone of the OE-lite repository, you will only have
to fetch from your project OE-lite repository.

	You will be able to create backup/redundant copies of your entire
OE-lite repository using a single command.

	You will be able to switch back and forth between different copies of
your OE-lite repository without making any changes to the OE-lite
manifest.

	You will be able to make complete from local clones of your OE-lite
repository, without depending on any remote repositories.

For each layer you want to convert from external layer to internal
layer, you have to do the following:

	Remove the srcuri parameter for the layer in conf/bakery.conf

	Change the url entry of the layer submodule in .gitmodules to the
path relative to the containing git super project. Fx. the relative
path of meta/core contained in the manifest repository is
./meta/core, and the relative path of lib/GitPython/git/ext/async
contained in the lib/GitPython submodule is ./git/ext/async .

When done, run oe update and commit the changes in conf/bakery.conf
and .gitmodules files.

From Template

TBD…

Repository Setup

This section describes how to setup an OE-lite repository, suitable for
hosting as a remote repository. Details on how to setup hosting is out
of scope of this section.

To setup an OE-lite repository of an existing OE-lite manifest, all you
need to do is to call:

oe clone --bare <url> <path>

Note

OE-lite Bakery version 4.1 or newer is required for this.

This will create a new (bare) OE-lite repository clone of <url> at the
local directory <path>. The <url> argument can be any valid git URL
(see link:See git[git clone documentation] for more on this). This even
includes a local path to an OE-lite manifest repository, which is handy
for setting up the first OE-lite repository right after creation of a
new OE-lite manifest.

All internal layers will be cloned (recursively) together with the
manifest repository. Any other git submodules (ie. git submodules with
absolute url’s or relative paths different from the path relative to the
git super project) will not be cloned.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Cloning

This chapter describes how to clone an existing OE-lite repository.

To create a local clone of an OE-lite repository for development and/or
build purposes, use the following command:

oe clone <url> <path>

This will create a new OE-lite repository clone of <url> at the local
directory <path>. The <url> argument can be any valid git url. See
link:See git[git clone documentation] for more on this.

All git submodules and/or OE-lite layers specified will be (recursively)
cloned also.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Building

This chapter describes how to build something with OE-lite, fx. how to
build a specific OE-lite recipe, a Linux kernel image, a JFFS2 root
filesystem image, an SDK toolchain image, and so on.

Building is done with the OE-lite Bakery sub-command called “bake”.

Before building you need to setup the build configuration in the file
conf/local.conf.

A very minimal example configuration purely to test that building
works:

DISTRO = "base"
MACHINE_CPU = "arm-926ejs"
PROVIDED = "all"
SDK_CPU = "i686"
SDK_OS = "linux-gnu"
RMWORK = "0"

The DISTRO variable selects the OE-lite distribution. Here
we choose a simple distribution called base to be able to build
something. Next we set the cpu we want to cross compile for using
MACHINE_CPU. It is also possible to set MACHINE to target a
specific board e.g. pandaboard or rpi (raspberry-pi).

Note

To set MACHINE="rpi" you will need the raspberry-pi manifest
from git.oe-lite.org.

The PROVIDED variable is used to inform the bake command what
dependencies can be assumed to be provided on the host system. See
conf/provided/all.conf in the core metadata layer. The SDK
variables are used to specify what architecture the OE-lite
SDK should be build for. RMWORK currently need to be set to 0
since automatic removal of temporary build files is not
implemented. Optionally you may want to set PARALLEL_MAKE = "-j X"
where X is the number of CPUs available on your host system + 1, to
speed up the build.

Now it is possible to choose something to build with the bake command.
In OE-lite all recipes can be build. A recipe
is a file with the .oe file extension, take a look at what recipes
you have in your current manifest using:

find . -name '*.oe'

The primary goal of the building process in OE-lite is to produce
deployable images, so for this example we will build an image. In the
base metadata layer a rootfs image recipe is located in:
recipes/images which we can try building:

oe bake base-rootfs

oe will resolve the list of dependencies, present you with a list of
what needs to be built and ask for confirmation before continuing. The
build process takes a while, but in the end you should see that
base-rootfs was build and the elapsed build time. The deployable images
are now located in tmp/images

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Source Mirrors

OE-lite provides means for setting up and maintaining mirrors of
external sources used in builds.

This is useful for ensuring that OE-lite builds are not affected by 3rd
party sources being removed from their original location on the
Internet. It can also be used for redirecting all fetches from the
Internet to a local server (or filesystem), making OE-lite work in
closed networks or without any network connection at all.

Prerequisites

To setup an OE-lite source mirror, you must use OE-lite/core 3.2.0 or
newer.

The filesystem path to the source mirror must be specified, fx. in your
local.conf file. Fx.

MIRRORDIR = "/local/mirror"

The mirror class

An OE-lite source mirror is both created and maintained with the help of
the OE-lite mirror task. The mirror task will add any sources
required by the recipe which is not already present in the mirror, and
will fail if a file conflict occurs.

There is also an mirrorall task, which recursively causes the
mirror task to be run for all recipes that the recipe depends on
(both build and run-time dependencies).

The mirror and mirrorall tasks are implemented in the
classes/mirror.oeclass file in OE-lite/core.

The MIRRORDIR directory will be created if it does not exist.

Creating and maintaining a source mirror

As the source mirror is maintained with the help of the mirror and
mirrorall tasks, you need to configure your local.conf for the
MACHINE and SDK configuration options required for your mirror.

For each configuration, you must run the mirrorall task on the
required top-level recipes (or world or universe, if you want really
everything in your mirror).

Fx.

oe bake -t mirrorall kernel my-rootfs my-sdk

or

oe bake -t mirrorall universe

After having run this on all the required configurations, your source
mirror in MIRRORDIR will be up-to-date with all sources required for
the current OE-lite checkout and the configurations used.

Synchronizing mirror directory to remote server

The mirror will be created (and maintained) in a directory on the
machine running OE-lite. To maintain a mirror on a remote server, you
could use the rsync command (requires ssh login access to server, and
rsync command on the server):

The following command will synchronize the /local/mirror directory to
the /mirror directory on the server (myserver):

rsync -av /local/mirror/ myserver:/mirror/

Build from source mirror

To use the OE-lite source mirror, the MIRRORS and PREMIRRORS
variables must be modified.

If you only want to fall-back to using the source mirror, and thus
always try to fetch from the original source first, you should change
the MIRRORS variable to something like

MIRRORS = """
http://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/
ftp://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/
git://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/git//
svn://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/svn//
"""

If you want to use the source mirror first, and only fall-back to trying
the orignial source in case fetching from the source mirror fails, you
should change the PREMIRRORS variable to something like

PREMIRRORS = """
http://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/
ftp://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/
git://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/git//
svn://.*/ http://myserver/mirror/${INGREDIENTS_SUBDIR}/svn//
"""

Both of the configurations above assumes that your “myserver” is running
an HTTP server, and is hosting the /mirror directory on the
http://myserver/mirror URL.

If you only want to allow fetching from the source mirror, and thus
forbid fetching from any other remote server, you can use the
URL_WHITELIST variable. In addition to the MIRRORS and/or
PREMIRRORS variables, you could add something like

URL_WHITELIST = "http://myserver/mirror"

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Release Management

This chapter covers the various aspects related to making releases of
OE-lite based projects.

Some parts of this chapter is meant as a guideline and not something
that you need to follow.

Metadata Releases

This section describes how to make releases of OE-lite metadata projects
(like OE-lite/core, OE-lite/base and so on).

Metadata Versioning

For OE-lite.org metadata projects, the releases must be versioned
according to the scheme described in this section.

OE-lite.org metadata releases must follow the Semantic Versioning
specification (see http://semver.org). Briefly described, this means
that version numbers are formatted as X.Y.X, with X being major number,
Y being minor number, and Z being patch number.

For releases that only contains backwards compatible bugfixes (a bugfix
release) should be versioned with an increment to the patch number. A
bugfix release based on X.Y.Z would thus be X.Y.Z+1.

For release that contains new, backwards compatible functionality
(feature releases) should be versioned with an increment to the minor
number. A feature release based on X.Y.Z would thus be X.Y+1.0.

For releases that contains any backwards incompatile changes (major
releases) should be versioned with an increment to the major number. A
major release based on X.Y.Z would thus be X+1.0.0.

For more details, see http://semver.org

Metadata Release Branching

OE-lite.org metadata releases should be done from a release branch named
X.Y (for release version X.Y.Z).

When creating a new major release, a new release branch must be created.
This new X.0 branch should branch off of either the previous latest
release branch (ie. X-1.Y) or the master branch.

When creating a new feature release, a new release branch must be
created. This new X.Y branch should branch off of the previous release
branch (X.Y-1).

When creating a new bugfix release, the X.Y release branch should
already exist. It should have been created when the X.Y.0 feature
release (or major release if Y=0) was made.

Release branchs must be pushed to the official OE-lite.org upstream
repository (ie. git://oe-lite.org/oe-lite/core.git for OE-lite/core).
Release branches are considered permanent branches, and should not be
deleted, as they must be available for doing bugfix releases from.

Important

Public release branches must not be rebased, or the commit history
in any other way be rewritten.

