oct Documentation
Release 0.4.10

karec

Mar 09, 2017






Contents

9

Introduction

Installation

Your first project

Writing tests

Packaging your turrets

Running Tests

Collecting the results

Packaging your project as template

Writing your own turret

10 Commands reference

11 API Reference

Python Module Index

11

15

17

19

21

23

29

33

39







oct Documentation, Release 0.4.10

Informations

OCT is still in beta version so use it carefully. Follow us for more informations about the next releases

twitter @oct_py

Contents 1


https://twitter.com/oct_py

oct Documentation, Release 0.4.10

2 Contents



CHAPTER 1

Introduction

What is OCT

OCT is an agnostic load testing tool. What do we mean by agnostic ? It’s simple : OCT provides only the needed
tools to distribute and run your tests and compile the results. But the tools and programming languages for writing the
tests themselves are up to you.

At this stage of development we only offer a python turret, but if you want to create your own turret implementation
in any language, please do it ! We’re really open to any suggestions and help.

Terminology

* HQ for Headquarters: it’s the “server” component of OCT and it’s tasked with sending start signal, stop signal,
collecting results and create reports

 Turret: a turret is the “client” component of OCT. It can be writen in any language and it communicates with
the HQ using a zeromq PUSH socket. Each turret owns one or many cannons.

» Cannons: represent the virtual users, wich means that each cannon of the turret will run a test in parallel

Note: Why do we use this terminology ? It gives a good idea of what’s happening when you use OCT. Think about
it like that : each turret owns X cannons that shoot at the target and report on the result to the HQ

How it works ?

OCT uses the power of ze romq to distribute test on any number of physical machines you need. When running a test
the process is very simple :

* OCT starts the HQ. It sends a start message to the turrets and will later collect their results




oct Documentation, Release 0.4.10

* The turrets receive the message, start the tests and send results to the HQ

* When the test ends, the HQ sends a stop message to the turrets and process the remaining messages in queue

* OCT will then compile the results and create a html report of them

Want a graph ? Here you go :

HO

v

Turret

v

v

Turret

Turret

v

Turret

So this is it, a bunch of turrets shooting at the target and sending information to the HQ.

Target

Chapter 1. Introduction



CHAPTER 2

Installation

OCT-Core

OCT is avaible on pypi so you can install it with pip :

’pip install oct

Or directly from the source :

’python setup.py install

You will also need the python headers for installing some of the dependencies like numpy, and build-essential
and python-dev to compile them

On a debian based system you can install them using apt for example :

apt—-get install python-dev build-essential

Note: The OCT core part have been developed and tested on linux based system only, at this point of the developement
process we cannot guarantee you that the oct-core can be installed on a Windows system

OCT-Turrets

You can actually choose any turret that you need, in any langage. But the oct package require the python turrets by
default and the “oct-turrets” pypi package will be automaticaly installed with the main oct package.




oct Documentation, Release 0.4.10

6 Chapter 2. Installation



CHAPTER 3

Your first project

OCT exposes several command-line tools to use it, write your tests or run your project.

First we’re going to use the oct new-project command for creating our first project.

oct new-project my_project_name

This command creates a folder named my_project_name containing all the required files to start an OCT project.

Let’s take a look at the content of this new folder :

|- config.json
- templates
- css
| - style.css

— report.html

- scripts
test_scripts

- v_user.py

|
|
| - img
|
|

Those files are the minimum required by an OCT project. We will analyze them in details in this documentation but
let’s take it file by file.

Configuration

The main and more important file here is the config.json file, let’s take a look at his default content :

{

"run_time": 30,
"results_ts_interval”: 10,
"progress_bar": true,
"console_logging": false,

"testing": false,




oct Documentation, Release 0.4.10

"publish_port": 5000,
"rc_port": 5001,

:pr" } 14

"min_turrets": 1,
"turrets": [
{"name": "navigation", "cannons": 2, "rampup": 0, "script": "test_scripts/v_
—user.py"},
{"name": "random", "cannons": 2, "rampup": 0, "script": "test_scripts/v_user.
{
"name": "advanced-turret",
"cannons": 2,
"rampup": O,
"script": "test_scripts/v_user.py",
"specific_turret_config": "my_value", // this config value will be_

—present only in this turret config

"extra_files": [
"templates"
// allow you to pack files and folder in turrets

1,
"turrets_requirements": [],
"extra_turret_config": {
// put global turrets config key / values here

}y

"results_database": {
"dbo_uri": "default",
"params": {}

Every key here is useful, but some keys are not required to run a test. Let’s take a look at the main ones :

run_time: This key simply sets the time of a test in seconds. So in this case the test will run for 30 seconds.

