
oct Documentation
Release 0.3.7

karec

March 25, 2016

Contents

1 Introduction 3

2 Installation 5

3 Your first project 7

4 Writing tests 11

5 Packaging your turrets 15

6 Running Tests 17

7 Collecting the results 19

8 Writing your own turret 21

9 API Reference 27

Python Module Index 35

i

ii

oct Documentation, Release 0.3.7

Informations

OCT is still in alpha version and is not yet suitable for production, but we working hard on it for make it to the
beta ! Follow us for more informations about the next releases
twitter @oct_py

Contents 1

https://twitter.com/oct_py

oct Documentation, Release 0.3.7

2 Contents

CHAPTER 1

Introduction

1.1 What is OCT

OCT is an agnostic load testing tool. What do we mean by agnostic ? It’s simple : OCT provides only the needed
tools to distribute and run your tests and compile the results. But the tools and programming languages for writing the
tests themselves are up to you.

At this stage of development we only offer a python turret, but if you want to create your own turret implementation
in any language, please do it ! We’re really open to any suggestions and help.

1.2 Terminology

• HQ for Headquarters: it’s the “server” component of OCT and it’s tasked with sending start signal, stop signal,
collecting results and create reports

• Turret: a turret is the “client” component of OCT. It can be writen in any language and it communicates with
the HQ using a zeromq PUSH socket. Each turret owns one or many canons.

• Canons: represent the virtual users, wich means that each canon of the turret will run a test in parallel

Note: Why do we use this terminology ? It gives a good idea of what’s happening when you use OCT. Think about
it like that : each turret owns X canons that shoot at the target and report on the result to the HQ

1.3 How it works ?

OCT uses the power of zeromq to distribute test on any number of physical machines you need. When running a test
the process is very simple :

• OCT starts the HQ. It sends a start message to the turrets and will later collect their results

• The turrets receive the message, start the tests and send results to the HQ

• When the test ends, the HQ sends a stop message to the turrets and process the remaining messages in queue

• OCT will then compile the results and create a html report of them

Want a graph ? Here you go :

3

oct Documentation, Release 0.3.7

So this is it, a bunch of turrets shooting at the target and sending information to the HQ.

4 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 OCT-Core

OCT is avaible on pypi so you can install it with pip :

pip install oct

Or directly from the source :

python setup.py install

You will also need the python headers for installing some of the dependencies like numpy, and build-essential
and python-dev to compile them

On a debian based system you can install them using apt for example :

apt-get install python-dev build-essential

Note: The OCT core part have been developed and tested on linux based system only, at this point of the developement
process we cannot guarantee you that the oct-core can be installed on a Windows system

2.2 OCT-Turrets

You can actually choose any turret that you need, in any langage. But the oct package require the python turrets by
default and the “oct-turrets” pypi package will be automaticaly installed with the main oct package.

5

oct Documentation, Release 0.3.7

6 Chapter 2. Installation

CHAPTER 3

Your first project

OCT exposes several command-line tools to use it, write your tests or run your project.

First we’re going to use the oct-newproject command for creating our first project.

oct-newproject my_project_name

This command creates a folder named my_project_name containing all the required files to start an OCT project.

Let’s take a look at the content of this new folder :

|-- config.json
-- templates
| -- css
| | -- style.css
| -- img
| -- report.html
| -- scripts
-- test_scripts

-- v_user.py

Those files are the minimum required by an OCT project. We will analyze them in details in this documentation but
let’s take it file by file.

3.1 Configuration

The main and more important file here is the config.json file, let’s take a look at his default content :

{
"run_time": 30,
"results_ts_interval": 10,
"progress_bar": true,
"console_logging": false,
"testing": false,
"publish_port": 5000,
"rc_port": 5001,
"min_turrets": 1,
"turrets": [

{"name": "navigation", "canons": 2, "rampup": 0, "script": "test_scripts/v_user.py"},
{"name": "random", "canons": 2, "rampup": 0, "script": "test_scripts/v_user.py"}

],
"turrets_requirements": []

}

7

oct Documentation, Release 0.3.7

Every key here is useful, but some keys are not required to run a test. Let’s take a look at the main ones :

• run_time: This key simply sets the time of a test in seconds. So in this case the test will run for 30 seconds.

