

 Navigation

 	
 index

 	
 next |

 	odk_planner v0.11 documentation

Overview odk_planner Documentation

	Introduction
	Example

	Features

	Overview

	Installation
	Prerequisites

	Get odk_planner

	Setup instance

	Installing cron job

	Configuration
	settings sheet

	users sheet

	overview sheet

	colors sheet

	cron sheet

	sms sheet

	More sheets

	Using
	Uploading form template

	Overview entered forms

	Viewing data

	Sending SMS

	Automatization

	Log files

	Tools
	Utility scripts

	Labeler

	ODK pusher

	Xray uploader

	MS-SQL uploader

	Tutorial
	Demo Project Description

	Initial setup of odk_planner and ODK Aggregate

	Setting up the Project

	Uploading the forms

	Check out the overview

	Viewing data

	Solutions

	Hacking
	Overview

	Globals and Utilities

	Accessing the Database

	Developing a Plugin

	Testing

	About Privacy
	Digitization

	Database segregation

	Admin rights

	Choosing a good password

	Questions & Answers
	ODK Aggregate database settings

	Changelog

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Introduction

odk_planner is a web application for use in combination with OpenDataKit [http://opendatakit.org],
especially with XLSForm [http://xlsform.org/] and the Aggregate Server [http://opendatakit.org/use/aggregate/]. While it’s easy to
export the data in the end, the Aggregate Server interface makes it difficult
to monitor the progress of form submission, especially in complex studies where
many different forms are used and timing between the different forms is
critical.

Example

The main functionality of odk_planner is to show all submitted form data in
a large Overview table, sorted by study subject id.
Imagine that you have a study with an initial screening form CRF1 that
is followed by a second examination form CRF2 and a lab form LRF1.
When you look into your data using ODK Aggregate, it would be displayed as
three separate tables (the data shown below is taken from the tutorial)

	study_id
	full_name
	completion_date

	80001
	Alice Armstrong
	2014-01-01

	80002
	Bob Berkeley
	2014-01-02

	80003
	Cindy Chase
	2014-01-03

	80004
	Daniel Death
	2014-01-04

	80005
	Emily Einstein
	2014-01-05

	80006
	Fabian Fox
	2014-01-06

	study_id
	temperature
	completion_date

	80001
	38.3
	2014-01-01

	80002
	37.3
	2014-01-02

	80003
	37.4
	2014-01-03

	80004
	38.8
	2014-01-04

	80005
	37.6
	2014-01-05

	study_id
	hemoglobin
	completion_date

	80001-V01
	14
	2014-01-06

	80002-V01
	8
	2014-01-06

	80003-V01
	9
	2014-01-06

	80004-V01
	6
	2014-01-10

	80005-V01
	13.1
	2014-01-10

	80006-V01
	15.5
	2014-01-10

It’s obvious that this kind of data display quickly becomes quite confusing –
with thousands of participants and dozens of forms in a real-world scenario...
odk_planner extracts the data from the database and displays a neat
overview form. For the data above, this would like
this

	study_id
	CRF1
	CRF2
	LRF1

	80001
	2014-01-01
	2014-01-01
	2014-01-06

	80002
	2014-01-02
	2014-01-01
	2014-01-06

	80003
	2014-01-03
	2014-01-01
	2014-01-06

	80004
	2014-01-04
	2014-01-01
	2014-01-10

	80005
	2014-01-05
	2014-01-01
	2014-01-10

	80006
	2014-01-06
	
	2014-01-10

Features

In particular, odk_planner has the following features

	cells in the overview table can be highlighted
according to the relative timing to other forms: for example, the empty
cell 80006/CRF2 in the table above could be colored if 80006/CRF1
has been entered a defined number of days ago

	cells in the overview can also be highlighted
depending on the data of values in the submitted forms: for example, the
submissions of LRF1 above could be colored if the hemoglobin level is
outside a specified range

	the data in the overview table can be used to generate printable
tables of missing forms, and these reports of missing
forms can even automatically be sent in emails

	participants can be notified by SMS, based on the
highlighting of the cells in the overview table; this mechanism can
also be configured to send data from the forms to
a specified number

	all data in the database can be viewed by clicking
on the links in the overview table; contrary to ODK Aggregate, you can
specify detailed access permissions for every
datapoint

	the schema of the data is read from the same Excel files that are used
to generate the .xml forms via XLSForm [http://xlsform.org/]

	to put the cherry on the cake, this web application comes bundled with some
tools that can be used to push data automatically into
the ODK database; with this mechanism you can for example integrate
integrate X-ray images or data from a MS-SQL
database – transparently and fully automatically

Overview

The documentation is structured as follows:

	Installation explains how to set up odk_planner;
in a typical setting, this part of the documentation would only be read
by the system administrator who also installed the Aggregate server

	Configuration describes how to adapt the configuration
file config.xls to your needs

	Using describes the features in more detail

	Tools gives an overview of the additional (Python-based)
software included in the distribution to automate the integration of data
from different sources into your Aggregate database

	Tutorial finally describes a sample setup and comes with
some sample data that quickly lets you play around with odk_planner to
get an idea of its functionality

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Installation

This part of the documentation describes how odk_planner can be installed
on the server. If you use the program from a place where it has already be
installed and you got a working URL that asks you for username/password, then
you can proceed with the Configuration.

Prerequisites

	A working ODK Aggregate [https://opendatakit.org/use/aggregate/] (tested against v1.3.2) installation.
odk_planner can be installed on the same computer that runs ODK
Aggregate, or on a different computer that can connect to the MySQL server
that is used by ODK Aggregate.

	Web server (tested with Apache [http://httpd.apache.org/]) and PHP [http://php.net/]

	Python2 [https://www.python.org/downloads/release/python-278/] : Python scripts are used to create new instances and for automated testing

	Python3 [https://www.python.org/downloads/release/python-342/] : ODK pusher can be used to automatically
push data to the ODK Aggregate server and is built with Python3

Please see the following documents on how to install these prerequisites on
your local computer:

	On Windows, install MySQL [https://www.mysql.com/], Apache [http://httpd.apache.org/] and PHP [http://php.net/] bundled in one simple
download: XAMPP [https://www.apachefriends.org/index.html]

	On Linux make sure you installed the packages apache2,
mysql-server, and php5

	On OS X you should first install Brew [http://brew.sh/] and then download the package
mysql – apache/php are installed by default, but must be activated [https://duckduckgo.com/?q=OS+X+activate+apache+php]

Once you got these up and running you can continue with the detailed
description on how to install ODK Aggregate [https://opendatakit.org/use/aggregate/tomcat-install/]

Note

XAMPP also comes with a pre-installed Tomcat-version that is not
compatible with ODK Aggregate. Thus, you need to install the appropriate Tomcat
version (Tomcat 6) separately (see how to install ODK Aggregate [https://opendatakit.org/use/aggregate/tomcat-install/])

Get odk_planner

Get odk_planner as a ZIP file [https://github.com/SwissTPH/odk_planner/archive/master.zip] or clone the entire repository from
GitHub [https://github.com/SwissTPH/odk_planner]. Then simply move the entire odk_planner directory structure into
Apache’s documents root folder.

	on OS X this is /Library/WebServer/Documents/

	on Debian this is /var/www/

	when using XAMPP on Windows this is C:\xampp\xampp\htdocs

When you now open http://localhost/odk_planner in your web browser you
should see the following

[image: _images/no_instance.png]
On Linux/Unix/OS X it is important to configure the file access rights
correctly so that the user running apache can modify the per-instance files
(it’s enough to set the correct group; write permissions will be set by the
script create_instance.py):

cd /path/to/odk_planner
sudo chown :_www instances/ # on OS X
sudo chown :www-data instances/ # on Debian

Setup instance

Next thing to do is to set up an instance. odk_planner saves all its
configuration, forms, and log data on a per-instance basis. With a single
download of odk_planner you can set up any number of instances that are
completely independent of each other.

If you installed odk_planner into the root directory of your web server,
then an instance named instance_name can be reached under the following
two addresses:

http://localhost/odk_planner/index.php?instance=instance_name
http://localhost/odk_planner/instance_name

A new instance is then created by executing the script
tools/create_instance.py (to change the proposed default values please
modify the file test/demo/config/config-sample.ini):

$ python tools/create_instance.py

this script will create a new odk_planner instance
--

instance name: test
MySQL username: ["odk_planner_ro"] aggregate_user
MySQL password: ["0dk pa2sw0rd"] lnb83oSL%.ni
MySQL database: ["odk_planner_test"] main_study
MySQL host: ["127.0.0.1"]

generated new instance:

 - name: test
 - temporary password: xL6NZQfL

make sure that the directory "instances/test/" and all its
contents are writable by the apache user (this should automatically be the
case if the directory "instances/" has the right group
ownership)

press <ENTER> to continue...

The script asks for an instance name (below referenced as instance_name)
and MySQL connection parameters. After creating the instance, the temporary
password (xL6NZQfL in the example above) is printed. This password can be
used for an initial login, before new passwords are set and
will be deactivated after the config is changed via the webinterface for
a first time.

This part of the configuration is never shown to the user of the webapp and can
only be modified by editing the textfile
instances/<instance_name>/config/config.ini; the following values can be
specified

	login_timeout : after how many minutes a user should be automatically
logged out in absence of activity

	proxy : optional setting if a proxy server has to be used to access
other websites (used for sending SMS)

	MySQL settings : db_host, db_database, db_user, db_pass
: the credentials with which odk_planner will access the MySQL
database. See the file create_db_and_user.sql that was created during
ODK Aggregate installtion (or get them from the webapp). Note that odk_planner only needs read rights and
a new user without write access should be created.

	email settings : smtp_server, smtp_user, smtp_pass : reports
are sent via email when automatization is used;
these settings specify a valid email account from which the email can be
sent (the server running the webapp does not need to be configured to send
emails; being able to connect any SMTP server is enough)

	default settings for new instances can be changed by editing the file
test/demo/config/config-sample.ini

The initial configuration is the same that is used in the tutorial, but this can also be changed by modifying the file
test/demo/config/config-sample.xls

Installing cron job

The script cron.php (see automatization) should
be called on a daily basis. To install cronjob [http://en.wikipedia.org/wiki/Cron] that executes the script
once a day, execute the following command (as root):

crontab -u www-data -e

Then add a new line at the end of the file for every instance that you want
to automatize (the following example will run the
cron script once a day at 5 AM):

0 5 * * * /usr/bin/php /path/to/odk_planner/cron.php -i instance_name

Confirm that

	you use the same user that runs the PHP script when called from the
web server (i.e. the www-data in the example above)

	you specify the right path to odk_planner

	the user specified above actually is permitted to run cron jobs

	that no error output is generated (check the local email of the user
running the cron job)

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Configuration

This chapter is a reference documentation for the settings in the configuration
file config.xls that contains all the user-modifiable settings for the
webapp. Some settings (such as database connection parameters) cannot be
changed by the user of the webapp, but only by the sysadmin (see setting
up an instance).