Metadata Release Tagging

When a release is ready to go out of the door, it must be tagged.

OE-lite.org metadata project releases must contain a VERSION file
containing the release version number in plain text. So before making
the git tag, a new commit with this file should be created.

The following example shows how to create a release commit and tag:

echo "3.4.1" > VERSION
git add VERSION
git commit -m "Release 3.4.1"
git tag -a -m "Release 3.4.1" v3.4.1

After the release is done, the VERSION file should be removed, so
that only the actual release version carries it.

git rm VERSION
git commit -m "Unrelease"

The release branch (including both the release and unrelease commit) and
the release tag must of-course be pushed to the official OE-lite.org
upstream repository (ie. git://oe-lite.org/oe-lite/core.git for
OE-lite/core).

Important

Release tags must not be changed.

Note

The release and unrelease commits does not need a Signed-off-by
line.

Metadata Release Tarballs

OE-lite.org metadata project releases must be available as tarball for
download on http://oe-lite.org/download/

To create release tarballs, use something like the following:

git archive --prefix=core-3.4.1/ -o oe-lite-core-3.4.1.tar v3.4.1
cat oe-lite-core-3.4.1.tar | gzip > oe-lite-core-3.4.1.tar.gz
cat oe-lite-core-3.4.1.tar | xz > oe-lite-core-3.4.1.tar.xz

To put the tarballs on oe-lite.org, stuff them somewhere on the net and
send an email to esben@haabendal.dk (with cc to dev@oe-lite.org)
requesting copies to be placed on the oe-lite.org server.

Metadata Release Announcement

When the OE-lite.org metadata project release is ready (ie. tarballs are
on oe-lite.org, and the release has been pushed to the official
oe-lite.org repository, the release must be announced to the OE-lite.org
community.

The release must be announced both on the dev@oe-lite.org mailing list
and the http://oe-lite.org site.

Metadata Release Email Announcement

The release announcement email could look something like
http://lists.oe-lite.org/pipermail/dev/2012-November/001222.html.

To generate the contributer contribution and the per-author shortlog
text, you can use the
http://oe-lite.org/download/scripts/release-mail.py script. It should be
called like this:

release-mail.py v3.3.0 v3.4.0

With the first argument specifying the previous release, and the second
argument specifying the release you are announcing.

Metadata Relase Redmine Announcement

To announce the release on http://oe-lite.org, you must create a Redmine
news item, and it could look something like
http://oe-lite.org/redmine/news/11.

Metadata Release Checklist

	Is the release created from a release branch according to the
description in section Metadata Release Branching?

	Is the release properly tagged according to the description in
section Metadata Release Tagging?

	Has tar-balls been created and uploaded to oe-lite.org according to
the description in section Metadata Release Tarballs?

	Has a release announcement mail been sent to the dev@oe-lite.org
mailinglist according to the description in
Metadata Release Announcement?

	Has the http://oe-lite.org Redmine been updated with a News item
according to the description in Metadata Release Announcement?

Release Cherry-Picking

This section describes how to use the oe cherry command for
assistance in cherry picking commits to release branches.

To use the cherry command, you need OE-lite Bakery 4.0.0 or newer, and
OE-lite/core 3.3.0 or newer.

The idea with the cherry command is to help you keep track of which
commits eligible for a specific release branch.

You can fx. use the cherry command to find out which commits on the
master branch are eligible for being cherry picked to the 3.4 release
branch with the following command:

oe cherry master 3.4

This will list all commits that are currently seen as eligible for the
3.4 release branch.

To remove commits from this list, you can run cherry in interactive
mode:

oe cherry -i master 3.4

For each commit, you will be asked for the target version. The allowed
values are:

	A release branch, ie. X.Y. Commits that you see as eligible for
release branch X.Y (and newer) should be marked with target version
X.Y (fx. “3.4”, for release branch 3.4).

	A major release version, ie. X. Commits that you see as eligible for
a (most likely yet-to-come) major release, should be marked with
target version X (fx. “4” for major release 4)

	The master branch. Commits that is not eligible for any releases, and
thus should stay on the master branch should be marked with target
version “master”.

Any target versions you set will be stored in your local git repository,
and will be used the next time you use the cherry command.

When you have trimmed down the list, you should cherry pick the commits
to the release branch you are working with.

Note

Remember to use the “-x” argument with the git cherry-pick
command, as it will help oe cherry in determining if a commit
has already been cherry-picked.

BSP Versioning

For OE-lite.org BSP projects, the releases must be versioned according
to the scheme described in this section.

An OE-lite.org BSP is specified by a version number, and an optional
release name. Notice that the version number is mandatory and must by
itself specify the release. The release name is optional and only meant
as a possibility of adding a short description (or perhaps for adding a
funny name…).

Currently, there is no rules or guidelines for the numbering scheme.
Suggestions and discussion related to this are welcome at
dev@oe-lite.org :-)

Branching and Tagging

TBD…

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Working with Upstream

This chapter describes how to work with the upstream OE-lite.org
project.

Mailing Lists

Development and coordination of the OE-lite.org project is managed on
the dev@oe-lite.org mailing list.

Use this for getting in contact with OE-lite.org developers and
discussion or coordination of OE-lite development.

Subscribing

To subscribe, you can either use the web interface or the email
interface.

	Go to the list information page
(http://lists.oe-lite.org/mailman/listinfo/dev).

	Look for the section marked “Subscribing to dev” and fill in the
boxes. You can fill in the following:
	You must enter your email address.

	You may choose to supply your real name.

	You may choose a password. If you do not choose one, Mailman will
generate one for you. WARNING: Do NOT use a valuable password,
since this password may be mailed to you in plain text.

	If the list supports more than one language, you may be able to
choose your preferred language. NOTE: This setting does not affect
posts to the list, only pre-prepared Mailman texts such as your
member options page.

	Press the subscribe button. A new page should appear telling you that
your request has been sent.

	Open a mail program which sends mail from the address you want to
subscribe.

	Send a mail to dev-join@oe-lite.org. The subject and body of the
message will be ignored, so it doesn’t matter what you put there.

You may receive an email message asking for confirmation that you really
want to be subscribed to the list. This is to prevent anyone from
subscribing you to lists without your permission. Follow the
instructions given in the message to confirm your wish to be subscribed.

Once this is done, you will receive another message welcoming you to the
list. This message contains some useful information including your list
password and some quick links for changing your options, so you may want
to save it for later reference.

Unsubscribing

If you want to leave the list, there are two common ways you can
unsubscribe.

	Go to the list information page
(http://lists.oe-lite.org/mailman/listinfo/dev).

	Look for the section marked “dev subscribers” (near the bottom of the
page).

	There should be a button marked “Unsubscribe or Edit Options.” Enter
your email address in the box beside this button and press the
button.

	You should be brought to a new page which has an “Unsubscribe”
button. Press it to unsubscribe and follow the instructions given.

	Open a mail program which sends mail from the address you want to
unsubscribe.

	Send a mail to dev-leave@oe-lite.org. The subject and body of this
message will be ignored, so it doesn’t matter what you put there.

Commit Message Guidelines

The following guidelines should be followed when writing log messages
for commits to be included in OE-lite.org repositories:

	The first line should be a short description, prefixed what is being
changed.
	The prefix should be one of
	Name of subdir containing recipes, fx. linux, for changes to
recipes within that directory.

	Name of recipe, fx. linux-yocto, for changes to that specific
recipe.

	Name of OE-lite class (.bbclass file) prefixed with class,
fx. class/cross, for changes to that specific class.

	Name of distro configuration file prefixed with distro/, fx.
distro/base, for changes to that distro configuration.

	Name of machine configuraton file prefixed with machine/, fx.
machine/beagleboard, for changes to that machine
configuration.

	Name of subdir containing Python library code prefixed with
lib/, fx. lib/oelite, for changes to Python files in that
dir.

	Name of configuration file (in conf/ directory) prefixed with
conf/, fx. conf/package, for changes to that file
(package.conf).

	The description should be very short (a few words), summarising
the change.

	The prefix and description is separated by a space followed by a
colon (ie. ‘: ‘).

	The first line should be followed by an empty line

	Additional lines, may follow describing more details of the change.

	The details if feasible, should be structured as a list, with each
item marked with a start *,

	Signed-off-by (SOB) lines are currently not required in OE-lite.

	Lines must not be longer than 75 characters.

The first line of commit log messages are very important, as it in some
cases will be the the only description of the change being presented,
fx. in subject lines of mails being created with git-format-patch.

These guidelines should be followed, but may be combined with common
sense for doing things different when it makes sense.

Example: Adding a recipe named dhcp3

dhcp3: New recipe, for ISC DHCP version 3

In the newer versions of dhcp (4.X), bind is included statically linked in
dhcp, making some dhcp files unneccessary big. Therefore, an older version
of dhcp is often desired.

Submitting Changes

When making changes to OE-lite metadata layers originating from
OE-lite.org, you should make an effort to get your changes merged to
OE-lite.org. By doing this, you will reduce future maintenance effort,
as you don’t have to take care with maintaining that particular
change/feature anymore.

