

Ocarina User’s Guide

	1. About This Guide
	1.1. About this Guide

	1.2. Document Conventions

	1.3. Copyright Information

	2. Introduction
	2.1. About Ocarina

	2.2. Licence

	2.3. About AADL

	2.4. Ocarina concepts

	3. Installation
	3.1. Supported platforms

	3.2. Build requirements

	3.3. Semi-automated build instructions

	3.4. Manual build instructions

	3.5. Build options

	3.6. Windows-specific options

	4. Usage
	4.1. Ocarina command-line

	4.2. ocarina-config

	5. Scenario files
	5.1. ocarina_library.aadl

	6. PolyORB-HI/C
	6.1. About

	6.2. Supported Platforms

	6.3. Tree structure

	6.4. Generating code from an AADL model

	6.5. Code generation towards PolyORB-HI/C

	7. OSATE2-Ocarina plug-in
	7.1. Installation

	7.2. Configuration

	7.3. Usage

	8. Python bindings for Ocarina
	8.1. Ocarina Python bindings

	8.2. Example

	8.3. Python API description

	9. Editor support
	9.1. Emacs

	9.2. vim

	10. Ocarina property sets
	10.1. Deployment

	10.2. Ocarina_Config

	11. GNU Free Documentation License
	11.1. Preamble

	11.2. Applicability and Definition

	11.3. Verbatim Copying

	11.4. Copying in Quantity

	11.5. Modifications

	11.6. Combining Documents

	11.7. Collections of Documents

	11.8. Aggregation with Independent Works

	11.9. Translation

	11.10. Termination

	11.11. Future Revisions of this License

	11.12. How to use this License for your documents

	12. Indices and tables

1. About This Guide

1.1. About this Guide

This guide describes the use of Ocarina, a compiler for the AADL.

It presents the features of the compiler, related APIs and tools; and
details how to use them to build and exploit AADL models.

It also details model transformations of AADL models onto Petri Net models

Companion documents describe other add-ons for Ocarina:

	PolyORB-HI/Ada, a High-Integrity AADL runtime and its code generator
built on top of Ocarina that targets Ada targets: Native or bare
board runtimes;

	PolyORB-HI/C, a High-Integrity AADL runtime and its code generator
built on top of Ocarina that targets C targets: POSIX and RT-POSIX
systems, RTEMS.

1.2. Document Conventions

This document uses the following conventions:

Note

This is just a note, for your information.

Warning

This is a warning, something you should take care of.

A filename or a path to a filename is displayed like this:
/path/to/filename.ext

A command to type in the shell is displayed like this:
command --arguments

A sample of code is illustrated like this:

First Line of Code
Second Line of Code
...

1.3. Copyright Information

Permission is granted to copy, distribute and/or modify this
document under the terms of the GNU Free Documentation
License, Version 1.1 or any later version published by the
Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and with no Back-Cover Texts. A copy of
the license is included in GNU Free Documentation License.

If you have any questions regarding this document, its
copyright, or publishing this document in non-electronic form,
please contact us.

2. Introduction

2.1. About Ocarina

Ocarina is an application that can be used to analyze and build
applications from AADL descriptions. Because of its modular
architecture, Ocarina can also be used to add AADL functions to
existing applications. Ocarina supports the AADL 1.0 and AADLv2
standards and proposes the following features :

	Parsing and pretty printing of AADL models

	Semantics checks

	Code generation, with the following code generators

	PolyORB-HI/Ada, a High-Integrity AADL runtime and its code
generator built on top of Ocarina that targets Ada targets: Native
or bare board runtimes;

	PolyORB-HI/C, a High-Integrity AADL runtime and its code generator
built on top of Ocarina that targets C targets: POSIX systems,
RTEMS;

	POK, a partioned operating system compliant with the ARINC653 standard.