• results_ts_interval: Time interval between two sets of results in seconds. For exemple if we have a
run time of 30 seconds and an interval of 10, we will have 3 results sets in the final report

• testing: If this key is set to True, the results.sqlite file will be created in /tmp folder

• publish_port: The port for the publishing socket of the HQ

• rc_port: The port for the result collector (PULL socket) of the HQ

• min_turrets: The minimum number of turrets that must be deployed before the HQ sends the start message

• turrets: a list of turrets, this key will be use to package turrets with the oct-pack-turrets command

• turrets_requirements: A list of string containing the required packages for turrets (only for python
turrets at this time)

This configuration is simple but will allow you to run simple tests in a local environment.

Now let’s take a look at the per-turret configuration :

Each turret can be configured independently, and you can setup different options for each one :

• name: the string representation for the turret

• canons: The number of canons for this turret (aka virtual users)

• rampup: Turrets can spawn their cannon progressively, not each at the same time. Rampup gives a “step” for
cannon initialization. The number of cannon spawned by second is equal to the total number of cannons of the
turret by rampup - e.g., if you have 30 cannons and a rampup of 15 seconds, it will spawn 2 cannons by seconds.
If you do not want to increase the number of cannons in time but start the tests with all cannons ready to fire,
leave rampup at 0, as in the exemple.

• script: The relative path to the associated test script

3.2 Writing tests

By default, the oct-new-project command will create an exemple test script under
test_scripts/v_user.py, let’s take a look at it :

from oct_turrets.base import BaseTransaction
import random
import time

class Transaction(BaseTransaction):
def __init__(self):

pass

def run(self):
r = random.uniform(1, 2)
time.sleep(r)
self.custom_timers['Example_Timer'] = r

Note: As you can see the default test is writen in python, but each turret can have its own implementation and its own
way to write tests. Refer to turrets documentation for more explanations on how to write tests with the selected turret.

8 Chapter 3. Your first project

oct Documentation, Release 0.3.7

So this file represent a basic test that will simply wait between 1 or 2 seconds. Not really useful but it give you an
exemple on how to write tests and we will keep this example when running our tests in the local setup. For advanced
explanations on how to write tests, please see Writing tests

3.3 That’s all you need

And that’s all you need ! Some configuration and basics tests and that’s it.

Of course this will not be enough to test your infrastructure or website, but at this point you should better undersand
how OCT work and what you need to run your tests ! In the next part we will talk about writing more complexe tests.

3.3. That’s all you need 9

oct Documentation, Release 0.3.7

10 Chapter 3. Your first project

CHAPTER 4

Writing tests

Warning: This section will explain how to write tests, but only based on the python turret. But many turrets will
have similar implementation

4.1 Basic example

Let’s take the default v_user.py file :

from oct_turrets.base import BaseTransaction
import random
import time

class Transaction(BaseTransaction):
def __init__(self):

pass

def run(self):
r = random.uniform(1, 2)
time.sleep(r)
self.custom_timers['Example_Timer'] = r

This raw script will test nothing as it is, so let’s work on this simple use case:

We need to test a basic API over the Internet and we want to use the requests python library.

So first let’s adapt the script to our needs:

import time
import requests
from oct_turrets.base import BaseTransaction

class Transaction(BaseTransaction):
def __init__(self):

each canon will only instanciate Transaction once, so each property
in the Transaction __init__ method will be set only once so take care if you need to update it
self.url = "http://my-api/1.0/"

def run(self):
For more detailed results we will setup several custom timers

11

oct Documentation, Release 0.3.7

start = time.time()
requests.get(self.url + "echo")
self.custom_timers['Echo service'] = time.time() - start

start = time.time()
requests.get(self.url + "other-service")
self.custom_timers['other-service'] = time.time() - start

So what are we doing here ? We’ve just imported requests and used it in our script. For each service we’ve defined a
custom timer to see how much time each one will take to answer.

But how to install the dependencies needed by the turrets ? You can simply update your configuration with something
like that :

{
"run_time": 30,
"results_ts_interval": 10,
"progress_bar": true,
"console_logging": false,
"testing": false,
"publish_port": 5000,
"rc_port": 5001,
"min_turrets": 1,
"turrets": [

{"name": "navigation", "canons": 2, "rampup": 0, "script": "test_scripts/v_user.py"},
{"name": "random", "canons": 2, "rampup": 0, "script": "test_scripts/v_user.py"}

],
"turrets_requirements": [

"requests"
]

}

If you specify the dependecies in the “turrets_requirements” you will be able to install them for each turret by simply
runing :

pip install my_turret_package.tar

4.2 Setup and Tear down

The previous example is still pretty simple, but you might need things like sessions or cookies. How to manage it
knowing that the transaction class will instantiate only once ?