Pull Requests

The development model used for the OE-lite.org project is a pull model.
Each repository on OE-lite.org has a single developer with push access,
ie. the maintainer. Only the maintainer is allowed to push changes to
the respective repository.

To get changes into an OE-lite.org repository where you are not the
maintainer, you have to make a pull request. A pull request is an email,
or most often a series of emails, to dev@oe-lite.org containing the
entire change set that is proposed together with a description of the
change, additional information, and everything in a form so that it can
easily be integrated with the git SCM tool.

The pull request can then be reviewed by other OE-lite.org developers,
including the maintainer, and everyone has the possibility to make
comments, and propose improvements to the change set. The maintainer
might then decide to pull in the pull request as it is, or ask the
submitter to rework the change set according and resubmit it when done,
where the process restarts.

Preparing a Patch Set

To create a patch set for sending to dev@oe-lite.org, you can use the
create-pull-request script in OE-lite/core (in the scripts directory).

Let’s say you have a couple of commits in your local “my-branch” branch,
which you have pushed to the “my-gitorious” remote, which is your
OE-lite/base clone on gitorious.org. Your “my-branch” branch is relative
to the “master” branch of the “upstream” remote
(git://oe-lite.org/oe-lite/base.git). In this case, you can prepare the
patch set with the following command:

../core/scripts/create-pull-request -u my-gitorious -b my-branch \
 -r upstream/master -i my-branch

As the script also will remind you, you will then have to edit a file
with the cover e-mail with a proper description of your patch set.

Sending a Patch Set

First, you should make sure that git send-email is properly configured.
You can fx. set your email address with something like this:

git config --global sendemail.from your.name@gmail.com

You know have a patch set in something like a pull-1234 directory of
your meta/base subdirectory. To send that, you can use the
send-pull-request script to send to dev@oe-lite.org:

../core/scripts/send-pull-request -a -p pull-1234 -t dev@oe-lite.org

For this to work, you need to have your host machine configured to be
able to send e-mail, so that git send-email is able to send mails to the
dev@oe-lite.org list. The details for how to do this depends very much
on your host system setup, and is not covered in this handbook.

Single patches

In some cases creating a pull request will require a lot of work
overhead.

When it is figured that a single patch will apply to the master branch
of a OE-lite repository even after some time this is the faster way to
submit changes to the project.

Those special cases that applies cleanly could be, e.g. new recipes,
small changes to split tasks, package tasks and so on.

Let say you made a new recipe for the core repository, tested it and
just committed it locally, simply do:

git format-patch -1 --subject-prefix=core

“-1” may be replaced with a specific commitid or “-2” if you want that
last two commits in a patchfile.

git format-patch -2 mypatches/ --subject-prefix=core

The subject prefix is needed for now to make it visible what repository
the patch applies to.

Before sending single patch files upstream make sure that you have git
send-email configure as described above.

If you dont think the log message itself is saying enough to explain you
change to the other members of the mailing list add “–cover-letter” to
generate and editable cover letter where you can elaborate on the
greater meaning with the patch (life, and everything).

edit mypatch/0000-* #(if coverletter has been chosen)
git send-email mypatch/*

or just one simple patch:

git send-email 0001-<commit log name>.patch

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Recipes

Recipes describe how to build stuff, both individual software
packages, complete root file systems as well as associated utilities
such as SDKs. This chapter gives a short introduction to the
conventions used as well as a short example.

When starting a build (oe bake), OE-lite starts by parsing all
recipe files in all registered layers, pruning recipes which are not
compatible with the current target architecture.

Naming conventions

Recipe files end with the suffix .oe, and should reside in
subdirectories of the recipes directory in one of the registered
OE-lite layers.

The filename must follow the format <name>_<version>.oe, for example
tcpdump_4.6.2.oe, where <name> is the name of the item described
and <version> is the version of the software. The name part must not
contain an underscore, since everything after the first underscore is
taken to be the version. It is ok to omit the version part (including
the underscore) when it doesn’t apply (e.g. in the case of recipes
describing an entire BSP root file system), in which case OE-lite will
simply pretend it is version “0”.

Inside the recipe, the <name> is available as the variable ${PN},
while the <version> is available as ${PV}.

Language

Recipes are written in a domain-specific language defined by
OE-lite. This is not as scary as it sounds. Essentially, the job of a
recipe is to set a bunch of variables. Each variable has a
well-defined semantic meaning to OE-lite. There are hundreds of
variables, but fortunately most retrieve their value more or less
automatically, and there is a lot of infrastructure for helping with
defining the rest.

A few examples of variables and their meaning:

	SRC_URI

	Where to fetch the sources for the software.

	DEPENDS

	Utilities and libraries necessary to build the recipe.

	EXTRA_OECONF

	When using one of the autotools classes, this variable is appended to the ./configure command
line in the do_configure step.

include and require

How a piece of software gets built usually doesn’t change that much
from version to version, so it is quite common to put most of the
logic in .inc files which then get included from the recipe
files. A complete recipe file can be as small as:

meta/base/recipes/vim/vim_7.4.oe

require ${PN}.inc

The require directive instructs OE-lite to look for the given file
(unzip.inc in the example above) and include it at that point. It
is a fatal error if the file is not found. The include directive
works similar to require, but if the file cannot be found parsing
continues as if the include was not present.

Syntax

The syntax and semantics of defining and manipulating variables is
similar to the one used in Makefiles. For example, the right-hand side
of an ordinary assignment FOO = "BAR" is not expanded until
FOO is expanded, whereas the := operator causes immediate
expansion of the RHS. Also, the operator += appends the RHS value
to the LHS variable, but also prepends a space if the variable was
non-empty.

Note, however, that OE-lite does not have the concept of variable
»flavors«, and that all right-hand sides should be properly quoted
strings.

See the appendix Syntax for a semi-formal survey of the various
allowed syntactic elements.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Examples of recipes

Trigonometric utilities

Instead of showing a small working recipe, we’ll start small and
show what fails at each step and explain how to fix it.

Suppose we wish to have utilities sin, cos and tan that
will compute these trigonometric functions. To keep the number of
files small, we just use a single source file and some preprocessor
magic. So we create this directory tree:

recipes/trig/
 ├── files
 │ └── trig.c
 └── trig_0.1.oe

The file trig.c is simply:

recipes/trig/files/trig.c

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#ifndef FUNC
#error FUNC must be defined on the command line
#endif
/* standard stringify trick */
#define ss(x) #x
#define s(x) ss(x)

int main(int argc, char *argv[])
{
	double x = 0.0, y;

	/* Error checking omitted. */
	if (argc > 1)
		x = strtod(argv[1], NULL);
	y = FUNC(x);
	printf("%s(%f) = %f\n", s(FUNC), x, y);
	return 0;
}

Our first attempt at describing how to build this to OE-lite is this:

recipes/trig/trig_0.1.oe

DESCRIPTION = "Example trigonometric utilities"
LICENSE = "GPL-2.0+"

RECIPE_TYPES = "machine native"

inherit c

SRC_URI = "file://trig.c"

do_compile() {
 for f in sin cos tan ; do
 $CC -o $f -DFUNC=$f -O2 trig.c
 done
}

The DESCRIPTION and LICENSE variables are self-explanatory -
neither are mandatory, but both are highly recommended. When possible,
it is recommended to use SPDX identifiers [https://spdx.org/licenses/] in the LICENSE fields.

The RECIPE_TYPES variable should be a space-separated list of the
targets this recipe is applicable to. The default is machine, but
since there’s nothing machine-specific about this small utility, we
also include the native target. That allows us to say oe bake
native:trig to have OE-lite build the recipe for our host machine,
in turn allowing us to test the programs without transferring to the
target.

The inherit c is an example of the use of a class. Even the simplest recipes will usually inherit a few
classes. The c class ensures that a suitable (cross-)compiler gets
staged and that variables such as CC get appropriate
values. This would be very tedious to set up manually, especially if
one wants the same recipe to work for multiple target architectures.

Next, we need to tell OE-lite the source files needed. In our case,
there is just one. Local files (as indicated by the file://
prefix) are searched for in a number of subdirectories of the
directory containing the recipe file: First, ${PN}-${PV}, then
${PN} and finally files. This scheme allows sharing (and
non-sharing) files between different recipes and versions of the same
recipe. In our case, that’s not important, so we just put the file in
the files subdirectory.

Finally, we need to tell OE-lite how to actually compile our
programs. We do this by defining a shell function called
do_compile. In a larger project, we would most likely have created
a Makefile or used autotools, but here a simple shell loop is
sufficient.