results_ts_interval: Time interval between two sets of results in seconds. For exemple if we have a
run time of 30 seconds and an interval of 10, we will have 3 results sets in the final report

testing: If this key is set to True, the results.sqlite file will be created in /tmp folder

publish_port: The port for the publishing socket of the HQ

rc_port: The port for the result collector (PULL socket) of the HQ

min_turrets: The minimum number of turrets that must be deployed before the HQ sends the start message

turrets: a list of turrets, this key will be use to package turrets with the oct pack-turrets command. Instead
of a JSON it can be a string representing a path to a turret configuration file.

turrets_requirements: A list of string containing the required packages for turrets (only for python
turrets at this time)

extra_turret_config: A nested object containing all extra turrets parameters. Each value in it will be set
in each turret configuration

results_database: Nested object that allows results database configuration, for exemple if you don’t want
to use the default sqlite results database

This configuration is simple but will allow you to run simple tests in a local environment.

Now let’s take a look at the per-turret configuration :

8 Chapter 3. Your first project



oct Documentation, Release 0.4.10

Each turret can be configured independently, and you can setup different options for each one :
* name: the string representation for the turret
e cannons: The number of cannons for this turret (aka virtual users)

e rampup: Turrets can spawn their cannon progressively, not each at the same time. Rampup gives a “step” for
cannon initialization. The number of cannon spawned by second is equal to the total number of cannons of the
turret by rampup - e.g., if you have 30 cannons and a rampup of 15 seconds, it will spawn 2 cannons by seconds.
If you do not want to increase the number of cannons in time but start the tests with all cannons ready to fire,
leave rampup at O, as in the exemple.

* script: The relative path to the associated test script
* extra_files: put here every file or folder that you want to ship with the turret

Any additional configuration key will be set as is in turret own configuration

Writing tests

By default, the oct new-project command will create an exemple test script under test_scripts/v_user.
Py, let’s take a look at it :

from oct_turrets.base import BaseTransaction
from oct_turrets.tools import CustomTimer
import random

import time

class Transaction (BaseTransaction) :
def _ _init__ (self, config, context=None):
super (Transaction, self).__init__ (config, context)

def setup(self):
"""Setup data or objects here

mnn

pass

def run(self):
r = random.uniform(l, 2)
time.sleep(r)
with CustomTimer (self, 'a timer'):
time.sleep(r)

def tear_down (self):
"""Clear cache or reset objects, etc. Anything that must be done after
the run method and before its next execution

mnn

pass
if name == '__main '
trans = Transaction (None)

trans.run|()
print (trans.custom_timers)

Note: As you can see the default test is writen in python, but each turret can have its own implementation and its own

3.2. Writing tests 9




oct Documentation, Release 0.4.10

way to write tests. Refer to turrets documentation for more explanations on how to write tests with the selected turret.

So this file represent a basic test that will simply wait between 1 or 2 seconds. Not really useful but it give you an
exemple on how to write tests and we will keep this example when running our tests in the local setup. For advanced
explanations on how to write tests, please see Writing tests

That’s all you need

And that’s all you need ! Some configuration and basics tests and that’s it.

Of course this will not be enough to test your infrastructure or website, but at this point you should better undersand
how OCT work and what you need to run your tests ! In the next part we will talk about writing more complexe tests.

10 Chapter 3. Your first project



CHAPTER 4

Writing tests

Warning: This section will explain how to write tests, but only based on the python turret. But many turrets will
have similar implementation

Basic example

Let’s take the default v_user.py file :

from oct_turrets.base import BaseTransaction
from oct_turrets.tools import CustomTimer
import random

import time

class Transaction (BaseTransaction) :
def _ _init__ (self, config, context=None):
super (Transaction, self)._ _init__ (config, context)

def setup(self):
"""Setup data or objects here

mnn

pass

def run(self):
r = random.uniform(1l, 2)
time.sleep(r)
with CustomTimer (self, 'a timer'):
time.sleep(r)

def tear_down (self):
""r"Clear cache or reset objects, etc. Anything that must be done after
the run method and before its next execution

11



oct Documentation, Release 0.4.10

mnn

pass
if name == '__main_ ':
trans = Transaction (None)

trans.run ()
print (trans.custom_timers)

This raw script will test nothing as it is, so let’s work on this simple use case:
We need to test a basic API over the Internet and we want to use the requests python library.