Pretty simple too: we give you two methods in the BaseTransaction class to help you : setup and tear_down

How does it works ? Take a look a this example:

import time
import requests
from oct_turrets.base import BaseTransaction

class Transaction(BaseTransaction):
def __init__(self):

each canon will only instanciate Transaction once, so each property
in the Transaction __init__ method will be set only once so take care if you need to update it
self.url = "http://my-api/1.0/"
self.session = None

12 Chapter 4. Writing tests

oct Documentation, Release 0.3.7

def setup(self):
self.session = requests.Session()

def run(self):
For more detailed results we will setup several custom timers
start = time.time()
self.session.get(self.url + "echo")
self.custom_timers['Echo service'] = time.time() - start

start = time.time()
self.session.get(self.url + "other-service")
self.custom_timers['other-service'] = time.time() - start

def tear_down(self):
self.session.close()

And that’s it ! Before each run iteration, the setup method is called, and you’ve guessed it, tear_down is called
after the iteration.

Note: The setup and the tear_down method are not included in the stats sent to the HQ, so the actions will not be
included in the scriptrun_time statistic

4.2. Setup and Tear down 13

oct Documentation, Release 0.3.7

14 Chapter 4. Writing tests

CHAPTER 5

Packaging your turrets

Warning: This section will explain how to package turrets, but only based on the python turret. But most turrets
will have similar implementation

So that’s it ? You’ve written all your tests and you’re ready to start to fire at your target ? Well let’s prepare your turrets
for deployement !

5.1 Auto packaging

Warning: This example only works for python based turrets. Please refer to your turret documentation if you use
anything else

OCT provides a simple way to package your turrets and set them ready to fire, the oct-pack-turrets command.
It generates tar files based on your configuration file. Those tar files are the turrets, ready to fire at your command.

You can use it like this :

oct-pack-turrets /path/to/oct/project

A sucessful packing should return the following output :

Added config.json
Added setup.py
Added test_scripts/v_user.py
Archive ./navigation.tar created
===
Added config.json
Added setup.py
Added test_scripts/v_user.py
Archive ./random.tar created
===

In addition if some optionnal keys of the configuration are not set, you could see something like that :

WARNING: hq_address configuration key not present, the value will be set to default value

You will see a WARNING line per missing key. Also if a required key is not set the command will throw an exception
like that :

15

oct Documentation, Release 0.3.7

oct.core.exceptions.OctConfigurationError: Error: the required configuration key <key> is not define

Where <key> is the missing key

5.2 Installing and starting the turrets

Now that your turrets are packaged, you can install them using pip for example :

pip install navigation.tar

This command will install all required packages listed under the turrets_requirements configuration key, plus
the oct-turrets package itself.

Once the installation is finished you can start your turret using the oct-turrets-start like that :

oct-turrets-start --tar navigation.tar

And if everything is fine you should see this message :

[2015-12-21 18:02:09,295: INFO | oct_turrets.turret] starting turret

You are now ready to fire at the target !

16 Chapter 5. Packaging your turrets

CHAPTER 6

Running Tests

So that’s it ? Your turrets are running and ready to fire at the target ? Si let’s do it ! Leeeeeeroooooy....

6.1 Configuration

Before running the tests, don’t forget to update your configuration if your turrets are running on a different IP address
from the master.

6.2 Starting the test

Just type:

oct-run /path/to/oct/project

And that’s it, your test will start and your turrets will now fire at the target. If everything is going ok you should see
an output like:

Warmup
waiting for 1 turrets to connect
waiting for 0 turrets to connect
turrets: 1, elapsed: 20.0 transactions: 4906 timers: 4906 errors: 0

So... That’s it ? And yes that’s it ! You’ve successfuly run your first OCT test !

Once the test have ended you should see the following output :

Processing all remaining messages...

analyzing results...

transactions: 4906
errors: 0

test start: 2015-12-21 18:23:06
test finish: 2015-12-21 18:23:26

Report generated in 2.75798082352 seconds
created: ././results/results_2015.12.21_18.23.05_162132/results.html

done.

17

oct Documentation, Release 0.3.7

18 Chapter 6. Running Tests

CHAPTER 7

Collecting the results

The tests have ended and the report has been created ? Let’s take a look at it !