Let’s try this:

$ oe bake trig -y
machine:trig_0.1:do_stage started
machine:trig_0.1:do_stage finished - 0.521 s
machine:trig_0.1:do_fstage started
machine:trig_0.1:do_fstage finished - 0.001 s
machine:trig_0.1:do_fetch started
machine:trig_0.1:do_fetch finished - 0.000 s
machine:trig_0.1:do_unpack started
machine:trig_0.1:do_unpack finished - 0.001 s
machine:trig_0.1:do_patch started
machine:trig_0.1:do_patch finished - 0.001 s
machine:trig_0.1:do_configure started
machine:trig_0.1:do_configure finished - 0.078 s
machine:trig_0.1:do_compile started
waiting for machine:trig_0.1:do_compile (started 0.020 seconds ago) to finish
ERROR: machine:trig_0.1:do_compile failed - 0.023 s
Build: 0.674 seconds

ERROR: machine:trig_0.1:do_compile failed /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102082713.log
> LC_ALL=C /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102082713.run
+ cd /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/src/trig-0.1
+ do_compile
+ for f in sin cos tan
+ arm-926ejs-linux-gnueabi-gcc -o sin -DFUNC=sin -O2 trig.c
arm-926ejs-linux-gnueabi-gcc: error: trig.c: No such file or directory
arm-926ejs-linux-gnueabi-gcc: fatal error: no input files
compilation terminated.
Error: Command failed: 'LC_ALL=C /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102082713.run': 1

CRITICAL: bake failed: error: 1

It can sometimes be difficult to see what the problem actually
is. Here the compiler complains that trig.c cannot be found - yet
we clearly listed that as a source file. We can also see that the
do_unpack task succeeded, so it should be there. The problem is,
what does there mean? Let’s inspect the workdir:

$ tree -F -L 3 tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/
tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/
├── fstage/
├── src/
│ ├── patches/
│ │ └── quiltrc
│ ├── trig-0.1/
│ └── trig.c
├── stage/
│ ├── cross/
│ │ ├── arm-926ejs-linux-gnueabi/
│ │ ├── bin/
│ │ ├── lib/
│ │ ├── libexec/
│ │ ├── OE-lite/
│ │ └── x86_64-build_unknown-linux-gnu/
│ ├── machine/
│ │ ├── lib/
│ │ ├── OE-lite/
│ │ └── usr/
│ └── native/
│ ├── include/
│ ├── lib/
│ └── OE-lite/
└── tmp/
 ├── do_compile.20161102082713.log
 ├── do_compile.20161102082713.run*
 ├── do_compile.log -> do_compile.20161102082713.log
 ├── do_compile.run -> do_compile.20161102082713.run*
 ├── do_stage.20161102082713.log
 ├── do_stage.log -> do_stage.20161102082713.log
 ├── do_unpack.20161102082713.log
 └── do_unpack.log -> do_unpack.20161102082713.log

21 directories, 10 files

Here we see the problem: do_compile was run in the
${WORKDIR}/src/trig-0.1/ directory (aka ${S} – see also the
section Directories), but trig.c has been put in
${WORKDIR}/src (aka ${SRCDIR}). The simplest fix is to make
S and SRCDIR the same. So we change our recipe like this:

diff --git a/recipes/trig/trig_0.1.oe b/recipes/trig/trig_0.1.oe
index 73f8c02..a446526 100644
--- a/recipes/trig/trig_0.1.oe
+++ b/recipes/trig/trig_0.1.oe
@@ -7,6 +7,8 @@ inherit c

 SRC_URI = "file://trig.c"

+S="${SRCDIR}"
+
 do_compile() {
 for f in sin cos tan ; do
 $CC -o $f -DFUNC=$f -O2 -g trig.c

With this in place, let’s try again.

oe bake trig -y
...
+ cd /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/src
+ do_compile
+ for f in sin cos tan
+ arm-926ejs-linux-gnueabi-gcc -o sin -DFUNC=sin -O2 trig.c
/tmp/ccrw5e1U.o: In function `main':
trig.c:(.text.startup+0x2c): undefined reference to `sin'
collect2: error: ld returned 1 exit status
Error: Command failed: 'LC_ALL=C /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102091655.run': 1

CRITICAL: bake failed: error: 1

Right, we didn’t provide the -lm linker flag. OK, that’s easy to fix.

diff --git a/recipes/trig/trig_0.1.oe b/recipes/trig/trig_0.1.oe
index a446526..932855c 100644
--- a/recipes/trig/trig_0.1.oe
+++ b/recipes/trig/trig_0.1.oe
@@ -11,6 +11,6 @@ S="${SRCDIR}"

 do_compile() {
 for f in sin cos tan ; do
- $CC -o $f -DFUNC=$f -O2 -g trig.c
+ $CC -o $f -DFUNC=$f -O2 -g trig.c -lm
 done
 }

Once more. What can possibly go wrong now?

$ oe bake trig -y
...
ERROR: machine:trig_0.1:do_compile failed /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102092251.log
> LC_ALL=C /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102092251.run
+ cd /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/src
+ do_compile
+ for f in sin cos tan
+ arm-926ejs-linux-gnueabi-gcc -o sin -DFUNC=sin -O2 trig.c -lm
/mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/stage/cross/bin/../lib/gcc/arm-926ejs-linux-gnueabi/5.4.0/../../../../arm-926ejs-linux-gnueabi/bin/ld: cannot find -lm
collect2: error: ld returned 1 exit status
Error: Command failed: 'LC_ALL=C /mnt/xfs/devel/oe-lite/tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/tmp/do_compile.20161102092251.run': 1

CRITICAL: bake failed: error: 1

That this fails is actually a good thing, because it shows that
OE-lite works as expected! We’ve told the linker to link with
libm. But we haven’t told OE-lite that that library is needed, so it
hasn’t been staged. Telling OE-lite about build-time
dependencies is precisely what the DEPENDS variable is for. By
inheriting the c class, we’ve already told OE-lite that we depend
on the standard C library (and its header files), but libm is a
separate library. Now what we understand the problem, the fix is easy:

diff --git a/recipes/trig/trig_0.1.oe b/recipes/trig/trig_0.1.oe
index 932855c..e9e2522 100644
--- a/recipes/trig/trig_0.1.oe
+++ b/recipes/trig/trig_0.1.oe
@@ -9,6 +9,9 @@ SRC_URI = "file://trig.c"

 S="${SRCDIR}"

+DEPENDS += "libm"
+RDEPENDS_${PN} += "libm"
+
 do_compile() {
 for f in sin cos tan ; do
 $CC -o $f -DFUNC=$f -O2 -g trig.c -lm

The other variables we’ve added describes a runtime
dependency. Without that, the utilities would build just fine, but if
some image recipe then included the trig package, nothing has
informed OE-lite that it must also include libm.so in the
resulting image. So the binaries would be present but unrunnable. (Of
course, in a realistic full BSP, some recipe is bound to ensure that
libm gets included, but that’s not necessarily the case for other
libraries, so it’s better to always explicitly describe the exact
dependencies.)

Aside: dependency types

So why did we spell the runtime dependency RDEPENDS_${PN} and not
just RDEPENDS? There are actually two kinds of build-time as well
as two types of run-time dependencies, recipe dependencies and
package dependencies. Recipe dependencies (given in the unsuffixed
DEPENDS, RDEPENDS variables) describe what is required to
build the recipe. Package dependencies, given in DEPENDS_<package
name>, RDEPENDS_<package name, describe what is needed to use
the contents of the package at build-time respectively run-time. Since
our utilities end up in the package by the same name as the recipe, we
tell OE-lite that anything that run-time depends on the trig
package should also pull in libm.

An example where package build-time dependencies would come into play
is if we have two libraries, libfoo and libbar and a utility frob,
with libfoo depending on libbar and frob depending on libbar. In the
frob recipe, we would then have something like:

DEPENDS += "libbar"
RDEPENDS_${PN} += "libbar"

The frob utility probably does a #include <bar.h> somewhere, but
bar.h contains a #include <foo.h>. That libbar depends on
libfoo is an implementation detail of libbar, which frob doesn’t care
about (and it may change with a different version of libbar), but in
this case we obviously need to ensure that foo.h gets staged when
building frob. The solution to this is to ensure that the package
providing libbar has a build-time dependency on libfoo. So the libbar
recipe might contain

DEPENDS += "libfoo"
DEPENDS_${PN} += "libfoo-dev"
RDEPENDS_${PN} += "libfoo"

which says that (1) libfoo is necessary to build libbar, (2) to build
anything against libbar, you also need the libfoo-dev package, (3) if
you run-time depend on libbar, you also run-time depend on libfoo.

The alert reader may wonder how a run-time dependency for building
a recipe makes any sense. And in truth, most normal recipes do not
have those – a bare RDEPENDS in a recipe is usually an
error. However, there is one type of recipes which do have
RDEPENDS: Those that inherit image.oeclass, and hence describe a
complete file system image. While normal recipes have a do_stage task,
which pulls in all packages mentioned in the recipe’s DEPENDS
variable as well as their package dependencies (recursively), image
recipes have an do_rstage task which pulls in all the packages in the
recipe’s RDEPENDS variable as well as their package rdependencies
(recursively). It is admittedly a stretch to call this run-time build
dependencies, but as the preceding sentence hopefully demonstrates,
this makes the handling of the two staging tasks nicely symmetric.