So first let’s adapt the script to our needs:

import time
import requests
from oct_turrets.base import BaseTransaction

class Transaction (BaseTransaction) :
def _ _init__ (self, config, context=None):
super (Transaction, self)._ _init__ (config, context)
# each cannon will only instanciate Transaction once, so each property
# in the Transaction __init___ method will be set only once so take care if_,
—you need to update it
self.url = "http://my-api/1.0/"

def run(self):
# For more detailed results we will setup several custom timers
with CustomTimer (self, 'Echo service'):
requests.get (self.url + "echo")

with CustomTimer (self, 'other-service'):
requests.get (self.url + "other-service")

So what are we doing here ? We’ve just imported requests and used it in our script. For each service we’ve defined a
custom timer to see how much time each one will take to answer.

But how to install the dependencies needed by the turrets ? You can simply update your configuration with something
like that :

"run_time": 30,
"results_ts_interval": 10,
"progress_bar": true,
"console_logging": false,
"testing": false,

"publish port": 5000,
"rc_port": 5001,

"min_turrets": 1,
"turrets": [
{"name": "navigation", "cannons": 2, "rampup": 0, "script": "test_scripts/v_
—user.py"},
{"name": "random", "cannons": 2, "rampup": 0, "script": "test_scripts/v_user.
—=py"}

1,

"turrets_requirements": |
"requests"

12 Chapter 4. Writing tests




oct Documentation, Release 0.4.10

If you specify the dependecies in the “turrets_requirements” you will be able to install them for each turret by simply
runing :

’pip install my_turret_package.tar

Setup and Tear down

The previous example is still pretty simple, but you might need things like sessions or cookies. How to manage it
knowing that the transaction class will instantiate only once ?

Pretty simple too: we give you two methods in the BaseTransaction classto help you: setup and tear_down

How does it works ? Take a look a this example:

import time
import requests
from oct_turrets.base import BaseTransaction

class Transaction (BaseTransaction) :
def _ _init__ (self, config, context=None):
super (Transaction, self)._ _init__ (config, context)
# each cannon will only instanciate Transaction once, so each property
# in the Transaction __init___ method will be set only once so take care if_
—you need to update it
self.url = "http://my-api/1.0/"
self.session = None

def setup(self):
self.session = requests.Session()

def run(self):
# For more detailed results we will setup several custom timers
with CustomTimer (self, 'Echo service'):
self.session.get (self.url + "echo")

with CustomTimer (self, 'other-service'):
self.session.get (self.url + "other-service")

def tear_down (self):
self.session.close ()

And that’s it | Before each run iteration, the setup method is called, and you’ve guessed it, tear_down is called
after the iteration.

Note: The setup and the tear_down method are not included in the stats sent to the HQ, so the actions will not be
included in the scriptrun_time statistic

4.2. Setup and Tear down 13



oct Documentation, Release 0.4.10

14 Chapter 4. Writing tests



CHAPTER B

Packaging your turrets

Warning: This section will explain how to package turrets, but only based on the python turret. But most turrets
will have similar implementation

So that’s it ? You’ve written all your tests and you’re ready to start to fire at your target ? Well let’s prepare your turrets
for deployement !

Auto packaging

Warning: This example only works for python based turrets. Please refer to your turret documentation if you use
anything else

OCT provides a simple way to package your turrets and set them ready to fire, the oct pack-turrets command.
It generates tar files based on your configuration file. Those tar files are the turrets, ready to fire at your command.

You can use it like this :

oct pack-turrets /path/to/oct/project

A sucessful packing should return the following output :

Added config.json

Added setup.py

Added test_scripts/v_user.py
Archive ./navigation.tar created

Added config.json
Added setup.py
Added test_scripts/v_user.py

15




oct Documentation, Release 0.4.10

Archive ./random.tar creea

In addition if some optionnal keys of the configuration are not set, you could see something like that :

WARNING: hg_address configuration key not present, the value will be set to default
—value

You will see a WARNING line per missing key. Also if a required key is not set the command will throw an exception
like that :

oct.core.exceptions.OctConfigurationError: Error: the required configuration key <key>
— 1s not define

Where <key> is the missing key

Installing and starting the turrets

Now that your turrets are packaged, you can install them using pip for example :

’pip install navigation.tar

This command will install all required packages listed under the turrets_requirements configuration key, plus
the oct-turrets package itself.

Once the installation is finished you can start your turret using the oct-turrets-start like that :

’octfturretsfstart -—tar navigation.tar

And if everything is fine you should see this message :

’[2015712721 18:02:09,295: INFO | oct_turrets.turret] starting turret

You are now ready to fire at the target !

16 Chapter 5. Packaging your turrets



CHAPTER O

Running Tests

So that’s it ? Your turrets are running and ready to fire at the target ? Si let’s do it | Leeeeeeroooooy....

Configuration

Before running the tests, don’t forget to update your configuration if your turrets are running on a different IP address
from the master.