7.1 Results.html file

This is the main and the more explicit part of the results, it will give you all major information about the tests, plus
some graphs to help you read the results.

A default result page looks like this :

For each custom timer, a section will be created (like the “All transactions” section) and the associated graphs will be
created.

The graphs are currently in SVG format and use javascript to make reading and interpretating the result easier.

7.2 Regenerate results

Sometimes you may need to regenerate the html report with all graphs from an sqlite file. OCT got a tool that allows
you to do this.

You can simply use the oct-rebuild-results like this for example:

oct-rebuild-results . results.sqlite config.json

Note: The oct-rebuild-results command will only work on an already created results folder that contains only the
sqlite results and optionnaly the configuration.

19

oct Documentation, Release 0.3.7

20 Chapter 7. Collecting the results

CHAPTER 8

Writing your own turret

You use OCT but the python turret doesn’t fit your needs ? Or you need a library avaible only in one language ? Or
maybe you just want to create a turret with your favorite programing language ? No problem, this guide is here for
you !

Note: You can base your turret on the python turret, source code avaible here

8.1 Global workflow

OCT uses zeromq for communication between the HQ and the turrets. That means that you can write a turret in any
language with a zeromq binding (zeromq bindings)

But before writing your code, you need to understand how turrets must communicate with the HQ. Here is a schema
to explain it :

So as you can see this is pretty simple, the HQ send orders to the turrets using a PUB/SUB pattern, and the turrets will
send results to the master using a PUSH/PULL pattern.

Note: The python turret also uses a push/pull pattern to enable communication between cannons and the turret itself.
All cannons have an inproc socket connected to the turret process

8.2 Requirements

Before going any further, you need to know what a turret must be able to do :

21

https://github.com/karec/oct-turrets
http://zeromq.org/bindings:_start

oct Documentation, Release 0.3.7

• Reading a turret configuration file (see below)

• Spawning N number of canons (set in the configuration file)

• Managing rampup

• Importing test files and run it

• Sending well formated json messages to the HQ

8.3 The turret configuration

As you can see in the python-turret example (in the GitHub repository), a turret must be able to read and understand
this type of configuration file :

{
"name": "navigation",
"canons": 50,
"rampup": 10,
"script": "v_user.py",
"hq_address": "127.0.0.1",
"hq_publisher": 5000,
"hq_rc": 5001

}

The configuration is pretty simple - and yes this is the full configuration needed for a turret to run.

Let’s explain all keys :

• name: the display name of the turret for the report

• canons: the number of canons to spawn (remember, canons == virtual users)

• rampup: the rampup value in seconds

• script: the path/name of the test script to load

• hq_address: the IP address of the HQ

• hq_publisher: the port of the PUB socket of the HQ

• hq_rc: the port of the PULL socket of the HQ

All keys are required.

8.4 Sockets configuration

To communicate with the headquarters, you will need only two zmq sockets :

• A sub socket listening on the general, empty string ‘’ channel and on ‘<turret_uniq_id>’ channel (for direct
orders)

• A push socket to send results to the master

For example, in the python turret the sockets are created this way :

self.context = zmq.Context()

self.master_publisher = self.context.socket(zmq.SUB)
self.master_publisher.connect("tcp://{}:{}".format(self.config['hq_address'], self.config['hq_publisher']))

22 Chapter 8. Writing your own turret

oct Documentation, Release 0.3.7

self.master_publisher.setsockopt_string(zmq.SUBSCRIBE, '')
self.master_publisher.setsockopt_string(zmq.SUBSCRIBE, self.uuid)

self.result_collector = self.context.socket(zmq.PUSH)
self.result_collector.connect("tcp://{}:{}".format(self.config['hq_address'], self.config['hq_rc']))

You need to listen to the master_publisher socket to retrieve commands from the master. These commands can
be :

• start: tells the turret to start the tests

• status_request: headquarters ask for the status of the turret (RUNNING, WAITING, etc.)

• kill: tells the turret to shutdown

• stop: tells the turret to stop tests and clean everything to be in ready status again

8.5 HQ commands format

The HQ will send commands in JSON format. All command messages will contain 2 keys : command and msg.

For example :

{
"command": "stop",
"msg": "premature stop"

}

8.6 Tell the HQ that your turret is ready to fire

The master need to know if your turret is ready or not. Why ? Because the HQ can be set up to wait for n number of
turrets before starting the tests.