Back to the example

While we can now succesfully build the trig utilities, the recipe is
not quite complete. Looking at the directory ${WORKDIR}/packages,
we see that all the packages are empty apart from some auto-generated
metadata. The problem is that we haven’t described how to install the
utilities. Most »real« recipes get built using a Makefile (which may
be generated by autotools or whatnot), in which case there is usually
also an install target, and if we had inherited the make
class, OE-lite would by default simply do make install. We,
however, have to describe the install step manually, just as we
defined the do_compile function. So here goes

diff --git a/recipes/trig/trig_0.1.oe b/recipes/trig/trig_0.1.oe
index e9e2522..07766b9 100644
--- a/recipes/trig/trig_0.1.oe
+++ b/recipes/trig/trig_0.1.oe
@@ -17,3 +17,8 @@ do_compile() {
 $CC -o $f -DFUNC=$f -O2 -g trig.c -lm
 done
 }
+
+do_install() {
+ install -m 0755 -d ${D}${bindir}
+ install -m 0755 -t ${D}${bindir} sin cos tan
+}

If we then run oe bake trig -y and look at the directory ${D}
(aka ${WORKDIR}/install), we see that the three utilities are
there. Moreover, the do_install task by default strips debug symbols
and puts them in the .debug subdirectory:

$ tree -a -F tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/install/
tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/install/
└── usr/
 └── bin/
 ├── cos*
 ├── .debug/
 │ ├── cos*
 │ ├── sin*
 │ └── tan*
 ├── sin*
 └── tan*

3 directories, 6 files

The next task is do_split, which takes the contents of the ${D}
directory and distributes the files in subdirectories of
${WORKDIR}/packages according to the FILES_* variables. These
have reasonable default values, so we get this structure:

$ tree -a -F tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/packages/
tmp/work/machine/arm-926ejs-linux-gnueabi/trig-0.1/packages/
├── trig/
│ └── usr/
│ └── bin/
│ ├── cos*
│ ├── sin*
│ └── tan*
├── trig-dbg/
│ └── usr/
│ └── bin/
│ └── .debug/
│ ├── cos*
│ ├── sin*
│ └── tan*
├── trig-dev/
├── trig-doc/
└── trig-locale/

10 directories, 6 files

This allows one to RDEPEND on trig, but if one also wants the
debug symbols, one should also add a run-time dependency on
trig-dbg. The final task is do_package, which adds an OE-lite
directory containing a little metadata (using the LICENSE and
DESCRIPTION variables), and then creates a tarball which is placed in
a subdirectory of tmp/packages:

$ ls -F tmp/packages/machine/arm-926ejs-linux-gnueabi/trig*
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig_0.1_f7b2f5ade7888f1426ecbe773d909f0f.tar
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig_0.1.tar@
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-dbg_0.1_f7b2f5ade7888f1426ecbe773d909f0f.tar
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-dbg_0.1.tar@
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-dev_0.1_f7b2f5ade7888f1426ecbe773d909f0f.tar
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-dev_0.1.tar@
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-doc_0.1_f7b2f5ade7888f1426ecbe773d909f0f.tar
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-doc_0.1.tar@
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-locale_0.1_f7b2f5ade7888f1426ecbe773d909f0f.tar
tmp/packages/machine/arm-926ejs-linux-gnueabi/trig-locale_0.1.tar@

The long hex string is the metadata hash of the do_package task.

By now, we have a working recipe, and we can include the utilities on
our target by simply saying

RDEPENDS += "trig"

in our root filesystem recipe. However, there are some things one
might want to improve.

	In a space-constrained root filesystem, it might be nice to be able
to depend on the utilities individually, so that one doesn’t have to
include tan if one only needs cos.

	One would not normally have the complete source code in the recipe
directory, but instead have the SRC_URI point at a git repository or
tar-ball containing it.

Instead of showing how to achieve this, we’ll turn our attention to an
example from »real life«.

Dissection of an existing recipe

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Tasks

OE-lite divides the job of building software into a number of
(interdependent) tasks, each with a well-defined purpose. For example,
one task is responsible for fetching the source code, another for
unpacking it, a third for applying local patches, a fourth for doing
the actual compilation, and so on and so forth.

Most recipes end up being split into about 13 tasks. The section
Task types below briefly explains the purpose of the various tasks.

Environment

The filename of a recipe implicitly defines two variables, PN and
PV, which are used in the definition of lots of other
variables. PN is the name of the recipe, while PV is the
version. For a recipe file called openssh_7.1p2.oe, these would be
openssh and 7.1p2, respectively. Moreover, P is a
shorthand for ${PN}-${PV}. These should never be changed from
within a recipe.

Directories

The directory containing the OE-lite manifest is available as the
variable TOPDIR. Two other standard variables are defined in terms
of this, INGREDIENTS (${TOPDIR}/ingredients) and TMPDIR
(${TOPDIR}/tmp).

Every recipe gets built in a dedicated subdirectory of
${TMPDIR}/work, named according to the recipe’s type, the target
architecture and the recipe version. Examples are
${TMPDIR}/work/machine/arm-cortexa9neon-linux-gnueabi/openssh-7.1p2
and
${TMPDIR}/work/native/x86_64-build_unknown-linux-gnu/gmp-6.0.0a. This
is the contents of the ${WORKDIR} variable.

There are a number of other standard variables defined in terms of
WORKDIR, PN and PV which one should know about.

	SRCDIR ${WORKDIR}/src

	S ${SRCDIR}/${P}

	B ${S}

	D ${WORKDIR}/install

	T ${WORKDIR}/tmp

	PKGD ${WORKDIR}/packages

Their default values are shown above, but that may be overridden by
classes or the recipe itself. We give a few examples of when this
might be necessary in the task descriptions below.

Logging

The output from each task gets written to a log file in
${WORKDIR}/tmp. The files are called
<taskname>.<datetime>.log, e.g. do_compile.20161013074154.log,
and there is a symbolic link <taskname>.log pointing to the most
recent log file.

Empty log files get deleted automatically.

Scripts

Some tasks are implemented as bash functions. OE-lite runs these by
writing a complete bash script to ${WORKDIR}/tmp called
<taskname>.<datetime>.run (again, with <taskname>.run being a
symlink to the most recent) containing all the necessary environment
settings, function definitions etc., then executes it, with stdout and
stderr redirected to the .log file.

These scripts can also be run manually, which can be very useful as a
debugging tool.

Metadata

A task is completely controlled by its associated metadata, which is
essentially a set of key-value pairs. This metadata is copied from the
metadata for the parent recipe, filtering away variables which are not
relevant to the specific task.

Metadata hashing

In order to know whether a task needs to be redone and to facilitate
use of prebakes, OE-lite assigns a hash value to every
task. This hash value is computed from two sources: The hash values of
all tasks which this task depends on, and the set of key-value pairs
constituting the task’s metadata. The former ensures that any change
in the dependency chain (e.g. a change of compiler) causes a rebuild.

A variable can be exempt from affecting the computed hash value by
setting the [nohash] flag. This should be done with great care,
since it is only safe if it is known not to affect the binaries
generated, and it is only very rarely set in classes or recipes.

Task types

Common tasks types

These tasks are performed for almost all recipes during a normal
build. Note that for the configure, compile and install tasks, if a
recipe does not define a corresponding do_ function (and does not
inherit a class defining it), it is implicitly assumed that the step
is irrelevant to the recipe, so a dummy no-op function is used.

The listed task dependencies are those that must have completed
succesfully before the task is started. OE-lite does a chdir to
the given working directory before starting the task.

do_fstage

TBD.

do_fetch

This task downloads the necessary source code to the local
ingredients directory. This is typically in the form of
compressed tar-balls, but it can also perform cloning of git
repositories.

Task dependencies: fstage

Working directory: ${INGREDIENTS}

do_unpack

This extracts the source code from the local ingredients directory
to ${WORKDIR}/src. For a tarball, this consists of (uncompressing
and) extracting the file, but it can also consist of checking out a
specific commit from a git repository. It also copies local patches
(files mentioned in SRC_URI ending with .patch) to
${WORKDIR}/patches.

Task dependencies: fetch

Working directory: ${SRCDIR}

do_patch

This applies the local patches, if any, to the source code.

Task dependencies: unpack

Working directory: ${PATCHDIR}

do_stage

This populates the directory ${WORKDIR}/stage with all the
necessary build-time dependencies as described by the recipe’s
DEPENDS variable.

Task dependencies: do_stage depends on the existence of all the
packages providing the items defined in the
DEPENDS variable. If a necessary package does not already exist in
the tmp/packages directory or can be found as a prebake, the
recipe providing that package will automatically get built, in which
case do_stage depends on the do_package task of the other recipe.

Working directory: ${STAGE_DIR}

do_configure

This is responsible for configuring the software. In many cases this
is the classic ./configure step. When a recipe uses an appropriate
class, OE-lite automatically constructs and passes
the relevant command line parameters to the configure script.

Task dependencies: patch and stage

Working directory: ${B}

do_compile

This task is where the software actually gets built. In many cases
this is just calling make. The working directory is ${S}.

Task dependencies: configure

Working directory: ${B}

do_install

This installs the software under ${WORKDIR}/install, often just by
invoking make install. During

Task dependencies: compile

Working directory: ${B}

do_split

This splits the files installed under ${WORKDIR}/install into
packages. Files belonging to the package foo gets copied to a
directory tree under ${PKGD}/foo. The splitting is governed by the
FILES_* variables. These contain space-separated lists of glob
patterns. For example, FILES_${PN}-dev contain (among other
things) /lib/lib*.so /usr/include, so all

Task dependencies: install

Working directory: ${D}

do_package

This adds some metadata (descripton, license, version etc.) to the
packages created by do_split, and then wraps the directories up in a
tarball.