Starting the test

Just type:

oct run /path/to/oct/project

And that’s it, your test will start and your turrets will now fire at the target. If everything is going ok you should see
an output like:

Warmup

waiting for 1 turrets to connect

waiting for 0 turrets to connect

turrets: 1, elapsed: 20.0 transactions: 4906 timers: 4906 errors: 0

So... That’s it ? And yes that’s it ! You’ve successfuly run your first OCT test !

Once the test have ended you should see the following output :

Processing all remaining messages...

analyzing results...

transactions: 4906

17




oct Documentation, Release 0.4.10

errors: 0

test start: 2015-12-21 18:23:06
test finish: 2015-12-21 18:23:26

Report generated in 2.75798082352 seconds

created: ././results/results_2015.12.21_18.23.05_162132/results.html

done.

18

Chapter 6. Running Tests




CHAPTER /

Collecting the results

The tests have ended and the report has been created ? Let’s take a look at it !

Results.html file

This is the main and the more explicit part of the results, it will give you all major information about the tests, plus
some graphs to help you read the results.

A default result page looks like this :

Performance results report

transaction: 4906

errors: 0

run time: 20

test start: 2015-12-11 17:01:48
test finish: 2015-12-11 17:02:07

time-series interval: 10 seconds workload configuration

turret name| uuid canons script name rampup |Last known status Last status update

navigation | e93eb35e-1e79-4387-860d-b88e4011b9c7 150 test_scripts/v_user.py 0 Running 2015-12-11 17:01:47.885980

Transaction Response Summary (secs)

count min avg 80pct 90pct 95pct max stdev

4906 05 05 05 05 0.5 051 0.0

Interval Details (secs)

For each custom timer, a section will be created (like the “All transactions” section) and the associated graphs will be
created.

The graphs are currently in SVG format and use javascript to make reading and interpretating the result easier.




oct Documentation, Release 0.4.10

Regenerate results

Sometimes you may need to regenerate the html report with all graphs from an sqlite file. OCT got a tool that allows
you to do this.

You can simply use the oct rebuild-results like this for example:

oct rebuild-results . config.json

Note: rebuild-results command will use database configuration in config.json file

20 Chapter 7. Collecting the results



CHAPTER 8

Packaging your project as template

Since version 0.4.2, you can start a new project with an existing template. It allow you to reuse or share your OCT
projects for specific cases

Packaging your project

Since OCT wait for a tar archive as template, you can simply package your project like this :

$ cd my_project
$ tar -zcvf my_template_name.tar.gz =

To be used as a template, your project directory structure should look like this :

- config.json # config file is mandatory
- README.md
- templates # templates directory is mandatory
- css
| - style.css
- img
- report.html # html report template is mandatory
- scripts
- pygal-tooltip.min.js
test_scripts

- test_script_1l.py
- test_script_2.py

Note: You can add as many files and directories as you need in your archive, they will be extracted

21




oct Documentation, Release 0.4.10

Using your template

OCT provide an option to new—project command to use a template :

’oct new-project project_name --template path/to/template.tar.gz

This command will create a new directory with the content of your template

22 Chapter 8. Packaging your project as template



CHAPTER 9

Writing your own turret

You use OCT but the python turret doesn’t fit your needs ? Or you need a library avaible only in one language ? Or
maybe you just want to create a turret with your favorite programing language ? No problem, this guide is here for

you !

Note: You can base your turret on the python turret, source code avaible here

Global workflow

OCT uses zeromq for communication between the HQ and the turrets. That means that you can write a turret in any
language with a zeromq binding (zeromq bindings)

But before writing your code, you need to understand how turrets must communicate with the HQ. Here is a schema

to explain it :

HO

PUB

Sending commands

PULL

Y

SUB

Sending results

PUSH

Turret

So as you can see this is pretty simple, the HQ send orders to the turrets using a PUB/SUB pattern, and the turrets will
send results to the master using a PUSH/PULL pattern.

23


https://github.com/karec/oct-turrets
http://zeromq.org/bindings:_start

oct Documentation, Release 0.4.10

Note: The python turret also uses a push/pull pattern to enable communication between cannons and the turret itself.
All cannons have an inproc socket connected to the turret process

Requirements

Before going any further, you need to know what a turret must be able to do :
» Reading a turret configuration file (see below)
* Spawning N number of cannons (set in the configuration file)
* Managing rampup
 Importing test files and run it

* Sending well formated json messages to the HQ

The turret configuration

As you can see in the python-turret example (in the GitHub repository), a turret must be able to read and understand
this type of configuration file :

{
"name": "navigation",
"cannons": 50,
"rampup": 10,
"script": "v_user.py",
"hq address": "127.0.0.1",
"hg publisher": 5000,
"hg re": 5001
}

The configuration is pretty simple - and yes this is the full configuration needed for a turret to run.
Let’s explain all keys :

* name: the display name of the turret for the report

e cannons: the number of cannons to spawn (remember, cannons == virtual users)

e rampup: the rampup value in seconds

* script: the path/name of the test script to load

¢ hg_address: the IP address of the HQ

* hg_publisher: the port of the PUB socket of the HQ

* hqg_rc: the port of the PULL socket of the HQ

All keys are required.