When using odk_planner for the first time, please have a look at
the tutorial.

All configuration is done by first downloading and then editing the file
config.xls locally (using Excel [http://office.microsoft.com/en-us/excel/] or LibreOffice [http://www.libreoffice.org/download/libreoffice-fresh/]), before uploading the
updated file to the server. To do this, log in with an account that has
“admin” rights and then click on the admin link in the
top navigation menu.

The following subsections are structured the same way as the sheets in the
file config.xls

settings sheet

This sheet contains general information on how the data in the ODK database
is structered and how it should be accessed as well as the email configuration.

	idfield : Name of field that links forms together (e.g. study participant
ID). If a form does not have this field, it will not be displayed in the
Overview entered forms

	idfield_start, idfield_length : Which part of the idfield
should be used to match different rows into the same column. For example,
if IDs include a variable part at the end, such as the visit identifier
-V01 in the ID 80001-31-V01, then $idfield_start=0 and
$idfield_length=8 would match the IDs 80001-31-V01 and
80001-31-E03

	datefield : Specify which form field should be used to determine when
the form was filled in. Normally, such a field would be specified as type
today in the .xls form. If a given form does not have the specified
field, the submission date is taken (auto generated by ODK).

	title : The title is showed on the login site and in the menu;
particularly handy if using multiple instances.

	opentabs : set to yes if you want data and
sms related pages to automatically open in a new
tab.

users sheet

Access to odk_planner is restricted by username/password. Different users can
have different access rights. The username/password/access rights are stored in
the columns name, password, rights and access.

The following rights are defined (specify any combination separated by
commas):

	overview : can dispaly the main overview table of entered data

	data : can see the actual data inside the forms; what fields are visible
to what user can be set by different values for access. see
Example of access restrictions

	forms : can upload and delete .xls forms (see
Uploading form template)

	sms : can send messages

	admin : can change the configuration file config.xls and view the
logs

overview sheet

This sheet specifies which IDs should be grouped together into one
overview table. For example, a project can contain two
groups of subjects with a partly overlapping set of forms for each. Instead of
generating one big overview containing all subjects and all forms, it would
then be more clearly laid out to have an different overview table for every
group. The id_rlike field contains an expression that matches all IDs for
the given group – a ".*" (without double quotes) is a wildchar that
matches any number of characters (read more about MySQL regular expressions [http://dev.mysql.com/doc/refman/5.6/en/regexp.html]; and a relatively easy
tutorial can be found here [http://regexone.com/]). In addition to the
ID-based separation, it is also possible to use arbitrary fields from submitted
forms to define what cases should be shown in which overview (by specifying
a condition; see below for the format of the conditions). A given ID may appear in any combination of overviews.

Example : show all forms of all IDs in same big overview table

	id_rlike
	name
	subheading
	condition
	forms

	.*
	
	
	
	

Example : If the IDs of patients start with 80 and the IDs of controls
start with 83, then the following table would generate two overview tables,
showing the CRFs and the LRFs respectively, each overview split into tables
with subheadings for cases and controls.

	id_rlike
	name
	subheading
	condition
	forms

	^80.*
	Clinic
	Cases
	
	CRF1,CRF2,CRF3

	^83.*
	Clinic
	Controls
	
	CRF1,CRF2,CRF3

	^80.*
	Lab
	Cases
	
	LRF1,LRF2

	^83.*
	Lab
	Controls
	
	LRF1,LRF2

Example : Split IDs into two overviews showing the same forms, depending on
whether the field CRF1\sex is male or female:

	id_rlike
	name
	subheading
	condition
	forms

	.*
	Men
	
	CRF1\sex=”male”
	CRF1,CRF2,CRF3,LRF1,LRF2

	.*
	Women
	
	CRF1\sex=”female”
	CRF1,CRF2,CRF3,LRF1,LRF2

colors sheet

Every row in this sheet defines a timing constraint that is visually displayed
in the overview table. A timing constraint is defined
between two forms. Once the form specified by the column form1 is entered,
a timer is started. When this timer reaches delay days and the form
form2 is not yet entered into the database, then the corresponding table
cell will get the CSS style specified in the style column (defaults to
background-color property). If more than one row apply to a cell, then its
styles are applied in the same order as the rows in the table.

As a special case, the cell of a form can be colored independent of any other
form. This way, forms can be highlighted depending on their content (using
conditions). In this case, specifying only form2 is enough (see example
below).

As a special special case, only form2 is specified and it’s set to a single
asterisk * which will allow to color the row header (where the ID is shown).

Optionally, this coloring can be made dependent on any number of
conditions
that must all be fulfilled in order for this coloring rule to apply to the
given forms. These conditions are specified in the column condition.

field1 > 1 & (formid1\field2 = "value with space" | field3 < 5)

Remarks:

	when no formid is specified, the field refers to the form from
column form2

	only the operators <, >, = and != are allowed

	if the value contains spaces, it must be enclosed in double quotes

	logical or | as well as logical and & can be used to connect
different expressions (and takes precedence over or)

	arbitrarily complex logical expressions can be constructed using
grouping parenthesis

	an expression with a non-existing field (e.g. because a form has not
been submitted) always evaluates as false; therefore, an expression
like FORM\FIELD>"" will therefore evaluate to false if the form
is not submitted, the field is not found in the form, or the value
of the field is the empty string – in all other cases the expression
would evaluate to true (regardless of the datatype of the value [http://php.net/manual/en/language.operators.comparison.php])

Example : The following lines will highlight the empty cell for the
follow_up form if the briefing form has has specified that a follow up
should be done for this subject (field needs_follow_up). The empty cell
will first be highlighted green after a week. If it’s still empty after
a second week, the cell color will turn orange and then finally red.
Additionally, IDs (in the row header) are underlined for these individuals.

	form1
	form2
	delay
	style
	condition

	(empty)
	briefing
	
	background-color:green
	needs_follow_up=yes

	briefing
	follow_up
	7
	background-color:green
	briefing\needs_follow_up=yes

	briefing
	follow_up
	14
	background-color:orange
	briefing\needs_follow_up=yes

	briefing
	follow_up
	21
	background-color:red
	briefing\needs_follow_up=yes

	(empty)
	*
	
	text-decoration:underline
	briefing\needs_follow_up=yes

Condition format

Conditions can be used in the condition column of the colors heet and the overview sheet. They have the
following format:

field1 > 1 & (formid1\field2 = "value with space" | field3 < 5)

Remarks:

	formid\field is the name of the field as displayed in the data
viewer, this is not necessarily the field name as specified
in the .xls file (for example if the .xls file defines a field
called ID in the group INFO, then the name of the field will
probably be INFO_ID).

	when no formid is specified, the field refers to the form from
column form2

	only the operators <, > and = are allowed

	if the value contains spaces, it must be enclosed in double quotes

	logical or | as well as logical and & can be used to connect
different expressions (and takes precedence over or)

	arbitrarily complex logical expressions can be constructed using
grouping parenthesis

Additional columns

	list : The list column specifies which of these rules should be used to
generate files of “missing forms”. If the list
column is left empty, the form is not added to a .csv list (e.g. rules
that are merely used to highlight some condition). If the column is not
empty, then its content will be used as the remark column in the
generated list file.

	more : This column contains settings for additional rule-based actions.
The format is the following : A space separated list of option:value
pairs. The possible options are:
	sms : Specify what short message should be generated based on this rule. The value of this option
is the name of a template. If the template title
is followed by an exclamation mark !, then the corresponding message
is also sent autonomously.

Example : The following lines will automatically send the message from
template welcome to every participant as soon as the form briefing is
submitted. If the form follow_up is not entered after one week, the
participant will be added to the missing list with the remark briefing 1 week
old. If the follow up is still not entered two weeks after the briefing was
submitted, the web application will propose an autogenerated message, but this message will not automatically be sent
(because the exclamation mark is missing). In a real configuration, these rows
should be combined with the rows from the example above.

	form1
	form2
	delay
	list
	more

	(empty)
	briefing
	
	
	sms:welcome!

	briefing
	follow_up
	7
	briefing 1 week old
	(empty)

	briefing
	follow_up
	14
	
	sms:follow_up_overdue

cron sheet

This sheet contains settings regarding the automatization:

	notify_email : This address will receive an update every time the
script is run autonomously.

	notify_logs : A comma separated list of log files that
are sent to the notify_email. The log files are added as .csv files and
only new entries since the last email are included. If nothing changed since
the last email, the log is not attached.

	profile : If this value is set to yes, performance information is added
to the cron log.

	reports_mdays : A comma-separated list of days of the month on which
a list of missing forms is attached to the email.

sms sheet

Configuration of messaging is done via the following
key/value pairs:

	default_country_prefix : if a phone number is specified with one
leading zero ("0xxxxxxxx") then the default_country_prefix is
automatically added in the beginning of the number (after stripping the
single zero)

	url : URL of messaging API (e.g.
http://bulksms.vsms.net:5567/eapi/submission/send_sms/2/2.0
when using the bulksms API [http://www.bulksms.com/int/w/products-apis.htm])

	response_regexp : a regular expression (PCRE [http://php.net/manual/en/pcre.pattern.php], but without the
delimiters) that must match the response body sent by the server
when a message was successfully delivered

	params : default parameters that are sent with the message; include
username and password here (e.g. username=XXX&password=XXX for the
bulksms API [http://www.bulksms.com/int/w/products-apis.htm])

	param_message : name of the parameter that is used for the message
(e.g. message for the bulksms API [http://www.bulksms.com/int/w/products-apis.htm])

	param_number : name of the parameter that is used to specify the
receiver’s phone number (e.g. msisdn for the bulksms API [http://www.bulksms.com/int/w/products-apis.htm]) –
the number will be formatted with country prefix but without any leading
zeroes or plus sign

	phone_numbers defines where phone numbers can be found in the forms.
every entry has the form form_id\field_name and multiple entries are
separated by spaces. forms that do not exist on the server, that are
not found for the given patient, or that do not feature the specified
field, are simply ignored.

	template_NAME entries define the messaging templates. When writing
a message using odk_planner, the message text can be chosen from these
templates. The content of the templates is the only content that is allowed
for autogenerated messages.
	if this template starts with a phone number in the form +1234567890
(including country code) then the message is sent to this number instead
of the number defined by phone_numbers

	every {FORMID\FIELD} is replaced with the content of the specified
form for the given patient. only fields that have a access column with sms can be sent via this mechanism

More sheets

odk_planner can be extended with additional files in the plugins/
directory that can use settings in the existing sheets or add a new sheet
(with the same name as the plugin) to store settings. An example is the
aforementioned sms sheets (the main plugin file is plugins/sms.php).
Another example is the doughnut sheet that specifies which fields should
be used to generate doughnut plots [http://www.chartjs.org/docs/#doughnut-pie-chart]. Please see the comments in the file
test/demo/config/confi.xls and in the file plugins/dougnut.php for more
information how to configure these extensions.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Using

After setting up an instance (or having your sysadmin
doing this for you) you can now log into the webapp using the temporary
password. Simply add ?instance=XXX to the url where odk_planner is
located

[image: _images/login.png]
If you’re new to using odk_planner please proceed with the tutorial that describes how setup a working configuration.