Task dependencies: split

Working directory: ${PKGD}

Other tasks

These are usually only run when requested explicitly on the command line, e.g.

oe bake openssl -t packageqa

packageqa

Perform a number of Quality Assurance checks, for example:

	For shared libraries, check that the so-name matches the LIBRARY_VERSION version.

	For binaries and shared libraries, check that all
runtime-dependencies are actually listed in the RDEPENDS
variable.

Task dependencies: package

Working directory: ${PKGD}

clean

Remove the entire ${WORKDIR} as well as the ${STAMPDIR} – the
former ensures that there are no leftovers from earlier attempts to
build the recipe, while the latter prevents OE-lite from believing
that certain tasks are already succesfully completed and thus eliding
them. Hence a subsequent oe bake foo should do all tasks related
to the foo recipe.

Task dependencies: none

Working directory: ${TOPDIR}

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

OE-lite Terminology

	OE-lite manifest

	A git repository used as top-level for the project, containing
as a minimum the definition of OE-lite stack used in the project
(the conf/bakery.conf file). It typically also contains other
project specific parts, such as project specific configuration
files, and OE-lite recipes, scripts and documentation.

	OE-lite stack

	An ordered list of OE-lite layers, and various properties
assigned to these.

	OE-lite layer

	A subdirectory of the OE-lite manifest, holding either OE-lite
metadata or Python library code. An OE-lite layer is typically
contained in its own git repository.

	OE-lite layer, external layer

	An OE-lite layer hosted in a git repository not related to the
projects OE-lite repository. When creating clones of the OE-lite
repository, the layer will be cloned from the (external) git
repository. Using OE-lite/core directly from
git://oe-lite.org/oe-lite/core.git is an example of an external
layer.

	OE-lite layer, internal layer

	An OE-lite layer hosted in a git repository which is placed
under the manifest repository using the same relative path as is
used in the OE-lite stack, and is referenced in the OE-lite
manifest using relative paths. An example of an internal layer
is an OE-lite project with the manifest repository hosted at
git://oe-lite.org/bsp/foobar.git has an OE-lite/core layer at
meta/core hosted at git://oe-lite.org/bsp/foobar.git/meta/core,
and referenced in the manifest using the url ./meta/core .

	OE-lite layer, embedded layer

	An OE-lite layer contained directly in the OE-lite manifest
repository, and is as such indivisible from the manifest. This
should normally only be used for layers that has no re-use
potential for other projects, now and in the future. The top of
the OE-lite manifest is always treated as an implicit embedded
layer. Other than this implicit top-level embedded layer, this
layer type is not advisable.

	OE-lite repository

	A bare clone of the OE-lite manifest git repository, and bare
clones of any OE-lite layers using relative paths.

	OE-lite class

	A file providing certain functionality to recipes, allowing one
to avoid duplicating logic and simplify recipe files.

	OE-lite recipe

	A recipe describes how to build a piece of software. The output
of a recipe is one or more packages. For
example, a recipe for a library would typically be split into a
package containing the library itself, a -dev package containing
the header files, a -dbg package containing the debug symbols and
possibly a -doc package containing documentation.

	OE-lite package

	A package is a tar-ball containing a subset of the files produced
from a specific recipe. A package provides one or more items.

	OE-lite task

	A task is one step in the building of a recipe.

	OE-lite item

	An item is the fundamental unit which is used for resolving
dependencies.

	prebake

	A package which is used to satisfy dependencies without building
it ourselves.

	ingredients directory

	A directory, usually just named ingredients and located in
the OE-lite manifest directory, acting as a local cache for
fetched source tar-balls.

	staging

	The process of populating the ${WORKDIR}/stage directory with
all utilities, libraries and other files necessary to build a
given recipe.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Syntax

This appendix contains a rough sketch of the formal syntax used to
define OE-lite recipes.

Formal grammar

The BNF grammar below is extracted from the actual source code used to
parse recipes. On the one hand, that makes it quite authoritative. On
the other hand, it might have been more readable if it was a little
less formal. Also, not all terminals (productions in uppercase) are
defined below [1] – but at least some of the missing ones should be
obvious, and we explain a few more (e.g. what constitutes a valid
variable name) in the semantics section below.

syntax ::= statement
 statement syntax
statement ::= NEWLINE
 assignment NEWLINE
 export_variable NEWLINE
 include NEWLINE
 require NEWLINE
 inherit NEWLINE
 func NEWLINE
 fakeroot_func NEWLINE
 python_func NEWLINE
 def_func
 addtask NEWLINE
 addhook NEWLINE
 prefer NEWLINE
 COMMENT
variable ::= VARNAME
 export_variable
export_variable ::= EXPORT VARNAME
varflag ::= VARNAME FLAG
varoverride ::= VARNAME OVERRIDE
string ::= empty_string
 quoted_string
 STRING
empty_string ::= QUOTE QUOTE
quoted_string ::= QUOTE string_value QUOTE
string_value ::= STRING
 STRING string_value
assignment ::= variable ASSIGN string
 varflag ASSIGN string
 varoverride ASSIGN string
 variable EXPASSIGN string
 varflag EXPASSIGN string
 varoverride EXPASSIGN string
 variable LAZYASSIGN string
 variable WEAKASSIGN string
 varflag WEAKASSIGN string
 varoverride WEAKASSIGN string
 variable APPEND string
 varflag APPEND string
 varoverride APPEND string
 variable PREPEND string
 varflag PREPEND string
 varoverride PREPEND string
 variable PREDOT string
 varflag PREDOT string
 varoverride PREDOT string
 variable POSTDOT string
 varflag POSTDOT string
 varoverride POSTDOT string
include ::= INCLUDE INCLUDEFILE
require ::= REQUIRE INCLUDEFILE
inherit ::= INHERIT inherit_classes
inherit_classes ::= INHERITCLASS
 INHERITCLASS inherit_classes
addtask ::= addtask_task
 addtask_task addtask_dependencies
addtask_task ::= ADDTASK TASK
addtask_dependencies ::= addtask_dependency
 addtask_dependency addtask_dependencies
addtask_dependency ::= addtask_after
 addtask_before
addtask_after ::= AFTER tasks
addtask_before ::= BEFORE tasks
tasks ::= TASK
 TASK tasks
addhook ::= ADDHOOK HOOK TO HOOKNAME
 ADDHOOK HOOK TO HOOKNAME HOOKSEQUENCE
 ADDHOOK HOOK TO HOOKNAME addhook_dependencies
 ADDHOOK HOOK TO HOOKNAME HOOKSEQUENCE addhook_dependencies
addhook_dependencies ::= addhook_dependency
 addhook_dependency addhook_dependencies
addhook_dependency ::= addhook_after
 addhook_before
addhook_after ::= AFTER hooks
addhook_before ::= BEFORE hooks
hooks ::= HOOK
 HOOK hooks
prefer ::= PREFER recipe maybe_layer maybe_version
 PREFER packages maybe_recipe maybe_layer maybe_version
recipe ::= RECIPE RECIPENAME
maybe_recipe ::=
 recipe
layer ::= LAYER LAYERNAME
maybe_layer ::=
 layer
version ::= VERSION VERSIONNAME
maybe_version ::=
 version
packages ::= PACKAGE package
package ::= PACKAGENAME
 PACKAGENAME package
func ::= VARNAME FUNCSTART func_body FUNCSTOP
func_body ::= FUNCLINE
 FUNCLINE func_body
fakeroot_func ::= FAKEROOT func
python_func ::= python_func_start func_body FUNCSTOP
python_func_start ::= PYTHON VARNAME FUNCSTART
def_func ::= DEF VARNAME def_funcargs NEWLINE func_body
 DEF VARNAME def_funcargs NEWLINE func_body FUNCSTOP
def_funcargs ::= ARGSTART STRING ARGSTOP
 ARGSTART ARGSTOP
ADDHOOK ::= addhook
ADDTASK ::= addtask
AFTER ::= after
APPEND ::= +=
ASSIGN ::= =
BEFORE ::= before
DEF ::= def
EXPASSIGN ::= :=
EXPORT ::= export
FAKEROOT ::= fakeroot
INCLUDE ::= include
INHERIT ::= inherit
POSTDOT ::= =.
PREDOT ::= .=
PREFER ::= prefer
PREPEND ::= =+
PYTHON ::= python
QUOTE ::= "
REQUIRE ::= require
TO ::= to
WEAKASSIGN ::= ?=

Semantics

This section describes the semantics of the most important top-level
productions in the above grammar.

Assignment

The most common statement in a recipe is some form of assignment. The
LHS must be a valid variable name, which means that it must match the
regular expression [a-zA-Z_][a-zA-Z0-9_\-\${}\+\.]*. In other
words, it must start with a letter or underscore, and otherwise
consist of alphanumeric characters, along with -${}+..

The characters ${} are not part of the actual variable name, but
can be used to substitute the value of another variable. For example,
if PN contains openssh, RDEPENDS_${PN} = "something" would
assign the value something to RDEPENDS_openssh. In practice,
${PN} is the only variable one will ever use in this context.