Sockets configuration

To communicate with the headquarters, you will need only two zmq sockets :

24 Chapter 9. Writing your own turret




oct Documentation, Release 0.4.10

* A sub socket listening on the general, empty string * channel and on ‘<turret_uniq_id>" channel (for direct
orders)

* A push socket to send results to the master

For example, in the python turret the sockets are created this way :

self.context = zmg.Context ()

self.master_publisher = self.context.socket (zmg.SUB)

self.master_publisher.connect ("tcp://{}:{}".format (self.config['hg _address'], self.
—config['hg publisher']))

self.master_publisher.setsockopt_string(zmg.SUBSCRIBE, '')
self.master_publisher.setsockopt_string(zmg.SUBSCRIBE, self.uuid)

self.result_collector = self.context.socket (zmg.PUSH)
self.result_collector.connect ("tcp://{}:{}".format (self.config['hg _address'], self.
—config['hg rc']))

You need to listen to the master_publisher socket to retrieve commands from the master. These commands can
be :

e start: tells the turret to start the tests
* status_request: headquarters ask for the status of the turret (RUNNING, WAITING, etc.)
e kill: tells the turret to shutdown

* stop: tells the turret to stop tests and clean everything to be in ready status again

HQ commands format

The HQ will send commands in JSON format. All command messages will contain 2 keys : command and msg.

For example :

{
"command": "stop",
"msg": "premature stop"

Tell the HQ that your turret is ready to fire

The master need to know if your turret is ready or not. Why ? Because the HQ can be set up to wait for n number of
turrets before starting the tests.

But don’t worry, it’s pretty simple to tell the master that your turret is ready, you only need to send a json message
with the PUSH socket of your turret.

The status message SHOULD contain all of the following fields:
e turret: the name of the turret (eg: navigation, connection, etc.)
* status: the current status of the turret (ready, waiting, running, etc.)
* uuid: the unique identifier of the turret

e rampup: the rampup setting of the turret

9.5. HQ commands format 25




oct Documentation, Release 0.4.10

e script: the test script associated with the turret
e cannons: the number of cannons on the turret

A complete json status message will look like this:

{

"turret": "navigation",

"status": "READY",

"yuid": "d7b8alcc-639a-405c-9bl6-62ce5cdb6f36",
'rampup': "30",

'script': "tests/navigation.py",

'cannons': "250"

Note: The status messages are not fixed, since it will only be used in the final html report for displaying the latest
known status of each turret. But it’s important to update it, since a crashing turret will obviously impact final results

Results messages format

All results messages that will be sent to the HQ should have the same pattern. Note that if the HQ receive a badly
formatted message, it will fail silently and you will lose those data.

But don’t worry, once again the pattern of the message is pretty simple :

{
"turret_name": "my_turret"
"elapsed": 12.48, // total elapsed time in seconds
"epoch": 1453731738 // timestamp

"scriptrun_time": 1.2, // the time it took to execute the current transaction
< (aka the response time)
"error": "My custom error", // the error string. Empty if there are no errors
"custom_timers": {
"Example_timer": 0.6, // An example custom timer
"Other timer": 0.8

See ? Pretty simple, isn’t it ?

This message will be sent throught the push socket of the turret and will be received by the pull socket of the
master.

Warning: The master use the recv_json () method to retreive messages comming from the turret, so take care
to sent message using the appropriate send_json () method

Error management

The way turrets must manage errors is pretty simple :

« If the error is inside the test scripts, the turret should keep running

26 Chapter 9. Writing your own turret




oct Documentation, Release 0.4.10

« If the error happens at the turret level, the turret should send a notification to the master before dying

So, what happens when an error is thrown inside the test script ? Simple, your turret should log it and send it to the
master in the error key of the reponse message. This way, the user could be informed if something went wrong, but
the test will continue to run.

And now, if the error appears at the turret level, how to tell the HQ that your turret is dead ? Pretty simple again, a
simple status message with the new status of your turret :

{

"turret": "navigation",

"status": "Aborted",

"uuid": "d7b8alcc-639a-405c-9bl6-62ce5cd66£36",
'rampup': "30",

'script': "tests/navigation.py",

'cannons': "250"

If you sent this message, in the final html report the user will be able to see that one turret is dead and at what moment
the turret as stopped

Writing your own packaging system

For this you’re pretty free to implement it the way you want / need it. But don’t forget that the goal of the packaging
system is to provide simple way to distribute turret in one command line.