Uploading form template

The very same Excel sheets that are used as input to XLSForm [http://opendatakit.org/use/xlsform/] also serve to describe the content of
the databases to the odk_planner. The grouping used in the spreadsheet is
replicated when content of individual forms is displayed. Note that the xls
forms must have the same filename as the ones that were used to generate
the xml files (which is not necessarily the same as the form_id in the
settings sheet of the xls form).

A simple access control system is provided by using an additional column
access in the excel form: If this column is not existing or empty, the
string default is assumed to be its content. Whenever a user views a form,
a field is only displayed if the user’s acl configuration parameter
contains at least one of the comma-separated names that are listed in the
access column. Group names can be freely defined apart from the predefined
name default – the following example chose the
group names sensitive and secretary. If a field has the special access
group sms, then its value can be sent via short messages.

Forms can be managed by any user having the “forms” right.
The form overview page is displayed by navigating through the forms menu
item on top of the page. This page shows an overview of all uploaded forms in
a table.

If there was a problem in the matching between database columns and form
.xls fields, it is displayed in the “info” column of this overview table.
A not matched indicates that the corresponding form could not be matched
with any form in the database – make sure the .xml form was uploaded to
the aggregate server.

This view also allows to delete forms and upload new ones. Make sure
your spreadsheet has the extension .xls and is in Microsoft Excel
97/2000/XP/2003 format.

Example of access restrictions

	access column
	user’s acl
	result

	(empty or missing)
	default
	can view

	sensitive
	default
	can’t view

	sensitive, default
	default
	can view

	sensitive, secretary
	default, sensitive
	can view

Overview entered forms

The main purpose of odk_planner is to shows an overview of all entered
forms (as far as their corresponding .xls form has been uploaded) so far in
a structured way. The different forms are linked together using a special field
$idfield that must be present in every individual form. The overview table
view displays all forms submitted so far, with all forms having the same
$idfield arranged in a row. For every form the submission date is
displayed. It is possible to have more than one submission of the same form for
the same $idfield – this would be displayed with two different submission
date/times.

The “colors” sheet in config.xls specifies the temporal
interdependance of the different forms. Normally, a follow-up form is expected
to be submitted after a given delay. If the time period between two forms is
longer than specified (or if the follow-up form has not been submitted yet and
the current date is alreday considered “late”), the corresponding field in the
overview table is highlighted.

The data of individual submissions can be viewed by clicking on the submission
date/time (user needs data right).

.csv generation

In the upper left corner of every overview table there is a button that will
generate a .csv list of missing forms. Whether a highlighted cell should be
included in this list is specified by the value of its “list” column. These same lists are also generated and attached
to emails when the script is run autonomously.

Viewing data

After selecting a submission for display by clicking on it in the overview
table, its contents are arranged following the structure of the corresponding
uploaded .xls form. Individual form fields can be selectively (masked)
from users by using a access column in the .xls form. See above for more on access restrictions.

Doughnut plot

The plugin dougnut generates overview plots that show the distribution of
a field of interest over the whole study population. Ordinal data is put into
pre-specified bins before plotting. The example below shows the weight
distribution in the demo dataset.

[image: _images/weight_doughnut.png]

Sending SMS

If participants save their phone number in a form, this information can be used
to send short messages. Refer to sms sheet for proper configuration.

Messages can be sent manually: Click on the small letter symbol next to the
participant ID in the overview table to get to a
message screen. The phone number can be choosen from a drop down and the message
can be either a pre-defined template or a free text.

Autogenerating messages

This SMS feature can also be used in a semi-autonomous fashion. The same rules
that are used to color the overview table can also be
used to auto-generate messages from templates. A small widget on top of every
overview table indicates how many messages are generated as a result of these
rules (also showing the number of automatically generated messages already
sent).

Automatization

The PHP file called cron.php can be executed on the server and will
generate an overview. Different components of the odk_planner can register
to use this overview to generate output. Log messages are added to the
log file cron. At every script invocation, an
email is sent to the notify email address.

Currently, the following actions can be performed autonomously

	Automatically sending autogenerated messages to participants (if ! is added to the
template name in the additional configuration).

	Creating lists of missing forms and attaching them
to the email (on the days specified in the cron configuration).

Log files

The directory log/ contains different log files that can be examined through
the web interface (in the admin page). Additionally, an update on any of
these logs can be sent to the the notify email address.

	user : logins and login attempts

	cron : log of actions that were performed autonomously

	sms : list of SMS that were sent

	mass-sms : list of patient ID / template title of short message

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Tools

This chapter describes the additional tools included in the tools/
directory of the git repository. These additional programs are intended to be
used in conjunction with odk_planner but they are not prerequisites for the
web application itself.

Utility scripts

The script xls2xform.py can be used to translate a .xls form into a
.xml XForm from the command line:

python xls2xform form1.xml form2.xml

Labeler

Another tool bundled with odk_planner is a Python script called
labeler.py that generates labels with QR codes and study id numbers. The
configuration specifies which labels should be printed, how to align the
different parts of the label (size of QR code, how to split text label into
sublabels and where to print them, and what paper is to be used (size of
labels).

This tool is based on reportlab [https://bitbucket.org/rptlab/reportlab#rst-header-windows-packages]. To install it from the Python package index
simply type the following command:

$ easy_install reportlab

To generate the labels first start with the example configuration
labeler_example.xlsx that is also bundled with odk_planner. Either run
the script with the configuration as its only parameter (python labeler.py
labeler_example.xlsx) or drag the Excel workbook on the script in Windows
explorer. The output will be stored in the output directory. The
example configuration should work with labels of type Avery 3666 [http://www.avery.se/avery/en_se/Products/Labels/Multipurpose/White-Multipurpose-Labels-Permanent/General-Usage-Labels-White_3666.htm].

The configuration Excel workbook has two sheets:

	page_layout : Contains one string for every label on the sheet of
labels, starting the the label on the top left in cell A1.

	label_layout : Specifies the label size, as well as the size of the
different parts of the label.

The YYYYY part of the participant IDs on the page_layout sheet will be
replaced with the actual id (as specified by idrange on sheet
label_layout). It is possible to print labels for multiple participants on
a single sheet by specifying YYYY1, YYYY2, etc that will be replaced
with consecutive numbers. See the config labeler_example.xlsx that makes
use of this feature.

The following drawing shows the different parameters to set the label dimensions
via the config file:

[image: _images/labeler_config.png]
Other settings on the label_layout page:

	drawrect : Setting 1 in for this config value will print a rectangle
around every label. The idea is to use this, then print a page, then
adapt the settings to perfectly match the labels. If you cannot match
the label boundaries exactly, try to change the “Zoom” settings in the
printer dialog.

	singlepage : Setting this to 1 results in a pdf document for every
sheet of labels. Setting this to 0 will generate a single pdf with multiple
pages.

	textre : Specifies how to split up the ID string into multiple parts
for the label. You can specify (.*) if you want to print the whole
id as a single part. Use pythex [http://pythex.org/?regex=(%5Cd%5Cd%5Cd%5Cd%5Cd-31)-%3F(.*)&test_string=81001-31-V01S1&ignorecase=0&multiline=0&dotall=0&verbose=0] to construct your own expression.

ODK pusher

This directory contains different scripts for uploading XForms in a more or
less automated way to an ODK Aggregate instance. Note that these scripts need
Python 3 and will not run with an older Python version (due to SSL
communications problems when connecting to ODK Aggregate from Python 2).

The python module aggregate can be used to push data to an ODK Aggregate
instance. It also provides a command line interface for use by scripts, see:

python3 aggregate.py -h

Xray uploader

GUI program in tools/odk_pusher that watches a directory for new images
and sends compressed copies wrapped into a simple XForm, with optional user
provided data.

Prerequisites

	Python 3 [http://www.python.org/download]

	ImageMagick [http://www.imagemagick.org/script/binary-releases.php] : The executable file convert (or convert.exe under
windows) is used to scale images and convert them to JPEG prior to upload
to ODK Aggregate. Note that windows has its own convert.exe executable
and ImageMagick’s convert should therefore be installed in a local path or
renamed. Also note that Windows needs the “Visual C++ 2010 Redistributable
Package” (vcredist_x86.exe [http://www.microsoft.com/downloads/details.aspx?familyid=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84] for 32 bit platforms and both vcredist_x86.exe [http://www.microsoft.com/downloads/details.aspx?familyid=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84]
and vcredist_x64.exe [http://www.microsoft.com/downloads/details.aspx?familyid=BD512D9E-43C8-4655-81BF-9350143D5867] for 64 bit platforms).