The RHS should normally consist of a quoted string. References to
other variables can be done by wrapping them in ${} (this differs
from Makefile syntax where $() is used).

The semantics of the various operators is as follows:

LHS = "RHS": Assign RHS to the variable LHS.

LHS .= "RHS": Append RHS to the current value of LHS – if
LHS was not defined, it is treated as if it was defined to the
empty string.

LHS =. "RHS": This works just like .= except that it prepends
rather than appends.

LHS += "RHS": If LHS is not currently defined or is the empty
string, this works just as LHS = "RHS". Otherwise, this appends a
space and then RHS to the value of LHS.

LHS =+ "RHS": This works just like += except that it prepends
rather than appends.

LHS := "RHS": Expand all variables appearing in RHS
(recursively) and assign the result to LHS. It is an error if the
RHS, or any of the text it expands to, refers to undefined variables.

LHS ?= "RHS": If LHS is already defined (even as the empty
string), this does nothing. Otherwise, it works just as LHS =
"RHS".

Flags

Apart from its value, a variable can also have a number of attributes,
or flags. It is rarely necessary to set flags in recipes, but you may
encounter the syntax in classes and configuration files.

In general, the syntax for flag settings is just as for variable settings:

varname[flag] = "value"

Some flags just serve as boolean flags (hence the name) and are hence
normally only set using the =, ?= and := operators, while
others are treated as a whitespace separated list of words.

nohash

This flag indicates that the variable it is attached to should not be
part of the metadata hashing.

export

When a shell function is executed as part of a task, most of the
task’s metadata variables [2] are written to the shell script. Only those
variables with the export flag set are further exported to the
commands executed by the script.

Instead of setting this flag using the varname[export] = "1"
syntax, an alternative is to use the export varname statement.

unexport

A variable with this flag does not get exported to the shell
environment when a shell function is run. It is thus not quite the
opposite of the export flag.

emit

This flag is used to limit the tasks which a given variable gets
copied to. If set, the variable is only emitted to the metadata
instances for the tasks listed, e.g.

PACKAGES[emit] = "do_split do_package"

Footnotes

	[1]	Automatically extracting the regexps definining the various
tokens and presenting them in a reasonable way is not easy.

	[2]	Variables names which are not valid as shell variables,
e.g. those containing -, are not exported.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	OE-lite Handbook 0.1 documentation

Attribution-ShareAlike 3.0 Unported

Note

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN
ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
INFORMATION ON AN “AS-IS” BASIS. CREATIVE COMMONS MAKES NO
WARRANTIES REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS
LIABILITY FOR DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE
COMMONS PUBLIC LICENSE (“CCPL” OR “LICENSE”). THE WORK IS PROTECTED BY
COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS
AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE
TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY
BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS
CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH TERMS AND
CONDITIONS.

1. Definitions

	“Adaptation” means a work based upon the Work, or upon the Work and
other pre-existing works, such as a translation, adaptation,
derivative work, arrangement of music or other alterations of a
literary or artistic work, or phonogram or performance and includes
cinematographic adaptations or any other form in which the Work may
be recast, transformed, or adapted including in any form recognizably
derived from the original, except that a work that constitutes a
Collection will not be considered an Adaptation for the purpose of
this License. For the avoidance of doubt, where the Work is a musical
work, performance or phonogram, the synchronization of the Work in
timed-relation with a moving image (“synching”) will be considered an
Adaptation for the purpose of this License.

	“Collection” means a collection of literary or artistic works, such
as encyclopedias and anthologies, or performances, phonograms or
broadcasts, or other works or subject matter other than works listed
in Section 1(f) below, which, by reason of the selection and
arrangement of their contents, constitute intellectual creations, in
which the Work is included in its entirety in unmodified form along
with one or more other contributions, each constituting separate and
independent works in themselves, which together are assembled into a
collective whole. A work that constitutes a Collection will not be
considered an Adaptation (as defined below) for the purposes of this
License.

	“Creative Commons Compatible License” means a license that is listed
at http://creativecommons.org/compatiblelicenses that has been
approved by Creative Commons as being essentially equivalent to this
License, including, at a minimum, because that license: (i) contains
terms that have the same purpose, meaning and effect as the License
Elements of this License; and, (ii) explicitly permits the
relicensing of adaptations of works made available under that license
under this License or a Creative Commons jurisdiction license with
the same License Elements as this License.

	“Distribute” means to make available to the public the original and
copies of the Work or Adaptation, as appropriate, through sale or
other transfer of ownership.

	“License Elements” means the following high-level license attributes
as selected by Licensor and indicated in the title of this License:
Attribution, ShareAlike.

	“Licensor” means the individual, individuals, entity or entities that
offer(s) the Work under the terms of this License.

	“Original Author” means, in the case of a literary or artistic work,
the individual, individuals, entity or entities who created the Work
or if no individual or entity can be identified, the publisher; and
in addition (i) in the case of a performance the actors, singers,
musicians, dancers, and other persons who act, sing, deliver,
declaim, play in, interpret or otherwise perform literary or artistic
works or expressions of folklore; (ii) in the case of a phonogram the
producer being the person or legal entity who first fixes the sounds
of a performance or other sounds; and, (iii) in the case of
broadcasts, the organization that transmits the broadcast.

	“Work” means the literary and/or artistic work offered under the
terms of this License including without limitation any production in
the literary, scientific and artistic domain, whatever may be the
mode or form of its expression including digital form, such as a
book, pamphlet and other writing; a lecture, address, sermon or other
work of the same nature; a dramatic or dramatico-musical work; a
choreographic work or entertainment in dumb show; a musical
composition with or without words; a cinematographic work to which
are assimilated works expressed by a process analogous to
cinematography; a work of drawing, painting, architecture, sculpture,
engraving or lithography; a photographic work to which are
assimilated works expressed by a process analogous to photography; a
work of applied art; an illustration, map, plan, sketch or
three-dimensional work relative to geography, topography,
architecture or science; a performance; a broadcast; a phonogram; a
compilation of data to the extent it is protected as a copyrightable
work; or a work performed by a variety or circus performer to the
extent it is not otherwise considered a literary or artistic work.

	“You” means an individual or entity exercising rights under this
License who has not previously violated the terms of this License
with respect to the Work, or who has received express permission from
the Licensor to exercise rights under this License despite a previous
violation.

	“Publicly Perform” means to perform public recitations of the Work
and to communicate to the public those public recitations, by any
means or process, including by wire or wireless means or public
digital performances; to make available to the public Works in such a
way that members of the public may access these Works from a place
and at a place individually chosen by them; to perform the Work to
the public by any means or process and the communication to the
public of the performances of the Work, including by public digital
performance; to broadcast and rebroadcast the Work by any means
including signs, sounds or images.

	“Reproduce” means to make copies of the Work by any means including
without limitation by sound or visual recordings and the right of
fixation and reproducing fixations of the Work, including storage of
a protected performance or phonogram in digital form or other
electronic medium.

2. Fair Dealing Rights

Nothing in this License is intended to reduce, limit, or restrict any
uses free from copyright or rights arising from limitations or
exceptions that are provided for in connection with the copyright
protection under copyright law or other applicable laws.

3. License Grant

Subject to the terms and conditions of this License, Licensor hereby
grants You a worldwide, royalty-free, non-exclusive, perpetual (for the
duration of the applicable copyright) license to exercise the rights in
the Work as stated below:

	to Reproduce the Work, to incorporate the Work into one or more
Collections, and to Reproduce the Work as incorporated in the
Collections;

	to create and Reproduce Adaptations provided that any such
Adaptation, including any translation in any medium, takes reasonable
steps to clearly label, demarcate or otherwise identify that changes
were made to the original Work. For example, a translation could be
marked “The original work was translated from English to Spanish,” or
a modification could indicate “The original work has been modified.”;

	to Distribute and Publicly Perform the Work including as incorporated
in Collections; and,

	to Distribute and Publicly Perform Adaptations.

	For the avoidance of doubt:
	Non-waivable Compulsory License Schemes. In those jurisdictions
in which the right to collect royalties through any statutory or
compulsory licensing scheme cannot be waived, the Licensor
reserves the exclusive right to collect such royalties for any
exercise by You of the rights granted under this License;

	Waivable Compulsory License Schemes. In those jurisdictions in
which the right to collect royalties through any statutory or
compulsory licensing scheme can be waived, the Licensor waives
the exclusive right to collect such royalties for any exercise
by You of the rights granted under this License; and,

	Voluntary License Schemes. The Licensor waives the right to
collect royalties, whether individually or, in the event that
the Licensor is a member of a collecting society that
administers voluntary licensing schemes, via that society, from
any exercise by You of the rights granted under this License.

The above rights may be exercised in all media and formats whether now
known or hereafter devised. The above rights include the right to make
such modifications as are technically necessary to exercise the rights
in other media and formats. Subject to Section 8(f), all rights not
expressly granted by Licensor are hereby reserved.