Don’t forget to document the way your user can packages their turrets and how they can run it !

Plus, the packaging avaible in the core of OCT will be rewritten to be more generic as soon as possible.

Document your turret

Simply put: please, document your turret !

We expect to create a list to reference all available turrets, and if your turrets doesn’t have a documentation, we will
refuse to list it.

But keep in mind that for many case, a simple README is enough. At the very least, tell your users how to install
and start your turret.

9.9. Writing your own packaging system 27




oct Documentation, Release 0.4.10

28 Chapter 9. Writing your own turret



cHAaPTER 10

Commands reference

Global

Since the 0.4.0 version, OCT only provide one entry points for all commands. To see all avaibles sub-commands type:

oct -h

You should see :

usage: oct [-h]

{to-csv, rebuild, pack, rebuild-results, new, results-to-csv, run, new—-project, pack—
—turrets}

positional arguments:
{to-csv, rebuild, pack, rebuild-results, new, results-to-csv, run, new-project, pack-
—turrets}
sub commands avaibles
new-project (new) create a new oct project
pack-turrets (pack)
create turrets packages from a given oct project
run run an oct project
rebuild-results (rebuild)
Rebuild the html report from result dir
results-to-csv (to-csv)
Create a csv file from a sglite results file

optional arguments:
-h, —--help show this help message and exit

Each sub command has its own help

29




oct Documentation, Release 0.4.10

New project

Create a new OCT project

aliases :

* new-project

* new
usage :
oct new-project [-h] [-t TEMPLATE] <project_path>
Arguments :
name type | mandatory | description
project str yes path of the new project
-t, —template | str no path of existing project template

Pack turrets

Create all turrets package from config file

aliases :

* pack-turrets

* pack

usage :

oct pack-turrets <path-to-project>

Arguments

name

type

mandatory

description

path

Str

yes

path of the project

Run

Run an OCT project

aliases :
e run

usage :

oct run <path-to-project>

Arguments :
name type | mandatory | description
project str yes path of the project
-1, —results str no specifiy a custom directory for the results
-d, —directyory str no specify the project directory if not current
-p, —publisher-channel | str no specify a custom channel for results publication

30

Chapter 10. Commands reference



oct Documentation, Release 0.4.10

Rebuild results

Rebuild html results and graph from existing sqlite result file
aliases :

* rebuild-results

* rebuild

usage :

oct rebuild-results <path-to-results> <path-to-config> [-f] <path-to-sglite-results>

Arguments :
name type | mandatory | description
results_dir str yes results directory to rebuild
config_file str yes json config file of the project
-f, —results-file | str no sqlite results file

Results to csv

Convert sqlite results to csv
aliases :

¢ results-to-csv

* to-csv

usage :
oct results-to-csv [-h] [-d DELIMITER] <result_file> <output_file>
Arguments :

name type | mandatory | description

results_file str yes sqlite result file to use

output_file str yes csv output file

-d, —delimiter | str no specify custom delimiter for csv file

10.5. Rebuild results 31



oct Documentation, Release 0.4.10

32 Chapter 10. Commands reference



cHAPTER 11

API Reference

oct.core package

Submodules

oct.core.exceptions module

exception oct .core.exceptions.OctConfigurationError
Bases: exceptions.Exception
Provide an oct configuration error

exception oct .core.exceptions.OctGenericException
Bases: exceptions.Exception

Provide generic exception for reports

oct.core.hq module
class oct .core.hqg.HightQuarter (output_dir, config, topic, master=True, *args, **kwargs)
Bases: object
The main hight quarter that will receive informations from the turrets and send the start message
Parameters
* output_dir (str) - output directory for results
* config (dict) - the configuration of the test
* topic (str)—topic for external publishing socket
* with_forwarder (bool) —tell HQ if it should connects to forwarder, default False

e with_streamer (bool) —tell HQ if ti should connects to streamer, default False

33



oct Documentation, Release 0.4.10

* streamer_address (str) — streamer address to connect with form : <ip>:<port>

run ()
Run the hight quarter, lunch the turrets and wait for results

wait_turrets (wait_for)
Wait until wait_for turrets are connected and ready

oct.core.main module
oct.core.test_loader module

Module contents
oct.results package

Submodules
oct.results.models module

oct.results.report module
class oct .results.report .ReportResults (run_time, interval, loader)
Bases: object
Represent a report containing all tests results
Parameters
* run_time (int) — the run_time of the script
* interval (int) — the time interval between each group of results
e loader (oct.result_backends.base.BaseLoader) — loader to fetch results