Configuration

The program must be started with the name of a configuration file as
parameter. The configuration file is a JSON [http://en.wikipedia.org/wiki/JSON] encoded file and contains the
following keys (use the file xray_uploader.json as template for a new
configuration):

	server : full URL of the ODK Aggregate server

	username : username to use to identify to the ODK Aggregate server;
this username needs “Data Collector” access rights (see the “Site Admin”
page of the Aggregate interface)

	password : password for username

	xray_dir : path of the directory in which the Xray images are stored

	id_re : python regular expression [https://docs.python.org/2/howto/regex.html] (test online)
that describes the format of the patient_id field. This field is
autogenerated from the filename of every Xray image found in the directory.
For example, if all patient_id have the form XXXX-01 where X is
any number, then this configuration setting should be ^\\d{4}-01$ and
valid Xray file names would be 1234-01.JPG or 1234-01.tif but not
1234-1.tif. Files that do not follow the naming convention defined with
this field cannot be uploaded and a corresponding warning message will be
generated in the program’s log output.

	convert_executable : Path to the convert [http://www.imagemagick.org/Usage/resize/] executable. This program is
used to convert the Xray image to JPEG and resize its width to a specified
maximum size before uploading it to the Aggregate server. The convert
executable can be downloaded from the ImageMagick [http://www.imagemagick.org/script/binary-releases.php] download site.

	pixels : Width of image to upload to the server.

	manual_fields : A dictionary of field names and regular expressions. Before uploading Xray images, the user will be
asked to fill in a value for each of these fields. The regular expressions
ensure the consistency of the entered data.

	xform : Path to a XML XForm that was uploaded to the ODK Aggregate
server and in which the Xray images should be stored.

	interval : Interval in minutes between checks of changes in the
directory containing the Xray images.

	auto : If set to true, all images are automatically uploaded to the
server as soon as they arrive in the directory. Cannot be activated with
non-empty manual_fields.

Usage

Step 1 – Scan Xray films : Proceed as usual, but save images under
directory “DesktopTBDAR_CXR” so that xray_uploader will find them. Make sure
to name the file with a patient ID : No spaces allowed! No additional zeroes
allowed!

Step 2 – Start xray uploader & choose images : The images can be chosen in
the left pane (press Ctrl-A to select all). The upload is started by clicking
on “upload selected” (or press the Return key). If the left pane is empty, all
images from the TBDAR_CXR folder have already been uploaded.

[image: _images/xray_uploader_choose.png]
Step 3 – Fill in additional information : Some details have to be filled
in before the download can be started (your initials and an optional comment).

[image: _images/xray_uploader_fill_in.png]
Final step – Check upload : In the left panel you should see a “uploaded
image XXX” for every file that is uploaded. Also, the files disapper in the
left pane (and the program will remember this for the next time).

[image: _images/xray_uploader_check.png]
Troubleshooting : If the left pane shows anything in red, this means there
was an error somewhere. For example, when the file names are mis-spelled (below
is a screenshot where a zero was accidentally replaced with a small letter
“o”). Check internet connection and make sure you saved the images in the right
directory.

[image: _images/xray_uploader_troubleshoot.png]

MS-SQL uploader

GUI program in tools/odk_pusher that automatically uploads all new results
from a MS-SQL database to a ODK Aggregate server. Since this program is based
on ODK pusher, it also needs Python 3 to run. Its single dependency
is the pure python library pypyodbc [https://code.google.com/p/pypyodbc/].

The MS-SQL database is polled every couple of seconds and new rows are used to
fill in .xml forms and then these are sent to the Aggregate server. Once
the server has accepted the incoming form, this is noted in a local .sqlite
database to prevent sending the same form multiple times.

Configuration

All configuration is stored in a .json file that is either named
mssql_uploader.json and stored in the current directory or specified
to the script as a command line parameter.

The configuration is relatively complex, as it involves extracting the data
from one or multiple tables with a .sql script, filling in custom one or
multiple .xml forms and logging into a MS-SQL and a ODK Aggregate server.
The following paragraphs describe a sample configuration to extract data from
a Cepheid GeneXpert system. Please note that this example is thought purely
for educational purposes and that neither the proper working nor the permission
to actually use this script can be provided by the author. The files can
be found in the tools/odk_pusher/xpert/ directory.

The file mssql_uploader.json has the following keys:

	title : use this to customize the title of the uploader window

	interval : how many seconds to wait between successive polls of
the MS-SQL database

	mssql : a dictionary containing the connection parameters of
the MS-SQL database; the specified user must have read access to
the database in question
	database : name of the database to poll data from

	server : MS-SQL server and instance name

	username and password : credentials of user with read
access to the database

	odk : a dictionary containing the connection settings to upload
data to the ODK Aggregate server
	server : full URL of the ODK Aggregate server

	username : username to use to identify to the ODK Aggregate server;
this username needs “Data Collector” access rights (see the “Site Admin”
page of the Aggregate interface)

	password : password for username

	sqlitedb : name of a SQLite [https://sqlite.org/] database file that is used to mark
which files have already be uploaded; the file mssql_uploaded.sqlite
in the xpert/ directory is such an empty database; this empty
database can also be generated by calling the mssql_uploader.py
script with the arguments create_db empty.sqlite

	tables : a dictionary that describes what data should be extracted from
what tables; they keys of this dictionary are used to identify the
table data and must therefore not be changed (when changing these names,
all rows from the renamed tables will be uploaded a second time)
	xform : is the .xml file of a xform that will be used to
transmit the data; see for example the file GXP2_test.xml
in the xpert/ directory (generated from GXP2_test.xls)

	sql : a MS-SQL script that selects the data to fill in the
.xml xform; this script should select the right rows (e.g.
based on date or patient-ID) and must contain some special markers,
refer to GXP2_test.sql in the xpert/ directory for an
example

	rowid : one or several columns that are selected by the MS-SQL
script and that will be used to uniquely identify the row

	rowname : one or several columns that will be used to identify
the columns when displaying a progress update (i.e. the human
readable representation of the row)

Usage

The program runs fully automatically. Simply copy the configuration
files in the same directory and start the script. The files
mssql_uploader.log and mssql_uploader_debug.log will contain
the same logging information that is also displayed in the main window.
After installing of py2exe [http://www.py2exe.org/] you can create a self-contained executable
distribution for windows using the provided setup.py

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Tutorial

The following example illustrates most of odk_planner‘s features and should
be a good starting point to implement your own project. The tutorial is
designed in such a way that it can be followed step by step and all files are
provided for download. The same data is also used for automated testing, which is essentially an automated copy of the tutorial outlined
in this chapter.

Demo Project Description

The forms used in the demo project are deliberatly kept as simple as possible,
while illustrating most of odk_planner‘s features. The demo study
“Tuberculosis [https://en.wikipedia.org/wiki/Tuberculosis] Cohort” collects data from tuberculosis patients that present
at a health facility, as well as from a group of controls that are not
infected with tuberculosis.

The demo project consists of five different forms. All forms are generated
using XLSForm [http://xlsform.org].

	CRF1 : This is the eligibility form that records patient details and
confirms the study’s inclusion criteria.

	CRF1C : The eligibility form for controls, which is different from the
eligibility form for patients.

	CRF2 : This clinical request form is filled at the same day as the
eligibility form and assesses some clinical signs and symptoms. The same
form applies for patients and controls.

	LRF1 : Although a lab sample is taken at the patient’s first visit to
the health facility, the lab form is only expected to be entered into the
database after some days necessary to perform all the analysis. Again,
the same form applies for patients as well as controls.

	CRFX : If patients have a negative lab result, they are expected to
get an X-ray in the following week to complete the diagnostic information.

All patients receive a unique study_id that is used to connect the
different forms of the same patient. The same applies for the controls, but
both groups can be differentiate by looking at their ID : patients have
a number like 80XXX and controls have a number like 83XXX. The
laboratory adds a suffix -V01 to this ID so it is possible to commit
multiple laboratory forms that for the same patient, while still having
a unique identifier for every form.

Demo Project Files

All files necessary to follow this tutorial can be downloaded. The following files are included

	demo/config/ : contains configuration files; these files are also
copied when a new instance is setup and for
testing.

	demo/forms/ : contains all the forms (see below), in Excel format
as well as compiled XForms (in subdirectory out/).

	demo/data/ : some sample data to populate the ODK Aggregate database,
including a script push.py that automatically uploads the data to
a server

Initial setup of odk_planner and ODK Aggregate

First step: Make sure you (or someone else) correctly installed
odk_planner as described in the chapter on installation. To proceed with the tutorial you need to be able to access the
login screen:

[image: _images/login.png]
In the following we will always use
http://localhost/odk_planner/?instance=test as our base address. Change
the URL accordingly to your setting.

Second step: You also need access to the ODK Aggregate [https://opendatakit.org/use/aggregate/] so you can upload
the .xml forms for the demo project. You can find these forms in the
demo/forms/out subdirectory of the files from the demo project.

[image: _images/forms-aggregate.png]
Third step: The demo project files also contain some prepared data ready
for upload. The data is contained in the files demo/data/*.csv. You can
either open this data in your favourite spreadsheet program and then use ODK
Collect [https://opendatakit.org/use/collect/] to upload row by row by filling out the forms, or you can simply
start the program demo/data/push.py (needs Python3 [https://www.python.org/downloads/release/python-342/]) to upload all the data
automatically.

$ python3 demo/data/push.py
upload data from csv files to Aggregate server? (yn) y
Aggregate server url [http://localhost:8080/ODKAggregate]
username []
password []
successfully posted form CRF1, "80001"
successfully posted form CRF1, "80002"
successfully posted form CRF1, "80003"
successfully posted form CRF1, "80004"
successfully posted form CRF1, "80005"
successfully posted form CRF1, "80006"
successfully posted form CRF1C, "83001"
successfully posted form CRF1C, "83002"
successfully posted form CRF1C, "83003"
successfully posted form CRF1C, "83004"
successfully posted form CRF2, "80001"
successfully posted form CRF2, "80002"
successfully posted form CRF2, "80003"
successfully posted form CRF2, "80004"
successfully posted form CRF2, "80005"
successfully posted form CRF2, "83001"
successfully posted form CRF2, "83002"
successfully posted form CRF2, "83003"
successfully posted form CRF2, "83004"
successfully posted form CRFX, "80001"
successfully posted form CRFX, "80002"
successfully posted form CRFX, "80003"
successfully posted form CRFX, "80004"
successfully posted form CRFX, "80005"
successfully posted form CRFX, "80006"
successfully posted form LRF1, "80001-V01"
successfully posted form LRF1, "80002-V01"
successfully posted form LRF1, "80003-V01"
successfully posted form LRF1, "80004-V01"
successfully posted form LRF1, "80005-V01"
successfully posted form LRF1, "80006-V01"
successfully posted form LRF1, "83001-V01"
successfully posted form LRF1, "83002-V01"
successfully posted form LRF1, "83003-V01"

Setting up the Project

Download the files from the demo project and unpack them.
Now go to http://localhost/odk_planner/?instance=test and use the username
admin and the temporary password from the instance creation.