	Model checking using Petri nets;

	Computation of Worst-Case Execution Time using the Bound-T tool from Tidorum Ltd.;

	REAL, Requirement Enforcement and Analysis Language, an AADLv2 annex
language to evaluate properties and metrics of AADLv2 architectural
models;

	Scheduling analysis of AADL models, with a gateway to the Cheddar
scheduling analysis tool from the Université de Bretagne
Occidentale, and MAST from the University of Cantabria

2.2. Licence

Ocarina is distributed under the GPLv3 plus runtime exception.

The GPLv3 plus runtime exception guarantees that Ocarina, but also the
code it generates can be distributed under customer-specific terms and
conditions. Specifically, the licence ensures that you can generate
proprietary, classified, or otherwise restricted executables.

2.3. About AADL

The “Architecture Analysis and Design Language” AADL is a textual and
graphical language for model-based engineering of embedded real-time
systems. It has been published as SAE Standard AS5506B
(http://standards.sae.org/as5506b/). AADL is used to design and
analyze the software and hardware architectures of embedded real-time
systems.

AADL allows for the description of both software and hardware parts of
a system. It focuses on the definition of clear block interfaces, and
separates the implementations from these interfaces. It can be
expressed using both a graphical and a textual syntax. From the
description of these blocks, one can build an assembly of blocks that
represent the full system. To take into account the multiple ways to
connect components, the AADL defines different connection patterns:
subcomponent, connection, and binding.

An AADL model can incorporate non-architectural elements: embedded or
real-time characteristics of the components (such as execution time,
memory footprint), behavioral descriptions. Hence it is possible to
use AADL as a back- bone to describe all the aspects of a system. Let
us review all these elements:

An AADL description is made of components. The AADL standard defines
software components (data, thread, thread group, subprogram, process)
and execution plat- form components (memory, bus, processor, device,
virtual processor, virtual bus) and hybrid components (system). Each
Component category describe well identified elements of the actual
architecture, using the same vocabulary of system or software
engineering:

	Subprograms model procedures like in C or Ada.

	Threads model the active part of an application (such as POSIX
threads). AADL threads may have multiple operational modes. Each
mode may describe a different behavior and property values for the
thread.

	Processes are memory spaces that contain the threads. Thread groups
are used to create a hierarchy among threads.

	Processors model microprocessors and a minimal operating system
(mainly a scheduler).

	Memories model hard disks, RAMs, buses model all kinds of networks,
wires, devices model sensors, …

	Virtual bus and Virtual processor models “virtual” hardware
components. A virtual bus is a communication channel on top of a
physical bus (e.g. TCP/IP over Ethernet); a virtual processor
denotes a dedicated scheduling domain inside a processor (e.g. an
ARINC653 partition running on a processor).

Unlike other components, Systems do not represent anything concrete;
they combine building blocks to help structure the description as a
set of nested components.

Packages add the notion of namespaces to help structuring the
models. Abstracts model partially defined components, to be refined
during the modeling process.

Component declarations have to be instantiated into subcomponents of
other components in order to model system architecture. At the
top-level, a system contains all the component instances. Most
components can have subcomponents, so that an AADL description is
hierarchical. A complete AADL description must provide a top-most
level system that will contain certain kind of components (processor,
process, bus, device, abstract and memory), thus providing the root of
the architecture tree. The architecture in itself is the instantiation
of this system, which is called the root system.

The interface of a component is called component type. It provides
features (e.g. communication ports). Components communicate one with
another by connecting their features. To a given component type
correspond zero or several implementations. Each of them describes the
internals of the components: subcomponents, connections between those
subcomponents, etc.

An implementation of a thread or a subprogram can specify call
sequences to other subprograms, thus describing the execution flows in
the architecture. Since there can be different implementations of a
given component type, it is possible to select the actual components
to put into the architecture, without having to change the other
components, thus providing a convenient approach to configure
applications.

The AADL defines the notion of properties that can be attached to most
elements (components, connections, features, etc.). Properties are
typed attributes that specify constraints or characteristics that
apply to the elements of the architecture: clock frequency of a
processor, execution time of a thread, bandwidth of a bus, … Some
standard properties are defined, e.g. for timing aspects; but it is
possible to define new properties for different analysis (e.g. to
define particular security policies).