But don’t worry, it’s pretty simple to tell the master that your turret is ready, you only need to send a json message
with the PUSH socket of your turret.

The status message SHOULD contain all of the following fields:

• turret: the name of the turret (eg: navigation, connection, etc.)

• status: the current status of the turret (ready, waiting, running, etc.)

• uuid: the unique identifier of the turret

• rampup: the rampup setting of the turret

• script: the test script associated with the turret

• canons: the number of canons on the turret

A complete json status message will look like this:

{
"turret": "navigation",
"status": "READY",
"uuid": "d7b8a1cc-639a-405c-9b16-62ce5cd66f36",
'rampup': "30",
'script': "tests/navigation.py",

8.5. HQ commands format 23

oct Documentation, Release 0.3.7

'canons': "250"
}

Note: The status messages are not fixed, since it will only be used in the final html report for displaying the latest
known status of each turret. But it’s important to update it, since a crashing turret will obviously impact final results

8.7 Results messages format

All results messages that will be sent to the HQ should have the same pattern. Note that if the HQ receive a badly
formatted message, it will fail silently and you will lose those data.

But don’t worry, once again the pattern of the message is pretty simple :

{
"turret_name": "my_turret"
"elapsed": 12.48, // total elapsed time in seconds
"epoch": 1453731738 // timestamp
"scriptrun_time": 1.2, // the time it took to execute the current transaction (aka the response time)
"error": "My custom error", // the error string. Empty if there are no errors
"custom_timers": {

"Example_timer": 0.6, // An example custom timer
"Other timer": 0.8

}
}

See ? Pretty simple, isn’t it ?

This message will be sent throught the push socket of the turret and will be received by the pull socket of the
master.

Warning: The master use the recv_json() method to retreive messages comming from the turret, so take care
to sent message using the appropriate send_json() method

8.8 Error management

The way turrets must manage errors is pretty simple :

• If the error is inside the test scripts, the turret should keep running

• If the error happens at the turret level, the turret should send a notification to the master before dying

So, what happens when an error is thrown inside the test script ? Simple, your turret should log it and send it to the
master in the error key of the reponse message. This way, the user could be informed if something went wrong, but
the test will continue to run.

And now, if the error appears at the turret level, how to tell the HQ that your turret is dead ? Pretty simple again, a
simple status message with the new status of your turret :

{
"turret": "navigation",
"status": "Aborted",
"uuid": "d7b8a1cc-639a-405c-9b16-62ce5cd66f36",
'rampup': "30",

24 Chapter 8. Writing your own turret

oct Documentation, Release 0.3.7

'script': "tests/navigation.py",
'canons': "250"

}

If you sent this message, in the final html report the user will be able to see that one turret is dead and at what moment
the turret as stopped

8.9 Writing your own packaging system

For this you’re pretty free to implement it the way you want / need it. But don’t forget that the goal of the packaging
system is to provide simple way to distribute turret in one command line.

Don’t forget to document the way your user can packages their turrets and how they can run it !

Plus, the packaging avaible in the core of OCT will be rewritten to be more generic as soon as possible.

8.10 Document your turret

Simply put: please, document your turret !

We expect to create a list to reference all available turrets, and if your turrets doesn’t have a documentation, we will
refuse to list it.

But keep in mind that for many case, a simple README is enough. At the very least, tell your users how to install
and start your turret.

8.9. Writing your own packaging system 25

oct Documentation, Release 0.3.7

26 Chapter 8. Writing your own turret

CHAPTER 9

API Reference

9.1 oct.core package

9.1.1 Submodules

9.1.2 oct.core.exceptions module

exception oct.core.exceptions.FormNotFoundException
Bases: exceptions.Exception

Raised in case of FormNotFound with browser

exception oct.core.exceptions.LinkNotFound
Bases: exceptions.Exception

Raised in case of link not found in current html document

exception oct.core.exceptions.NoFormWaiting
Bases: exceptions.Exception

Raised in case of action required form if no form selected

exception oct.core.exceptions.NoUrlOpen
Bases: exceptions.Exception

Raised in case of no url open but requested inside browser class

exception oct.core.exceptions.OctConfigurationError
Bases: exceptions.Exception

Provide an oct configuration error

exception oct.core.exceptions.OctGenericException
Bases: exceptions.Exception

Provide generic exception for reports

9.1.3 oct.core.hq module

class oct.core.hq.HightQuarter(publish_port, rc_port, stats_handler, config)
Bases: object