First thing we will do now is to upload the config file from the demo project
files demo/config/config-sample.xls. Open this file with Excel [http://office.microsoft.com/en-us/excel/] (or
LibreOffice [http://www.libreoffice.org/download/libreoffice-fresh/]) and go to the “users” sheet. You will see the
following three users pre-defined:

	name
	password
	rights
	access

	admin
	
	overview, data, forms, sms, admin
	default, sensitive

	secretary
	
	sms, overview, data
	default

	fieldofficer
	
	overview, data
	fieldofficer

Enter three good passwords for the three different
users, click on the admin link in the top navigation and upload the
demo/config/config-sample.xls file.

After having uploaded the config file for the first time, the temporary password
will not work anymore, but you can now login using the passwords you defined
in the config.xls. You can read more about the user configuration
settings, in particular about the rights and the access
column.

Uploading the forms

Once logged in, you should see error messages complaining that “forms are not
found” (in the database) and .xls forms not uploaded. So go to the
“forms” tab and upload the forms from the demo project (in the demo/forms
directory). After uploading the five forms, you should see something like

[image: _images/demo_forms.png]
If you see an error saying not matched this is because you forgot to
upload the forms to ODK Aggregate.

Check out the overview

You can now see the overview in all its beauty

[image: _images/demo_overview.png]
The overview highlights the following (hover over a highlighted cell to get
a popover that explains why the cell is colored)

	case 80006 is missing CRF2 and this field is highlighted in red
because CRF1 was already submitted more than one week ago

	case 80006 has a red bar where its LRF1 is, because the sputum
smear is negative; and control 83002 has a red bar where its LRF1
is, because the sputum smear is positive – we’ll go into this problem in
a minute

For an exercise, try to download, modify, and upload the config.xls in
a way to achieve a bold font for all cases/controls with fever (solution). To solve this exercise, read more about
coloring the overview.

Viewing data

When you now click on a the link 1/1/14 to view the CRF1 from case
80001 you should see the following

[image: _images/demo_view.png]
At this point you could – and should – be somewhat worried
that patient details, such as name and birthdate can be seen on the web...

Luckily, odk_planner lets you control exactly which user can see which
data. On one hand, you can defined arbitrary access groups for the
different users (above we have defined the groups
default, sensitive, and fieldofficer). On the other hand, you can
specify for every datapoint which group(s) are permitted to see that data.

Let’s first have a look at form demo/forms/CRF1.xls:

	type
	name
	
	access
	
	label

	begin group
	info
	begin group
	
	begin group
	Patient Information

	text
	study_id
	text
	
	text
	Study ID number

	text
	full_name
	text
	sensitive
	text
	Full name

	date
	birthdate
	date
	sensitive
	date
	Date of birth

	text
	phone_number1
	text
	sensitive
	text
	Primary phone number

	text
	phone_number2
	text
	sensitive
	text
	Alternative phone number

As you can see, this form already defines the datapoints full_name,
birthdate, phone_number1 and phone_number2 as sensitive. This
means that only users with the access group sensitive are allowed to see
this data. To confirm that this indeed works, first have a look at the data when
you’re logged in as admin, then logout and login as secretary. You should
now see that the corresponding values are masked:

[image: _images/demo_data_secretary.png]
All values that have no access defined automatically get the access group
default. This means that an user like the fieldofficer who is not part
of the default access group can only see the datapoints that are
specifically permitted by adding his access group to the access column. When
you log in with the fieldofficer account you should see all datapoints
masked:

[image: _images/demo_data_fieldofficer.png]
This is a good moment to read more about privacy.

Exercise: make the first phone number accessible to the field officer. Make
sure that the admin is still able to see the phone number, but not the
secretary (solution).

Solutions

Bold font for fever cases

Modify the colors sheet like this

	form2
	form1
	delay
	condition
	style

	LRF1
	
	
	CRF2SIGNS_TEMPERATURE>37.5
	font-weight:bold

Field officer phone number access

Modify (and upload) the file demo/forms/CRF1.xls and demo/forms/CRF1C.xls
as follows:

	type
	name
	
	access

	begin group
	info
	begin group
	

	text
	study_id
	text
	

	text
	full_name
	text
	sensitive

	date
	birthdate
	date
	sensitive

	text
	phone_number1
	text
	sensitive,fieldofficer

	text
	phone_number2
	text
	sensitive

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Hacking

I’m not a fan of PHP. The language has many shortcomings [http://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/] that make it
difficult to write nicely encapsulated code. I didn’t even try but started the
project with one big index.php file that included everything, and then
refractored some code later on into separate .php files to prevent the file
from bloating above 1000 lines of code.

Overview

The file index.php contains all the logic and structured into the following
sections (VIM [http://www.vim.org/download.php] can expand/collapse the corresponding code folds).

	Pre-initialization, includes : Things common to all
instances.

	Set up instance : Find out form cookies or parameters which instance should
be used and set up paths accordingly.

	Load configuration from config.xls into global $user. See file
config.php.

	Login: Show the login box if the user is not currently logged in and compare
username and password to configuration options during login action. Then
load user information (access rights etc) into global $user.

	Connect to database, load forms. The excel forms from the directory
instances/XXX/forms are loaded and compared with the local ODK database.
See file``odk_form.php``.

	Actions : Do stuff, such as file upload or download. Note that so far no
HTML output has been generated (if the user is logged in).

	Start HTML output

	Show the menu, depending on user’s access rights.

	Display : Generate the main output
	show=overview : Show the tabular overview over all data contained
in the database. See overview.php.

	show=form : Show the content of a form

	show=forms : List the contents of the instances/XXX/forms
directory.

	show=admin : Administrator view with upload/download of config.xls

	Footer : Show some more information if &test is specified as a URL
parameter and the current user has test rights.

The file cron.php finally contains code that can be run without any user
interaction and is normally executed from the operating system’s job
scheduler.

Globals and Utilities

The following globals are noteworthy

	$config : An ExcelConfig object – see file config.php. This
object is generated from the file instances/XXX/config/config.xls

	$user : An array that is set to one of the values in $config->users
after successful login. With keys rights and access that describe
this users access permissions.

	$forms : An OdkDirectory object – see file odk_form.php. This
object is generated from the files instances/XXX/forms/*.xls. Every
object OdkForm in the dictionary $forms->forms contains information
about the form as described in its .xls file and can be used to read the
data from the database. See Accessing the Database.

	$show : The name of the current view (see above in Overview).

	$hooks : Plugins use this object in order to install hooks.

And some utility functions

	log_add($name, $message) : Adds a message to the specified log file.

	alert($html, $class) : Displays the html snippet inside an alert box with
the given class (success, info, danger, error).

	profile_start($name) and profile_stop($name) : Measure time spent
for $name (can be called multiple times, e.g. inside a recursive
function). The footer displays the total time spent in every $name
(if the &test URL parameter is specified).

Accessing the Database

The file odk_form.php provides methods to access data in the ODK database
using identifiers from .xls files that were used as input to XLSForm [http://opendatakit.org/use/xlsform/]. Please
use the file’s API doc for reference.

Developing a Plugin

odk_planner comes with a simple plugin called doughnut that adds a page
with overview plots of data in the database. This section will walk you step
by step through the creation of the doughnut plugin
that is the file plugins/doughnut.php. The four steps outlined below
build successively on top of each other and introduce every time some new API to
give a quick an dirty introduction to the internals described above. Note that
for every step the whole source code of the plugin is included. Overwrite the
file plugins/doughnut.php with the source listing from the different steps
to see what changes and play around with the code.

The idea of this plugin is pretty simple : Specify fields and values in the
configuration (sheet doughnut) and let the plugin generate doughnut plots [http://www.chartjs.org/docs/#doughnut-pie-chart]
that show the distribution of the field of interest over the whole study
population.

Step 1 : Hooking

The plugin needs to hook into the normal program flow at multiple points. First
it needs to include the javascript plotting library chart.js [http://www.chartjs.org/] into the header of
the html page. Then it needs to change the menu (“augment the views”) with a
new menu entry doughnut. And finally it needs to render the plots when the
view doughnut is active.

The file plugins.php lists some 10 different hooks together with an
explanation when they are called and the arguments. In the code below we use
the three hooks dump_headers (to add chart.js [http://www.chartjs.org/]), augment_views (to add
the new menu point), and display (to render a static doughnut plot).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	<?php

function doughnut_dump_headers($args) {
 echo '<script src="plugins/doughnut_chart.js"></script>';
}

function doughnut_display($args) {
 global $show;
 if ($show !== 'doughnut') return;
?>
 <div class="row">

 <div class="span12">
 <center>
 <canvas id="doughnut" style="width:100%"></canvas>
 </center>
 <h4 style="text-align:center">doughnut</h4>
 <script type="text/javascript">
 // Data copied from www.chartjs.org/docs/#doughnut-pie-chart
 new Chart(document.getElementById('doughnut').getContext('2d'))
 .Doughnut([{ value: 300, color:"#F7464A", highlight: "#FF5A5E", label: "Red" }, { value: 50, color: "#46BFBD", highlight: "#5AD3D1", label: "Green" }, { value: 100, color: "#FDB45C", highlight: "#FFC870", label: "Yellow" }]);
 </script>
 </div>
 </div>
<?php
}

function doughnut_augment_views($args) {
 $views =& $args['views'];
 array_push($views, 'doughnut');
}

$hooks->register('dump_headers', 'doughnut_dump_headers');
$hooks->register('augment_views', 'doughnut_augment_views');
$hooks->register('display', 'doughnut_display');

Step 2 : Access

We don’t want just any user to see our plugin, but only users with the
access right (as described in user configuration).
This is easily implemented by checking for the right in the $user global
that contains the configuration for the currently logged in user. We add the
check before rendering the plot but also when the menu is constructed so users
without the needed access right will neither see the plugin in the menu nor be
able to access the plot by manually tweaking the URL.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

	<?php

function doughnut_dump_headers($args) {
 echo '<script src="plugins/doughnut_chart.js"></script>';
}

function doughnut_display($args) {
 global $show, $user;
 if (!in_array('data', $user['rights'])) return;
 if ($show !== 'doughnut') return;
?>
 <div class="row">

 <div class="span12">
 <center>
 <canvas id="doughnut" style="width:100%"></canvas>
 </center>
 <h4 style="text-align:center">doughnut</h4>
 <script type="text/javascript">
 // Data copied from www.chartjs.org/docs/#doughnut-pie-chart
 new Chart(document.getElementById('doughnut').getContext('2d'))
 .Doughnut([{ value: 300, color:"#F7464A", highlight: "#FF5A5E", label: "Red" }, { value: 50, color: "#46BFBD", highlight: "#5AD3D1", label: "Green" }, { value: 100, color: "#FDB45C", highlight: "#FFC870", label: "Yellow" }]);
 </script>
 </div>
 </div>
<?php
}

function doughnut_augment_views($args) {
 global $user;
 if (!in_array('data', $user['rights'])) return;
 $views =& $args['views'];
 array_push($views, 'doughnut');
}

$hooks->register('dump_headers', 'doughnut_dump_headers');
$hooks->register('augment_views', 'doughnut_augment_views');
$hooks->register('display', 'doughnut_display');

Step 3 : Configuration

This snippet iterates through the configuration key/value pairs in the lines
54-63. Every value is parsed with the new function doughnut_config
(by the way : it’s good practise to prepend all functions in the plugin with
the plugins name to avoid name space collisions). If an error occurs during the
parsing (quite possible since Excel lets you save just about any invalid setting
imaginable) the doughnut is not rendered for that row and an error is displayed
to the user.