AADL is a language, with different representations. A textual
representation provides a comprehensive view of all details of a
system, and graphical if one want to hide some details, and allow for
a quick navigation in multiple dimensions. In the following, we
illustrate both notations. Let us note that AADL can also be expressed
as a UML model following the MARTE profile.

The concepts behind AADL are those typical to the construction of
embedded systems, following a component- based approach: blocks with
clear interfaces and properties are defined, and compose to form the
complete system. Besides, the language is defined by a companion
standard document that documents legality rules for component
assemblies, its static and execution semantics.

The following figure illustrates a complete space system, used as a
demonstrator during the ASSERT project. It illustrates how software
and hardware concerns can be separately developed and then combined in
a complete model.

[image: _images/assert.png]

ASSERT MPC Case study

2.4. Ocarina concepts

Ocarina uses the following set of definitions :

	A scenario file is a specific AADL system that controls the behavior of Ocarina through various properties, see Scenario files.

	A root system is the root of an AADL model; it is a system implementation without feature. As a closed system, it has definitions required for complete processing by Ocarina: processors, threads, processes, etc.

3. Installation

3.1. Supported platforms

Ocarina has been compiled and successfully tested on the following platforms:

	GNU/Linux

	Mac OS X

	Windows

Note

Ocarina should compile and run on every target for which
GNAT is available.

3.2. Build requirements

An Ada compiler:

	GNAT Pro, GNAT GPL or FSF/GCC with Ada back-end

Note

per construction, the macro configure used to find your GNAT
compiler looks first to the executable gnatgcc, then adagcc and
finally to gcc to find out which Ada compiler to use. You should be
very careful with your path and binaries if you have multiple GNAT
versions installed. See below explanations on the ADA environment
variable if you need to override the default guess.

Note

Ocarina requires at least GCC/FSF 7 or GNAT GPL 2016 or more
recent.

	autoconf, automake, GNU Make, python

Optional components:

	GNATColl for the Ocarina Python bindings

	Sphinx and the sphinx-bootstrap-theme to build the documentation,
and a full valid LaTeX installation

	Bound-T for the WCET analysis (bound_t backend)

	Cheddar for scheduling analysis (cheddar backend)

	MAST for scheduling analysis (mast backend)

	RTOS supported by one of the Ocarina runtimes

3.3. Semi-automated build instructions

The ocarina-build [https://github.com/OpenAADL/ocarina-build/]
repository proposes a script, build_ocarina.sh, to get source code,
compile and test Ocarina.

It relies on bash constructs to coordinate various activities to:

	fetch Ocarina source, with its runtimes PolyORB-HI/Ada and
PolyORB-HI/C

	compile Ocarina, and install it in a local directory

	run Ocarina testsuites, and eventually collect coverage metrics

To install this script, simply clone the repository and run the
script. Use build_ocarina.sh -h to access its help.

	The following command gets a fresh copy of Ocarina source code:

% ./build_ocarina.sh -s -u

	The following command compiles and installs Ocarina:

% ./build_ocarina.sh -b

3.4. Manual build instructions

To compile and install Ocarina, execute in a shell:

% ./configure [some options]
% make (or gmake if your make is not GNU make)
% make install (ditto)

This will install files in standard locations. If you want to choose
another prefix than /usr/local, give configure use –prefix argument

Note

you MUST use GNU make to compile this software.

Note

If you modify source files, build Ocarina after a checkout
or make distclean, or the directory hierarchy of the source files,
you should re-generate autoconf and automake files (configure,
Makefile.in…); to do this, from the main directory, run:

./support/reconfig

Note

To install the PolyORB/HI runtimes, you may use the script
get_runtimes.sh. It will install required ressources in the
Ocarina source tree:

./support/get_runtimes.sh po_hi_ada po_hi_c

3.5. Build options

Available options for the configure script include:

	–enable-doc: to build the documentation

Note

You must first install Sphinx and the sphinx-bootstrap-theme

	–enable-shared: to build shared libraries

	–enable-debug: enable debugging information generation and
supplementary runtime checks. Note that this option has a
significant space and time cost, and is not recommended for
production use.