compile_results ()
Compile all results for the current test

oct.results.writer module
class oct.results.writer.ReportWriter (results_dir, parent)
Bases: object
A class representing a report, used to output the result
Parameters
* results_dir (str)— the output directory for the report
* parent (str) — the parent directory

set_statics ()
Create statics directory and copy files in it

write_report (femplate)
Write the compiled jinja template to the results file

Parameters str (template)—the compiled jinja template

34 Chapter 11. API Reference



oct Documentation, Release 0.4.10

oct.results.ouput module
oct.results.stats_handler module

oct.results.graphs module
oct.results.graphs.get_local_time (index)
Localize datetime for better output in graphs
Parameters index (pandas.DateTimeIndex)— pandas datetime index
Returns aware time objet
Return type datetime.time

oct.results.graphs.resp_graph (dataframe, image_name, dir="./")
Response time graph for bucketed data

Parameters
* dataframe (pandas.DataFrame)— dataframe containing all data
* image_name (str) — the output file name
* dir (str) - the output directory

Returns None

oct.results.graphs.resp_graph_raw (dataframe, image_name, dir="./")
Response time graph for raw data

Parameters
e dataframe (pandas.DataFrame) — the raw results dataframe
* image_name (str) — the output file name
* dir (str) - the output directory

Returns None

oct.results.graphs.tp_graph (dataframe, image_name, dir="/")
Throughput graph

Parameters
* dataframe (pandas.DataFrame) — dataframe containing all data
* dir (str)— the output directory

Returns None

Module contents
oct.tools package

Submodules

oct.tools.rebuild results module

oct.tools.rebuild_results.rebuild (args)

11.3. oct.tools package

35



oct Documentation, Release 0.4.10

oct.tools.rebuild_results.rebuild_results (sp)

oct.tools.results_to _csv module

oct.tools.results_to_csv.results_to_csv(sp)

oct.tools.results_to_csv.to_ecsv (args)
Take a sqlite filled database of results and return a csv file

Parameters
* result_file (str) - the path of the sqlite database
* output_file (str)— the path of the csv output file

* delimiter (str)— the desired delimiter for the output csv file

Module contents

oct.utilities package

Submodules

oct.utilities.configuration module
oct.utilities.configuration.cleanup_turret_config (config)
Remove useless keys from turret configuration
Parameters config (dict) — the configuration to cleanup
Returns the cleaned configuration
Return type dict

oct.utilities.configuration.configure (project_path, config_file=None)
Get the configuration of the test and return it as a config object

Returns the configured config object
Return type Object

oct.utilities.configuration.configure_for_ turret (project_name, config_file)
Load the configuration file in python dict and check for keys that will be set to default value if not present

Parameters

* project_name (str) - the name of the project

* config_file (str)—the path of the configuration file
Returns the loaded configuration
Return type dict

oct.utilities.configuration.get_db_uri (config, output_dir)
Process results_database parameters in config to format them for set database function

Parameters

* config (dict) - project configuration dict

36 Chapter 11. API Reference



oct Documentation, Release 0.4.10

oct

oct

oct

* output_dir (str) - output directory for results

Returns string for db uri

.utilities.configuration.get_loader_class (config)

Get results loader class from configuration

Parameters config (dict) — project configuration dict

.utilities.configuration.get_store_class (config)

Get results store backend class from configuration

Parameters config (dict) — project configuration dict

.utilities.configuration.load_turret_config (project_path, config_file)

oct.utilities.newproject module

oct

oct

oct

oct

oct

oct

.utilities.newproject.check_template (members, prefix=None)
.utilities.newproject.create_project (args)

.utilities.newproject.from_oct (args)

Create a new oct project

Parameters args (Namespace) — the command line arguments

.utilities.newproject.from_template (args)

Create a new oct project from existing template

Parameters args (Namespace)— command line arguments

.utilities.newproject.get_members (far, prefix)

.utilities.newproject.new_project (sp)

oct.utilities.pack module

oct

oct

oct

oct

oct

oct

.utilities.pack.cleanup_temp_files (turret, files)
.utilities.pack.get_files_and_content (turret, is_python=False)
.utilities.pack.pack (args)

.utilities.pack.pack_turret (turret, temp_files, base_config_path, path=None)

pack a turret into a tar file based on the turret configuration
Parameters
* turret_config (dict) — the turret configuration to pack

* tmp_config_ file (str)— the path of the temp config file

* base_config_path (str) — the base directory of the main configuration file
.utilities.pack.pack_turrets (sp)

.utilities.pack.write_temp_files (turret, files)

11.4. oct.utilities package

37



oct Documentation, Release 0.4.10

oct.utilities.run module

oct

oct

oct

oct

oct

oct

oct

.utilities.run.copy_config (project_path, output_dir)

Copy current config file to output directory

.utilities.run.generate_output_path (args, project_path)

Generate default output directory

.utilities.run.init_output (output_dir, config)

Init output directory
Parameters
* output_dir (str)— the output directory for the results

* config (dict) - the project configuration

.utilities.run.process_results (output_dir, config)

Process results and output them

.utilities.run.run (args)

Start an oct project

Parameters args (Namespace) — the commande-line arguments

.utilities.run.run_command (sp)

Main function to run oct tests.