The function doughnut_config expects value that specifies the field of
interest and the form this field can be found in (FORM\FIELD). The form is
then looked up in the global associative array $forms->forms and the
specified field is verified to exist in the $form->mapping (read more
above). The name of the MySQL table and column that
represent the field are then returned and used in the next step to extract the
data from the MySQL database.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

	<?php

function doughnut_dump_headers($args) {
 echo '<script src="plugins/doughnut_chart.js"></script>';
}

function doughnut_render($name, $config) {

 $id = 'doughnut_' . $name;
?>
 <div class="row">

 <div class="span12">
 <center>
 <canvas id="<?php echo $id; ?>" style="width:100%"></canvas>
 </center>
 <h4 style="text-align:center"><?php echo $name; ?></h4>
 <script type="text/javascript">
 // Data copied from www.chartjs.org/docs/#doughnut-pie-chart
 new Chart(document.getElementById('<?php echo $id; ?>').getContext('2d'))
 .Doughnut([{ value: 300, color:"#F7464A", highlight: "#FF5A5E", label: "Red" }, { value: 50, color: "#46BFBD", highlight: "#5AD3D1", label: "Green" }, { value: 100, color: "#FDB45C", highlight: "#FFC870", label: "Yellow" }]);
 </script>
 </div>
 </div>
<?php
}

function doughnut_config($config) {
 global $forms;
 // We only expect one part but allow more values for later versions.
 $parts = explode(' ', $config);
 if (count($parts) < 1) return 'expected "FORM\\FIELD ..."';
 $form_field = explode('\\', $parts[0]);
 if (count($form_field) !== 2) return 'expected "FORM\\FIELD ..."';

 // $forms->forms is array that maps formid to OdkForm (see odk_form.php).
 $form = @$forms->forms[$form_field[0]];
 if (!$form) return 'unknown form "' . $form_field[0] . '"';
 // OdkForm::mapping maps form field to table/column (see odk_form.php).
 $table_column = @$form->mapping[$form_field[1]];
 if (!$table_column) return 'unknown field "' . implode('\\', $form_field) . '"';

 return array(
 'table' => $table_column[0],
 'column' => $table_column[1],
);
}

function doughnut_display($args) {
 global $show, $user, $config;
 if (!in_array('data', $user['rights'])) return;
 if ($show !== 'doughnut') return;
 // Parse doughnut config lines.
 foreach($config->plugins['doughnut'] as $name=>$config_string) {
 $config_or_error = doughnut_config($config_string);
 if (gettype($config_or_error) === 'string') {
 // Function returns string in case of parse error.
 alert('Error config doughnut ' . $name . ' : ' .
 $config_or_error, 'error');
 } else {
 doughnut_render($name, $config_or_error);
 }
 }
}

function doughnut_augment_views($args) {
 global $user;
 if (!in_array('data', $user['rights'])) return;
 $views =& $args['views'];
 array_push($views, 'doughnut');
}

$hooks->register('dump_headers', 'doughnut_dump_headers');
$hooks->register('augment_views', 'doughnut_augment_views');
$hooks->register('display', 'doughnut_display');

Step 4 : Data

Having all the necessary hooks, the doughnut plot, some access control and the
configuration parsing in place, the only thing that need to be done is to
connect the plot to the actual data from the database.

The function doughnut_query constructs a MySQL query using the MySQL table
and column name. The query has the following form:

SELECT column AS value, COUNT(column) AS count
FROM table GROUP BY column ORDER BY column

where column and table will be replace with the actual values. If the
query were generated for the field LRF1\COLONY_COUNT from the example
dataset, the following table would be the reply from the query:

	value
	count

	negative
	3

	1+
	2

	2+
	3

	3+
	2

The function doughnot_json merely translates the MySQL result to a JSON
in the format expected by chart.js [http://www.chartjs.org/]. Note that we call mysql_query_ so the
query gets logged (calling the standard mysql_query would also work fine).
If MySQL returns an error no plot is displayed but the error is shown to the
user by calling alert (from util.php).

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106

	<?php

function doughnut_dump_headers($args) {
 echo '<script src="plugins/doughnut_chart.js"></script>';
}

function doughnut_query($config) {
 $query = 'SELECT $column AS value, COUNT($column) AS count ' .
 'FROM $table GROUP BY $column ORDER BY $column';
 $query = str_replace('$table', $config['table'], $query);
 $query = str_replace('$column', $config['column'], $query);
 return $query;
}

function doughnut_json($curs) {
 $data = array();
 $colors = ['red', 'green', 'blue', 'yellow', 'magenta', 'purple', 'orange'];
 $i = 0;
 while($row = mysql_fetch_assoc($curs)) {
 array_push($data, array(
 'value' => $row['count'],
 'label' => trim($row['value']),
 'color' => $colors[$i++ % count($colors)]
));
 }
 return json_encode($data);
}

function doughnut_render($name, $config) {
 global $conn;

 $id = 'doughnut_' . $name;

 $query = doughnut_query($config);
 $curs = mysql_query_($query, $conn);
 if ($curs === FALSE) {
 alert('MySQL error : ' . mysql_error(), 'error');
 return;
 }
 $json = doughnut_json($curs);
?>
 <div class="row">

 <div class="span12">
 <center>
 <canvas id="<?php echo $id; ?>" style="width:100%"></canvas>
 </center>
 <h4 style="text-align:center"><?php echo $name; ?></h4>
 <script type="text/javascript">
 // See www.chartjs.org/docs/#doughnut-pie-chart
 new Chart(document.getElementById('<?php echo $id; ?>').getContext('2d'))
 .Doughnut(<?php echo $json; ?>);
 </script>
 </div>
 </div>
<?php
}

function doughnut_config($config) {
 global $forms;
 // We only expect one part but allow more values for later versions.
 $parts = explode(' ', $config);
 if (count($parts) < 1) return 'expected "FORM\\FIELD ..."';
 $form_field = explode('\\', $parts[0]);
 if (count($form_field) !== 2) return 'expected "FORM\\FIELD ..."';

 // $forms->forms is array that maps formid to OdkForm (see odk_form.php).
 $form = @$forms->forms[$form_field[0]];
 if (!$form) return 'unknown form "' . $form_field[0] . '"';
 // OdkForm::mapping maps form field to table/column (see odk_form.php).
 $table_column = @$form->mapping[$form_field[1]];
 if (!$table_column) return 'unknown field "' . implode('\\', $form_field) . '"';

 return array(
 'table' => $table_column[0],
 'column' => $table_column[1],
);
}

function doughnut_display($args) {
 global $show, $user, $config;
 if (!in_array('data', $user['rights'])) return;
 if ($show !== 'doughnut') return;
 // Parse doughnut config lines.
 foreach($config->plugins['doughnut'] as $name=>$config_string) {
 $config_or_error = doughnut_config($config_string);
 if (gettype($config_or_error) === 'string') {
 // Function returns string in case of parse error.
 alert('Error config doughnut ' . $name . ' : ' .
 $config_or_error, 'error');
 } else {
 doughnut_render($name, $config_or_error);
 }
 }
}

function doughnut_augment_views($args) {
 global $user;
 if (!in_array('data', $user['rights'])) return;
 $views =& $args['views'];
 array_push($views, 'doughnut');
}

$hooks->register('dump_headers', 'doughnut_dump_headers');
$hooks->register('augment_views', 'doughnut_augment_views');
$hooks->register('display', 'doughnut_display');

Step 5 : Bucketing

Now compare the source from the last step with the plugin as included in the
plugins/doughnut.php (if you overwrite it get it back from github:
doughnut.php [https://github.com/SwissTPH/odk_planner/blob/master/plugins/doughnut.php]). The configuration was extended to list possible values after
FORM\FIELD. If these values have the form of a range of numbers (e.g.
10-20) then the MySQL query will summarize the values of some ordinal
datapoint into the buckets thus specified.

By the way : there is also a simple test suite for this plugin. The file
test/test_doughnut.py checks that the access restrictions work as expected,
that the configuration parsing alerts user if invalid values are specified, and
that a new plot can be added modifying the configuration.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Testing

odk_planner has testing suite that tests most of its features (including
sending sms and automatization).
The testing framework is based on the Python2 [https://www.python.org/downloads/release/python-278/] package unittest that is
part of the standard distribution. The tests themselves use Selenium [http://www.seleniumhq.org]
WebDriver to test odk_planner functionality via a web browser.

All tests assume a precise environment that is the same as used for the
tutorial. After initial setup this environment provides
a running instance, as well as ODK forms and data
that are used to test all features.

You then need to adapt the file test/sample.cfg that describes all
site-specific configuration, such as the phone number where test messages
should be sent. The configuration can be saved under test/test.cfg or
under a arbitrary path specified by the environment variable
ODK_PLANNER_CONFIG.

Since all interaction with odk_planner passes through the web browser, the
tests can be run against an instance running on a remote server or against the
local installation.