The main hight quarter that will receive informations from the turrets and send the start message

Parameters

27

oct Documentation, Release 0.3.7

• publish_port (int) – the port for publishing information to turrets

• rc_port (int) – the result collector port for collecting results from the turrets

• stats_handler (StatsHandler) – the stats handler writer

• config (dict) – the configuration of the test

run()
Run the hight quarter, lunch the turrets and wait for results

wait_turrets(wait_for)
Wait until wait_for turrets are connected and ready

9.1.4 oct.core.main module

9.1.5 oct.core.test_loader module

9.1.6 Module contents

9.2 oct.results package

9.2.1 Submodules

9.2.2 oct.results.models module

class oct.results.models.Result(*args, **kwargs)
Bases: peewee.Model

Define a result model

DoesNotExist
alias of ResultDoesNotExist

custom_timers = <peewee.TextField object>

elapsed = <peewee.FloatField object>

epoch = <peewee.FloatField object>

error = <peewee.TextField object>

id = <peewee.PrimaryKeyField object>

scriptrun_time = <peewee.FloatField object>

to_dict()

turret_name = <peewee.CharField object>

class oct.results.models.Turret(*args, **kwargs)
Bases: peewee.Model

Define a turret model

DoesNotExist
alias of TurretDoesNotExist

canons = <peewee.IntegerField object>

id = <peewee.PrimaryKeyField object>

28 Chapter 9. API Reference

oct Documentation, Release 0.3.7

name = <peewee.TextField object>

rampup = <peewee.IntegerField object>

save(*args, **kwargs)

script = <peewee.TextField object>

status = <peewee.TextField object>

to_dict()

updated_at = <peewee.DateTimeField object>

uuid = <peewee.TextField object>

oct.results.models.set_database(db_path, proxy, config)
Initialize the peewee database with the given configuration

Parameters

• db_path (str) – the path of the sqlite database

• proxy (peewee.Proxy) – the peewee proxy to initialise

• config (dict) – the configuration dictionnary

9.2.3 oct.results.reportresults module

class oct.results.reportresults.IntervalDetailsResults(trans_timer_points, inter-
val_secs)

Bases: object

process()

class oct.results.reportresults.ReportResults(results, interval_secs)
Bases: object

clear_all_transactions()

set_all_transactions_results()

set_custom_timers()

set_dict(trans_timer_points, trans_timer_vals, name=None)

class oct.results.reportresults.ResponseStats(elapsed_time, epoch_secs, user_group_name,
trans_time, error, custom_timers)

Bases: object

class oct.results.reportresults.Results(results_file_name, run_time)
Bases: object

oct.results.reportresults.split_series(points, interval)

9.2.4 oct.results.reportwriter module

class oct.results.reportwriter.Report(results_dir, parent)
Bases: object

A class representing a report, used to output the result

Parameters

• results_dir (str) – the output directory for the report

9.2. oct.results package 29

oct Documentation, Release 0.3.7

• parent (str) – the parent directory

set_statics()
Create statics directory and copy files in it

write_report(template)
Write the compiled jinja template to the results file

Parameters str (template) – the compiled jinja template

9.2.5 oct.results.resultsoutput module

oct.results.resultsoutput.output(results_dir, results_file, config, parent=’../../’)
Write the results output for the given test

Parameters

• results_dir (str) – the directory for the results

• results_file (str) – the file for the results

• run_time (int) – the total test time elapsed

• rampup (int) – the rampup setting for the test

• ts_interval (int) – the interval in second setting for the test

• turrets (dict) – the turrets configuration

• parent (str) – the parent directory

9.2.6 oct.results.resultswriter module

class oct.results.resultswriter.ResultsWriter(output_dir, config)
Bases: object

This class will handle results and stats comming from the turrets

Parameters output_dir (str) – the output directory for the results

write_remaining()
Write the remaning stack content

write_result(data)
Write the results received to the database

Parameters data (dict) – the data to save in database

Returns None

write_turret(data)
Write the turret information in database

Parameters data (dict) – the data of the turret to save

Returns The turret object after save

30 Chapter 9. API Reference

oct Documentation, Release 0.3.7

9.2.7 oct.results.graphs module

oct.results.graphs.get_local_time(index)
Localize datetime for better output in graphs

Parameters index (pandas.DateTimeIndex) – pandas datetime index

Returns aware time objet

Return type datetime.time

oct.results.graphs.resp_graph(dataframe, image_name, dir=’./’)
Response time graph for bucketed data