Start a HQ

Module contents

.utilities.run.start_hgqg (output_dir, config, topic, is_master=True, **kwargs)

38

Chapter 11. API Reference



Python Module Index

oct
oct

oct
oct
oct
oct
oct

oct.
.tools.results_to_csv, 36
.utilities, 38
.utilities.configuration, 36
.utilities.newproject, 37
oct.

oct
oct
oct
oct

oct

.core, 34
.core.exceptions, 33
oct.
.results, 35
.results.graphs, 35
.results.report, 34
.results.writer, 34
.tools, 36

core.hq, 33

tools.rebuild_results, 35

utilities.pack, 37

.utilities.run, 38

39



oct Documentation, Release 0.4.10

40 Python Module Index



Index

C

check_template() (in module oct.utilities.newproject), 37

cleanup_temp_files() (in module oct.utilities.pack), 37

cleanup_turret_config() (in module
oct.utilities.configuration), 36

compile_results() (oct.results.report.ReportResults
method), 34

configure() (in module oct.utilities.configuration), 36

configure_for_turret() (in module
oct.utilities.configuration), 36

copy_config() (in module oct.utilities.run), 38

create_project() (in module oct.utilities.newproject), 37

F

from_oct() (in module oct.utilities.newproject), 37
from_template() (in module oct.utilities.newproject), 37

G

generate_output_path() (in module oct.utilities.run), 38
get_db_uri() (in module oct.utilities.configuration), 36
get_files_and_content() (in module oct.utilities.pack), 37
get_loader_class() (in module oct.utilities.configuration),
37
get_local_time() (in module oct.results.graphs), 35
get_members() (in module oct.utilities.newproject), 37
get_store_class() (in module oct.utilities.configuration),
37

H

HightQuarter (class in oct.core.hq), 33

init_output() (in module oct.utilities.run), 38

L

load_turret_config() (in
oct.utilities.configuration), 37

module

N

new_project() (in module oct.utilities.newproject), 37

O

oct.core (module), 34
oct.core.exceptions (module), 33
oct.core.hq (module), 33

oct.results (module), 35
oct.results.graphs (module), 35
oct.results.report (module), 34
oct.results.writer (module), 34
oct.tools (module), 36
oct.tools.rebuild_results (module), 35
oct.tools.results_to_csv (module), 36
oct.utilities (module), 38
oct.utilities.configuration (module), 36
oct.utilities.newproject (module), 37
oct.utilities.pack (module), 37
oct.utilities.run (module), 38
OctConfigurationError, 33
OctGenericException, 33

P

pack() (in module oct.utilities.pack), 37
pack_turret() (in module oct.utilities.pack), 37
pack_turrets() (in module oct.utilities.pack), 37
process_results() (in module oct.utilities.run), 38

R

rebuild() (in module oct.tools.rebuild_results), 35
rebuild_results() (in module oct.tools.rebuild_results), 35
ReportResults (class in oct.results.report), 34
ReportWriter (class in oct.results.writer), 34
resp_graph() (in module oct.results.graphs), 35
resp_graph_raw() (in module oct.results.graphs), 35
results_to_csv() (in module oct.tools.results_to_csv), 36
run() (in module oct.utilities.run), 38

run() (oct.core.hq.HightQuarter method), 34
run_command() (in module oct.utilities.run), 38

41



oct Documentation, Release 0.4.10

S

set_statics() (oct.results.writer.ReportWriter method), 34
start_hq() (in module oct.utilities.run), 38

T

to_csv() (in module oct.tools.results_to_csv), 36
tp_graph() (in module oct.results.graphs), 35

W

wait_turrets() (oct.core.hq.HightQuarter method), 34

write_report() (oct.results.writer.ReportWriter method),
34

write_temp_files() (in module oct.utilities.pack), 37

42

Index



	Introduction
	Installation
	Your first project
	Writing tests
	Packaging your turrets
	Running Tests
	Collecting the results
	Packaging your project as template
	Writing your own turret
	Commands reference
	API Reference
	Python Module Index