The preferred way of running all the tests is by simply executing the script
test/run.py that reads the config file checks connection with the web
server, uploads all forms, and then runs every test and reports the results:

python test/run.py

environment variable ODK_PLANNER_CONFIG not found
fall back on config file "test/test.cfg"

discovered the following testing configuration (read from test/test.cfg)

 - odk_planner_url: http://localhost/~ast/odk_planner/ (version v0.8bis)
 - instance name: _test
 - password: SFiCbxiU
 - will send testing email to andreassteiner@gmx.de
 - will send testing sms to 41787711124

check instance name...
login...
upload config...
initialize forms...

ready, set go!
press <ENTER> to start tests...

test_create_user (test_admin.TestAdmin) ... ok
test_user_log (test_admin.TestAdmin) ... ok
test_no_password (test_config.TestConfig) ... ok
test_send_cron_sms (test_cron.TestCron) ... ok
test_send_email_with_report (test_cron.TestCron) ... ok
test_send_email_without_report (test_cron.TestCron) ... ok
test_access (test_data.TestData) ... ok
test_data_CRF2 (test_data.TestData) ... ok
test_data_CRFX (test_data.TestData) ... ok
test_form_db_only (test_form.TestForm) ... ok
test_form_download (test_form.TestForm) ... ok
test_form_remove_upload (test_form.TestForm) ... ok
test_form_wrong_name (test_form.TestForm) ... ok
test_form_xls_only (test_form.TestForm) ... ok
test_missing_alert (test_form.TestForm) ... ok
test_inexisting_instance (test_instance.TestInstance) ... ok
test_no_instance (test_instance.TestInstance) ... ok
test_test_instance (test_instance.TestInstance) ... ok
test_login_admin (test_login.TestLogin) ... ok
test_login_failed (test_login.TestLogin) ... ok
test_login_fieldofficer (test_login.TestLogin) ... ok
test_login_secretary (test_login.TestLogin) ... ok
test_download_form (test_overview.TestOverview) ... ok
test_highlight_condition (test_overview.TestOverview) ... ok
test_highlight_static (test_overview.TestOverview) ... ok
test_highlight_timing (test_overview.TestOverview) ... ok
test_overview_all (test_overview.TestOverview) ... ok
test_overview_cases (test_overview.TestOverview) ... ok
test_overview_cases_controls (test_overview.TestOverview) ... ok
test_conditions (test_php.TestInstance) ... ok
test_field_number_real (test_sms.TestSms) ... ok
test_mass_sms (test_sms.TestSms) ... ok
test_single (test_sms.TestSms) ... ok

Ran 33 tests in 48.687s

OK

log output during tests:

 [INFO] cron sent sms to 41787711124 (and email without report to andreassteiner@gmx.de)
 [INFO] andreassteiner@gmx.de should have received email with report
 [INFO] andreassteiner@gmx.de should have received email without report
 [INFO] sent two sms to 41787711124

all done; press <ENTER> to exit...

Tests can also be run individually like this (the following example runs
a single test that checks that a invalid login attempt generates a timeout of
two seconds):

$ ODK_PLANNER_CONFIG=test/test.cfg python -m unittest -v test.test_login.TestLogin.test_login_failed
test_login_failed (test.test_login.TestLogin) ... ok

--
Ran 1 test in 2.587s

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

About Privacy

This chapter contains some general remarks on how you should design your study,
gather your data, and use odk_planner to avoid loosing control over your
study data. This is especially important if you work with patient data that
merits to be handled with very much consideration. But it equally applies to
less sensitive data whenever people are involved in your studies and entrust
you their data.

Note that this is a complicated topic that involves many fields and its surface
is barely scratched in this very short chapter. Also, your organization has
probably their own data management manual that describes in more detail what
data you are allowed to collect and store how you have to handle these.
Additionally, local laws apply, most probably in the country where you collect
the data, and also in the country where you store the data.

Digitization

Beware the following : It is extremely easy to copy data once it is digitized.
This means that you are probably better off not digitizing sensitive data in
the first place, instead of trying to prevent everyone who will handle it to
make it impossible to copy the data.

Of course, this puts you in a dilemma, since the whole idea of using ODK is to
digitize your data for ease of collection and analysis. One possible way out
is to digitze all data apart from identifying datapoints, such as name and
addresses, which are rarely used for data analysis, and can be kept seperately
in a paper register (or on an encrypted hard drive in the principal investor’s
office).

Unfortunately, there are other datapoints that will turn up in your final data
analysis but can easily be used to identify subjects. Think of coordinates for
example. In these cases some more creativity is needed: you could for example
add a random offset to locations so you can still use them to analyze
distribution but at the same time the spatial resolution would not be
sufficient to identify housings (and map them to an address book).

Database segregation

If you decide to include sensitive personal data in your database, then you
should work out a database design with multiple databases. You can then store
the sensitive data in a separate database. This has the advantage that you can
define a different backup policy for the. Separating sensitive data in its own
database also allows you to create separate database users (and passwords) that
can only see part of the data.

Mind that, although you can also define access restrictions for viewing
data in okd_planner, it is not possible to restrict the
access of an user that has admin rights. And it is
always better to use additional safety guards to protect data.

Admin rights

It is important to realize that odk_planner has (read-only) access to the
entire database that stores the data for your study. If you use the same ODK
Aggregate instance for more than one study, then you can set up multiple
instances of odk_planner but users with admin
rights are free to define how they want to configure odk_planner (and can,
for example, create an overview that contains forms from other studies included
in the same database).

Therefore, you should restrict admin rights to as few users as possible,
ideally only to one person.

Choosing a good password

The access protection relies on good passwords. Without good passwords, it
will be easy for strangers (or your users’ acquaintances) to guess a valid
login and access all the study data!

Since the passwords are stored in plain text (i.e. users with admin rights
who can download the config.xls can see them), and because passwords that
are used for many different services are a lot easier to intercept somewhere,
you really should use an unique password that is solely used to identify
users with odk_planner.

The default password 0dk pa2sw0rd used throughout this documentation is
actually a really poor password. A word of wisdom from xkcd [http://imgs.xkcd.com/comics/password_strength.png]

[image: _images/xkcd_password_strength.png]

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	odk_planner v0.11 documentation

Questions & Answers

This chapter contains varios bits of information that did not fit anywhere but
seem worthwile to be retained somewhere.

ODK Aggregate database settings

The ODK Aggregate database settings are stored in the file
ODKAggregate-settings.jar that can be found in the subdirectory
WEB-INF/lib of the webapps/ODKAggregate directory (e.g. under debian
this directory itself is located at /bar/lib/tomcat6). The .jar file
(which has the same file format [https://en.wikipedia.org/wiki/JAR_%28file_format%29] as a .zip file) contains a file called
jdbc.properties that stores the MySQL connection settings.

You can open this file to look up the database connection parameters (in case
you have lost the original create_db_and_user.sql that was created during
the ODK Aggregate installation), or modify it to use the same ODK Aggregate
instance to access a different database (e.g. for testing).
The following example is for debian:

$ cd /var/lib/tomcat6/webapps/ODKAggregate/WEB-INF/lib/
$ unzip -e ODKAggregate-settings.jar jdbc.properties
Archive: ODKAggregate-settings.jar
 inflating: jdbc.properties
$ vim jdbc.properties
$ zip -u ODKAggregate-settings.jar jdbc.properties
updating: jdbc.properties (deflated 31%)
$ /etc/init.d/tomcat6 restart
Stopping Tomcat servlet engine: tomcat6.
Starting Tomcat servlet engine: tomcat6.

If you want to change the jdbc.properties file using Windows, just open
the ODKAggregate-settings.jar file with 7-zip [http://www.7-zip.de/]
(or a similar programme), copy the jdbc.properties file to a local directory,
apply the necessary changes and then copy it back into the .jar file.

In order to change the super-user name, the server host name or the server ports for
your ODK-Aggregate instance simply open the file security.properties and apply
the necessary changes. The file can be found under ODKAggregate-settings.jar
as well.

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	odk_planner v0.11 documentation

Changelog

apart from various bugfixes, the different versions introduced the following
features

	v0.11
	added chapter Hacking to documentation

	added plugins/doughnut.php and plugin development tutorial

	added Labeler

	moved source to http://github.com/SwissTPH/odk_planner

	v0.10
	redirect after login to avoid repeated POST requests

	added .htaccess for pretty URL landing pages

	updated docs with GitHub link [https://github.com/SwissTPH/odk_planner]

	disable saving of passwords

	improved support for mobile

	v0.9
	added tutorial with test forms and test data

	added automated testing

	instances are now mandatory; added script to
create new instance from template or existing

	new instance first uses temporary random
password

	improved condition parsing

	added personalized sms

	v0.8
	introduced rich expression syntax

	overview sheet has new columns condition and subheading
that allow to spread overviews over multiple pages or to have
multiple overviews in same page, depending on ID and arbitrary
conditions; row header (subject ID cell) can be styled using *
as form2

	v0.7
	multiple overviews possible for same ID selection

	better cxrv plugin (adapted for firefox, tablet)

	better display form content on mobile devices

	v0.6
	parse _form_data_model table from database instead of guessing the
relationship between database tables and the .xls forms

	added plugins/cxrv to view X-rays

	v0.5
	renamed routo (plugin, docs, config sheet) to sms, now supporting
different messaging APIs

	added proxy setting to config.ini

	v0.4
	allow multiple instances

	added ODK pusher for automatic uploading of form data

	allow to specify any field as datefield

	improved readability (repeated form names, groups navigation menu, limit
to three browser tabs)

	v0.3
	moved MySQL server settings into config/config.ini (see
multiple instances)

	improved error reporting (from php as well as javascript)

	separated SMS related code into plugins/routo.php

	added cron.php for autonomous behavior

	added plugins/cron_reports.php for emailing of reports

	pagination for admin view of long log files

	v0.2
	download lists as .csv (see .csv generation)

	updated coloring so that the CSS styling
instructions can be based to arbitrary conditions

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	odk_planner v0.11 documentation

Index

 Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

 _images/demo_view.png
info

study_id CRF1\INFO_STUDY_ID 80001

full_name CRF1\INFO_FULL_NAME Alice Armstrong

birthdate CRF1\INFO_BIRTHDATE 1980-07-01 00:00:00

_images/forms-aggregate.png
- Add New Form

Form Id_ Media files

CRF1 : Elighilty cases CRF1 0
CRF1C : Eligibiity controls CRF1C 0
CRF2 : Clinical examination CRF2 0
CREX: Xeray CRFX 0

LRF1 : Lab results LRF1 0

‘anonymousUser
‘anonymousUser
‘anonymousUser
‘anonymousUser

anonymousUser

Downloadable Accept Submissions.