Parameters

• dataframe (pandas.DataFrame) – dataframe containing all data

• image_name (str) – the output file name

• dir (str) – the output directory

Returns None

oct.results.graphs.resp_graph_raw(dataframe, image_name, dir=’./’)
Response time graph for raw data

Parameters

• dataframe (pandas.DataFrame) – the raw results dataframe

• image_name (str) – the output file name

• dir (str) – the output directory

Returns None

oct.results.graphs.tp_graph(dataframe, image_name, dir=’./’)
Throughput graph

Parameters

• dataframe (pandas.DataFrame) – dataframe containing all data

• dir (str) – the output directory

Returns None

9.2.8 oct.results.output module

oct.results.output.output(results_dir, config, parent=’../../’)
Write the results output for the given test

Parameters

• results_dir (str) – the directory for the results

• config (dict) – the configuration of the test

• parents (str) – the parent directory

9.2. oct.results package 31

oct Documentation, Release 0.3.7

9.2.9 oct.results.report module

class oct.results.report.ReportResults(run_time, interval)
Bases: object

Represent a report containing all tests results

Parameters

• run_time (int) – the run_time of the script

• interval (int) – the time interval between each group of results

compile_results()
Compile all results for the current test

9.2.10 Module contents

9.3 oct.tools package

9.3.1 Submodules

9.3.2 oct.tools.rebuild_results module

oct.tools.rebuild_results.main()

9.3.3 oct.tools.results_to_csv module

oct.tools.results_to_csv.main()

oct.tools.results_to_csv.results_to_csv(result_file, output_file, delimiter=’;’)
Take a sqlite filled database of results and return a csv file

Parameters

• result_file (str) – the path of the sqlite database

• output_file (str) – the path of the csv output file

• delimiter (str) – the desired delimiter for the output csv file

9.3.4 Module contents

9.4 oct.utilities package

9.4.1 Submodules

9.4.2 oct.utilities.configuration module

oct.utilities.configuration.configure(project_name, cmd_opts, config_file=None)
Get the configuration of the test and return it as a config object

Returns the configured config object

32 Chapter 9. API Reference

oct Documentation, Release 0.3.7

Return type Object

oct.utilities.configuration.configure_for_turret(project_name, config_file)
Load the configuration file in python dict and check for keys that will be set to default value if not present

Parameters

• project_name (str) – the name of the project

• config_file (str) – the path of the configuration file

Returns the loaded configuration

Return type dict

9.4.3 oct.utilities.newproject module

oct.utilities.newproject.create_project(project_name)
Create a new oct project

Parameters project_name (str) – the name of the project

oct.utilities.newproject.main()

9.4.4 oct.utilities.pack module

oct.utilities.pack.main()

oct.utilities.pack.pack_turret(turret_config, tmp_config_file, tmp_setup, base_config_path,
path=None)

pack a turret into a tar file based on the turret configuration

Parameters

• turret_config (dict) – the turret configuration to pack

• tmp_config_file (str) – the path of the temp config file

• base_config_path (str) – the base directory of the main configuration file

9.4.5 oct.utilities.run module

oct.utilities.run.main()
Main function to run oct tests.

oct.utilities.run.run(cmd_args)
Start an oct project

Parameters cmd_args (Namespace) – the commande-line arguments

9.4.6 Module contents

9.4. oct.utilities package 33

oct Documentation, Release 0.3.7

34 Chapter 9. API Reference

Python Module Index

o
oct.core, 28
oct.core.exceptions, 27
oct.core.hq, 27
oct.results, 32
oct.results.graphs, 31
oct.results.models, 28
oct.results.output, 31
oct.results.report, 32
oct.results.reportresults, 29
oct.results.reportwriter, 29
oct.results.resultsoutput, 30
oct.results.resultswriter, 30
oct.tools, 32
oct.tools.rebuild_results, 32
oct.tools.results_to_csv, 32
oct.utilities, 33
oct.utilities.configuration, 32
oct.utilities.newproject, 33
oct.utilities.pack, 33
oct.utilities.run, 33

35

oct Documentation, Release 0.3.7

36 Python Module Index

Index

C
canons (oct.results.models.Turret attribute), 28
clear_all_transactions() (oct.results.reportresults.ReportResults

method), 29
compile_results() (oct.results.report.ReportResults

method), 32
configure() (in module oct.utilities.configuration), 32
configure_for_turret() (in module

oct.utilities.configuration), 33
create_project() (in module oct.utilities.newproject), 33
custom_timers (oct.results.models.Result attribute), 28