4. Restrictions

The license granted in Section 3 above is expressly made subject to and
limited by the following restrictions:

	You may Distribute or Publicly Perform the Work only under the terms
of this License. You must include a copy of, or the Uniform Resource
Identifier (URI) for, this License with every copy of the Work You
Distribute or Publicly Perform. You may not offer or impose any terms
on the Work that restrict the terms of this License or the ability of
the recipient of the Work to exercise the rights granted to that
recipient under the terms of the License. You may not sublicense the
Work. You must keep intact all notices that refer to this License and
to the disclaimer of warranties with every copy of the Work You
Distribute or Publicly Perform. When You Distribute or Publicly
Perform the Work, You may not impose any effective technological
measures on the Work that restrict the ability of a recipient of the
Work from You to exercise the rights granted to that recipient under
the terms of the License. This Section 4(a) applies to the Work as
incorporated in a Collection, but this does not require the
Collection apart from the Work itself to be made subject to the terms
of this License. If You create a Collection, upon notice from any
Licensor You must, to the extent practicable, remove from the
Collection any credit as required by Section 4(c), as requested. If
You create an Adaptation, upon notice from any Licensor You must, to
the extent practicable, remove from the Adaptation any credit as
required by Section 4(c), as requested.

	You may Distribute or Publicly Perform an Adaptation only under the
terms of: (i) this License; (ii) a later version of this License with
the same License Elements as this License; (iii) a Creative Commons
jurisdiction license (either this or a later license version) that
contains the same License Elements as this License (e.g.,
Attribution-ShareAlike 3.0 US)); (iv) a Creative Commons Compatible
License. If you license the Adaptation under one of the licenses
mentioned in (iv), you must comply with the terms of that license. If
you license the Adaptation under the terms of any of the licenses
mentioned in (i), (ii) or (iii) (the “Applicable License”), you must
comply with the terms of the Applicable License generally and the
following provisions: (I) You must include a copy of, or the URI for,
the Applicable License with every copy of each Adaptation You
Distribute or Publicly Perform; (II) You may not offer or impose any
terms on the Adaptation that restrict the terms of the Applicable
License or the ability of the recipient of the Adaptation to exercise
the rights granted to that recipient under the terms of the
Applicable License; (III) You must keep intact all notices that refer
to the Applicable License and to the disclaimer of warranties with
every copy of the Work as included in the Adaptation You Distribute
or Publicly Perform; (IV) when You Distribute or Publicly Perform the
Adaptation, You may not impose any effective technological measures
on the Adaptation that restrict the ability of a recipient of the
Adaptation from You to exercise the rights granted to that recipient
under the terms of the Applicable License. This Section 4(b) applies
to the Adaptation as incorporated in a Collection, but this does not
require the Collection apart from the Adaptation itself to be made
subject to the terms of the Applicable License.

	If You Distribute, or Publicly Perform the Work or any Adaptations or
Collections, You must, unless a request has been made pursuant to
Section 4(a), keep intact all copyright notices for the Work and
provide, reasonable to the medium or means You are utilizing: (i) the
name of the Original Author (or pseudonym, if applicable) if
supplied, and/or if the Original Author and/or Licensor designate
another party or parties (e.g., a sponsor institute, publishing
entity, journal) for attribution (“Attribution Parties”) in
Licensor’s copyright notice, terms of service or by other reasonable
means, the name of such party or parties; (ii) the title of the Work
if supplied; (iii) to the extent reasonably practicable, the URI, if
any, that Licensor specifies to be associated with the Work, unless
such URI does not refer to the copyright notice or licensing
information for the Work; and (iv) , consistent with Ssection 3(b),
in the case of an Adaptation, a credit identifying the use of the
Work in the Adaptation (e.g., “French translation of the Work by
Original Author,” or “Screenplay based on original Work by Original
Author”). The credit required by this Section 4(c) may be implemented
in any reasonable manner; provided, however, that in the case of a
Adaptation or Collection, at a minimum such credit will appear, if a
credit for all contributing authors of the Adaptation or Collection
appears, then as part of these credits and in a manner at least as
prominent as the credits for the other contributing authors. For the
avoidance of doubt, You may only use the credit required by this
Section for the purpose of attribution in the manner set out above
and, by exercising Your rights under this License, You may not
implicitly or explicitly assert or imply any connection with,
sponsorship or endorsement by the Original Author, Licensor and/or
Attribution Parties, as appropriate, of You or Your use of the Work,
without the separate, express prior written permission of the
Original Author, Licensor and/or Attribution Parties.

	Except as otherwise agreed in writing by the Licensor or as may be
otherwise permitted by applicable law, if You Reproduce, Distribute
or Publicly Perform the Work either by itself or as part of any
Adaptations or Collections, You must not distort, mutilate, modify or
take other derogatory action in relation to the Work which would be
prejudicial to the Original Author’s honor or reputation. Licensor
agrees that in those jurisdictions (e.g. Japan), in which any
exercise of the right granted in Section 3(b) of this License (the
right to make Adaptations) would be deemed to be a distortion,
mutilation, modification or other derogatory action prejudicial to
the Original Author’s honor and reputation, the Licensor will waive
or not assert, as appropriate, this Section, to the fullest extent
permitted by the applicable national law, to enable You to reasonably
exercise Your right under Section 3(b) of this License (right to make
Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR
OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY
KIND CONCERNING THE WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE,
INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTIBILITY,
FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF
LATENT OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS,
WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE
EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL
LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF
THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

	This License and the rights granted hereunder will terminate
automatically upon any breach by You of the terms of this License.
Individuals or entities who have received Adaptations or Collections
from You under this License, however, will not have their licenses
terminated provided such individuals or entities remain in full
compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will
survive any termination of this License.

	Subject to the above terms and conditions, the license granted here
is perpetual (for the duration of the applicable copyright in the
Work). Notwithstanding the above, Licensor reserves the right to
release the Work under different license terms or to stop
distributing the Work at any time; provided, however that any such
election will not serve to withdraw this License (or any other
license that has been, or is required to be, granted under the terms
of this License), and this License will continue in full force and
effect unless terminated as stated above.

8. Miscellaneous

	Each time You Distribute or Publicly Perform the Work or a
Collection, the Licensor offers to the recipient a license to the
Work on the same terms and conditions as the license granted to You
under this License.

	Each time You Distribute or Publicly Perform an Adaptation, Licensor
offers to the recipient a license to the original Work on the same
terms and conditions as the license granted to You under this
License.

	If any provision of this License is invalid or unenforceable under
applicable law, it shall not affect the validity or enforceability of
the remainder of the terms of this License, and without further
action by the parties to this agreement, such provision shall be
reformed to the minimum extent necessary to make such provision valid
and enforceable.

	No term or provision of this License shall be deemed waived and no
breach consented to unless such waiver or consent shall be in writing
and signed by the party to be charged with such waiver or consent.

	This License constitutes the entire agreement between the parties
with respect to the Work licensed here. There are no understandings,
agreements or representations with respect to the Work not specified
here. Licensor shall not be bound by any additional provisions that
may appear in any communication from You. This License may not be
modified without the mutual written agreement of the Licensor and
You.

	The rights granted under, and the subject matter referenced, in this
License were drafted utilizing the terminology of the Berne
Convention for the Protection of Literary and Artistic Works (as
amended on September 28, 1979), the Rome Convention of 1961, the WIPO
Copyright Treaty of 1996, the WIPO Performances and Phonograms Treaty
of 1996 and the Universal Copyright Convention (as revised on July
24, 1971). These rights and subject matter take effect in the
relevant jurisdiction in which the License terms are sought to be
enforced according to the corresponding provisions of the
implementation of those treaty provisions in the applicable national
law. If the standard suite of rights granted under applicable
copyright law includes additional rights not granted under this
License, such additional rights are deemed to be included in the
License; this License is not intended to restrict the license of any
rights under applicable law.

Note

Creative Commons is not a party to this License, and makes no
warranty whatsoever in connection with the Work. Creative Commons
will not be liable to You or any party on any legal theory for any
damages whatsoever, including without limitation any general,
special, incidental or consequential damages arising in connection
to this license. Notwithstanding the foregoing two (2) sentences, if
Creative Commons has expressly identified itself as the Licensor
hereunder, it shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the
Work is licensed under the CCPL, Creative Commons does not authorize
the use by either party of the trademark “Creative Commons” or any
related trademark or logo of Creative Commons without the prior
written consent of Creative Commons. Any permitted use will be in
compliance with Creative Commons’ then-current trademark usage
guidelines, as may be published on its website or otherwise made
available upon request from time to time. For the avoidance of
doubt, this trademark restriction does not form part of the License.

Creative Commons may be contacted at http://creativecommons.org/.

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	OE-lite Handbook 0.1 documentation

Index

 I
 | O
 | P
 | S

I

 	

 	ingredients directory

O

 	

 	OE-lite class

 	OE-lite item

 	OE-lite layer

 	OE-lite layer, embedded layer

 	OE-lite layer, external layer

 	OE-lite layer, internal layer

 	

 	OE-lite manifest

 	OE-lite package

 	OE-lite recipe

 	OE-lite repository

 	OE-lite stack

 	OE-lite task

P

 	

 	prebake

S

 	

 	staging

 Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		OE-lite Handbook 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Kim Højgaard-Hansen.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/down.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