_images/demo_forms.png
form_id

CRF1

CRF1C

CRF2

CRFX

LRF1

title.

CRF1 : Eligibility cases
CRF1C : Eligibility controls
CRF2 : Clinical examination

CRFX:

-ray

LRF1 : Lab results

file

CRF1.xis (12/11/14)
CRFIC.Xis (12/11/14)
CRF2.Xis (12/11/14)
CRFX.XIs (12/11/14)

LRF1.xis (12/11/14)

actions.

delete

delete

delete

delete

delete

_images/xkcd_password_strength.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

_images/xray_uploader_check.png
e

ey
(e}

[z}
(awro)

Tonied contls Co\ioere\Tins Womse\omereom ods prapertazey iosde T nis-1oon
scanned "Ci\Users\Tina Min3a\Deskcop\TSURR_CHR® + € tode 7 7 dene

cepiies 01 > aigest access cion (@A)
uploaded snage "S0065-31.3pg" (352,35 Kb}
ploaded image "60070-31 3pg" (350,12 Kb}

_images/xray_uploader_choose.png
cen| I gebug

+f15122 55 (1070] 1oaded config Cr\Users\Tans Minja\Deskeop\odk_pesher\xcay_upioad -

_images/login.png
% ¥ (€)@ ocanostiook planner/Znstance=test G | (-3~ DucDuckGQ) &

ODK planner
v0.8bis

SAMPLE CONFIG

andreas

_images/xray_uploader_fill_in.png

_static/comment.png

_images/demo_data_fieldofficer.png
info
study_id
full_name
birthdate
phone_number!
phone_number2

inclusion_criteria
inform_consent
living_study_area
severely_sick

‘completion_date

80001

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

_images/demo_data_secretary.png
info

study_id 80001
full_name (nasked)
birthdate (nasked)
phone_number1 (nasked)
phone_number2 (nasked)

inclusion_criteria

inform_consent yes
living_study_area yes
severely_sick no

‘completion_date

_static/plus.png

_static/comment-bright.png

_images/demo_overview.png
& .csv

80001 =

80002 =i

80003 =i

80004 =i

80005 =i

80006 =

83001 =

83002 =i

83003 =i

83004 =i

CRF1

1114

1/2/14

1/3/14

1/4/14

1/5/14

1/6/14

CRF1C

1114

1/2/14

1/3/14

1/4114

CRF2 CRFX LRF1

1114

1/2/14

1/3/14

1/4114

1/5/14

1114

1/2/14

1/3/14

1/4114

1/6/14
1/6/14
1/6/14
1/10/14
1/10/14
I 1/10/14
1/6/14
I 1/6/14
1/6/14

6/10/14

search.html

 Navigation

 		
 index

 		odk_planner v0.11 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Andreas Steiner.
 Created using Sphinx 1.3.1.

_static/up.png

_images/no_instance.png
LR A O —

_images/labeler_config.png
qrsz[1]
—_

labelsz[1]

qrsz[0] text1[1]

ENE 83001-31 E 83002-31

S

[=] 4% [=] 53001-31 E,#El 83002-31
: s VO 1 V01

labelsz[0]

—_—
[2113x93

—
[z1zaxay

_images/weight_doughnut.png

_static/down-pressed.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/minus.png

_images/xray_uploader_troubleshoot.png
70) Losded contig Cr\Users\Tina Minya\Deskeop\odk_pesher\xcay_sploader TPE vins2.jscn K
ignoring inage “80034-31.£1% + imvalid D : "80034-317 doss ot match "3 (012)\d(3)-315"
14126146 (1870) scanmed "C:\Users\Tina Min3a\Deskeop\TSDAR_CXA™ : 0 todo / 13 done

_static/down.png

_static/imgs/odk_overview.png
ODK Collect (Android) Participant phones

- Can temporarily store data offline - Receives notifications via SMS
- Logical checks to verify data A
Entered data Metadata: Phone network
- Via keyboard - Username
- Scanned barcodes - Device information

- Captured images, video (IMEI, IMSA, phone nr) VDRI

- Geo-location using GPS - Survey start/end-time el combieion

. : mobile device
———— - No data storage, read only
flled - Every user has personal
forms username/password

Other data collection

- E.g. lab machines, X-rays
- New data automatically uploaded

intermittent
communication Internet
Yy
Empty | oD Aggregate Server (Basel) odk_planner
forms - Fine-grained access
- Manages forms & data MySQL Database control

- Exports data to .CSV - Backend for data storage <> - Connects data from
- Password protected several forms together
¥ - Provides live overview

Local Network regular backups

_static/imgs/labeler_config.png
qrsz[1]
—_

labelsz[1]

qrsz[0] text1[1]

ENE 83001-31 E 83002-31

S

[=] 4% [=] 53001-31 E,#El 83002-31
: s VO 1 V01

labelsz[0]

—_—
[2113x93

—
[z1zaxay

_static/imgs/xkcd_password_strength.png
[alalalalajalallslolalnlalalals

WAS IT TROMBONE? NG,

‘—v—“f‘r‘— T—

i

FOUR RANDOM
COMMON WORDS

DIFRCOLTY To GUESS:

HARD

UNCOMHON ORER TROUBADOR. AND ONE OF
(oL GIBBRS) i || 7€ 0s whsa zero?
BASE RO N e e oERE s (P
2= 3 Davs AT 2345 Wm\zlﬂ -
Tr‘@u b4d or &3 1000 GUESSES /sec.
T T o (s e ot e
CAPS? COMMON NOVERAL | | b i e ot
o SN cuion || © WSWTM DIFFICULTY To REMEMBER:
oos IFFICOLTY T0 GUESS : IFFi :
(100 ¢ P00 1 0 ok 1 70 pu‘i“”“r'm ! EASY HARD
R
~ Ut BITS OF ENTROPY
correct horse battery stople

DIFFICULTY To REMEMBER:
YOUVE ALREADY

MEMORIZED IT

THROUGH 20 YEARS OF EFFORT, WEVE SUCCESSFULLY TRAINED
EVERYONE TO USE PASSWORDS THAT ARE HARD FOR HUMANS
To REMEMBER, BUT EASY FOR COMPUTERS TO GUESS.

_static/imgs/screenshots/demo_view.png
info

study_id CRF1\INFO_STUDY_ID 80001

full_name CRF1\INFO_FULL_NAME Alice Armstrong

birthdate CRF1\INFO_BIRTHDATE 1980-07-01 00:00:00

_static/imgs/screenshots/forms-aggregate.png
- Add New Form

Form Id_ Media files

CRF1 : Elighilty cases CRF1 0
CRF1C : Eligibiity controls CRF1C 0
CRF2 : Clinical examination CRF2 0
CREX: Xeray CRFX 0

LRF1 : Lab results LRF1 0

‘anonymousUser
‘anonymousUser
‘anonymousUser
‘anonymousUser

anonymousUser

Downloadable Accept Submissions.

_static/imgs/screenshots/demo_forms.png
form_id

CRF1

CRF1C

CRF2

CRFX

LRF1

title.

CRF1 : Eligibility cases
CRF1C : Eligibility controls
CRF2 : Clinical examination

CRFX:

-ray

LRF1 : Lab results

file

CRF1.xis (12/11/14)
CRFIC.Xis (12/11/14)
CRF2.Xis (12/11/14)
CRFX.XIs (12/11/14)

LRF1.xis (12/11/14)

actions.

delete

delete

delete

delete

delete

_static/imgs/screenshots/xray_uploader_fill_in.png

_static/imgs/screenshots/xray_uploader_check.png
e

ey
(e}

[z}
(awro)

Tonied contls Co\ioere\Tins Womse\omereom ods prapertazey iosde T nis-1oon
scanned "Ci\Users\Tina Min3a\Deskcop\TSURR_CHR® + € tode 7 7 dene

cepiies 01 > aigest access cion (@A)
uploaded snage "S0065-31.3pg" (352,35 Kb}
ploaded image "60070-31 3pg" (350,12 Kb}

_static/imgs/screenshots/login.png
% ¥ (€)@ ocanostiook planner/Znstance=test G | (-3~ DucDuckGQ) &

ODK planner
v0.8bis

SAMPLE CONFIG

andreas

_static/imgs/screenshots/demo_data_secretary.png
info

study_id 80001
full_name (nasked)
birthdate (nasked)
phone_number1 (nasked)
phone_number2 (nasked)

inclusion_criteria

inform_consent yes
living_study_area yes
severely_sick no

‘completion_date

_static/imgs/screenshots/xray_uploader_troubleshoot.png
70) Losded contig Cr\Users\Tina Minya\Deskeop\odk_pesher\xcay_sploader TPE vins2.jscn K
ignoring inage “80034-31.£1% + imvalid D : "80034-317 doss ot match "3 (012)\d(3)-315"
14126146 (1870) scanmed "C:\Users\Tina Min3a\Deskeop\TSDAR_CXA™ : 0 todo / 13 done

_static/imgs/screenshots/xray_uploader_choose.png
cen| I gebug

+f15122 55 (1070] 1oaded config Cr\Users\Tans Minja\Deskeop\odk_pesher\xcay_upioad -

_static/imgs/screenshots/demo_data_fieldofficer.png
info
study_id
full_name
birthdate
phone_number!
phone_number2

inclusion_criteria
inform_consent
living_study_area
severely_sick

‘completion_date

80001

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

(masked)

_static/imgs/screenshots/no_instance.png
LR A O —

_static/imgs/screenshots/weight_doughnut.png

_static/imgs/screenshots/demo_overview.png
& .csv

80001 =

80002 =i

80003 =i

80004 =i

80005 =i

80006 =

83001 =

83002 =i

83003 =i

83004 =i

CRF1

1114

1/2/14

1/3/14

1/4/14

1/5/14

1/6/14

CRF1C

1114

1/2/14

1/3/14

1/4114

CRF2 CRFX LRF1

1114

1/2/14

1/3/14

1/4114

1/5/14

1114

1/2/14

1/3/14

1/4114

1/6/14
1/6/14
1/6/14
1/10/14
1/10/14
I 1/10/14
1/6/14
I 1/6/14
1/6/14

6/10/14