D
DoesNotExist (oct.results.models.Result attribute), 28
DoesNotExist (oct.results.models.Turret attribute), 28

E
elapsed (oct.results.models.Result attribute), 28
epoch (oct.results.models.Result attribute), 28
error (oct.results.models.Result attribute), 28

F
FormNotFoundException, 27

G
get_local_time() (in module oct.results.graphs), 31

H
HightQuarter (class in oct.core.hq), 27

I
id (oct.results.models.Result attribute), 28
id (oct.results.models.Turret attribute), 28
IntervalDetailsResults (class in oct.results.reportresults),

29

L
LinkNotFound, 27

M
main() (in module oct.tools.rebuild_results), 32
main() (in module oct.tools.results_to_csv), 32
main() (in module oct.utilities.newproject), 33
main() (in module oct.utilities.pack), 33
main() (in module oct.utilities.run), 33

N
name (oct.results.models.Turret attribute), 28
NoFormWaiting, 27
NoUrlOpen, 27

O
oct.core (module), 28
oct.core.exceptions (module), 27
oct.core.hq (module), 27
oct.results (module), 32
oct.results.graphs (module), 31
oct.results.models (module), 28
oct.results.output (module), 31
oct.results.report (module), 32
oct.results.reportresults (module), 29
oct.results.reportwriter (module), 29
oct.results.resultsoutput (module), 30
oct.results.resultswriter (module), 30
oct.tools (module), 32
oct.tools.rebuild_results (module), 32
oct.tools.results_to_csv (module), 32
oct.utilities (module), 33
oct.utilities.configuration (module), 32
oct.utilities.newproject (module), 33
oct.utilities.pack (module), 33
oct.utilities.run (module), 33
OctConfigurationError, 27
OctGenericException, 27
output() (in module oct.results.output), 31
output() (in module oct.results.resultsoutput), 30

P
pack_turret() (in module oct.utilities.pack), 33

37

oct Documentation, Release 0.3.7

process() (oct.results.reportresults.IntervalDetailsResults
method), 29

R
rampup (oct.results.models.Turret attribute), 29
Report (class in oct.results.reportwriter), 29
ReportResults (class in oct.results.report), 32
ReportResults (class in oct.results.reportresults), 29
resp_graph() (in module oct.results.graphs), 31
resp_graph_raw() (in module oct.results.graphs), 31
ResponseStats (class in oct.results.reportresults), 29
Result (class in oct.results.models), 28
Results (class in oct.results.reportresults), 29
results_to_csv() (in module oct.tools.results_to_csv), 32
ResultsWriter (class in oct.results.resultswriter), 30
run() (in module oct.utilities.run), 33
run() (oct.core.hq.HightQuarter method), 28

S
save() (oct.results.models.Turret method), 29
script (oct.results.models.Turret attribute), 29
scriptrun_time (oct.results.models.Result attribute), 28
set_all_transactions_results()

(oct.results.reportresults.ReportResults
method), 29

set_custom_timers() (oct.results.reportresults.ReportResults
method), 29

set_database() (in module oct.results.models), 29
set_dict() (oct.results.reportresults.ReportResults

method), 29
set_statics() (oct.results.reportwriter.Report method), 30
split_series() (in module oct.results.reportresults), 29
status (oct.results.models.Turret attribute), 29

T
to_dict() (oct.results.models.Result method), 28
to_dict() (oct.results.models.Turret method), 29
tp_graph() (in module oct.results.graphs), 31
Turret (class in oct.results.models), 28
turret_name (oct.results.models.Result attribute), 28

U
updated_at (oct.results.models.Turret attribute), 29
uuid (oct.results.models.Turret attribute), 29

W
wait_turrets() (oct.core.hq.HightQuarter method), 28
write_remaining() (oct.results.resultswriter.ResultsWriter

method), 30
write_report() (oct.results.reportwriter.Report method),

30
write_result() (oct.results.resultswriter.ResultsWriter

method), 30

write_turret() (oct.results.resultswriter.ResultsWriter
method), 30

38 Index

	Introduction
	Installation
	Your first project
	Writing tests
	Packaging your turrets
	Running Tests
	Collecting the results
	Writing your own turret
	API Reference
	Python Module Index