	–enable-python: to build the Python bindings.

Note

This option requires GNATColl to be installed, and Ocarina
built with shared libraries support.

	–with-ocarina-runtimes=x: enable building Ocarina along with the
requested runtimes. x is a set of valid runtimes located in the
resources/runtimes directory. x is case insensitive. Examples of
use:

	–with-ocarina-runtimes=all: compile Ocarina along with all the
runtimes. All the Ocarina runtimes MUST be located in the
resources/runtimes directory.

	–with-ocarina-runtimes=”polyorb-hi-c PolyORB-HI-Ada”: compile
Ocarina along with the PolyORB-HI-Ada and the PolyORB-HI-C
runtimes.

Note

The runtime directories (e.g. polyorb-hi-ada or
polyorb-hi-c MUST exist in the resources/runtimes directory.

No option: compile Ocarina along with all the runtimes found in the
resources/runtimes directory.

For more details on available options, one may use the –help flag.

The following environment variables can be used to override
configure’s guess at what compilers to use:

	CC: the C compiler

	ADA: the Ada 95 compiler (e.g. gcc, gnatgcc or adagcc)

For example, if you have two versions of GNAT installed and available
in your PATH, and configure picks the wrong one, you can indicate what
compiler should be used with the following syntax:

% ADA=/path/to/good/compiler/gcc ./configure [options]

Ocarina will be compiled with GNAT build host’s configuration,
including run-time library. You may override this setting using
ADA_INCLUDE_PATH and ADA_OBJECTS_PATH environment variables. See GNAT
User’s Guide for more details.

Note

Developers building Ocarina from the version control
repository who need to rebuild the configure and Makefile.in files
should use the script support/reconfig for this purpose. This
should be done after each update from the repository. In addition
to the requirements above, they will need autoconf 2.57 or newer,
automake 1.6.3 or newer.

3.6. Windows-specific options

Ocarina relies on autotools script to compile, and then on Python for
testing and running regression testing. Such setting is unusual for
Windows and requires additional tools.

The recommended set of tools for compiling Ocarina under Windows
(tested on Windows 7, as of 2018/02/27) is to

	install MSYS2, and use its terminal for running all compilation scripts

	install autoconf, automake, Python and GNU Make

	install mingw-w64-x86_64-gcc-ada package, it has GNAT front-end

Note

It is highly recommended to rely on the build_ocarina.sh
script for the Windows platform.

4. Usage

4.1. Ocarina command-line

Ocarina has a rich command-line interface, covering all required steps
to parse, instantiate, analyze or generate code from AADL models.

	
-h, --help

	Display help and exit

	
--version

	Display version and exit

	
-v, --verbose

	Output extra verbose information

	
-q

	Quiet mode (default)

	
-d

	Debug mode

	
-s

	Output default search directory, then exit

	
-aadlv[ARG]

	AADL version, ARG = 1 for AADL 1.0, 2 for AADL 2.x

	
-f

	Parse predefined non-standard property sets

	
-disable-annexes=ARG

	Deactivate annex ARG

	
-r ARG

	Use ARG as root system

	
-o ARG

	Specify output file/directory

	
-y

	Automatically load AADL files

	
-I ARG

	Add ARG to the directory search list

	
-p

	Parse and instantiate the model

	
-i

	Instantiate the model

	
-x

	Parse AADL file as an AADL scenario file

	
-g ARG

	Generate code using Ocarina backend ‘ARG’

	
--list-backends

	List available backends

	
--spark2014

	Generate SPARK2014 annotations

	
-b

	Compile generated code

	
-z

	Clean code generated

	
-k ARG

	Set POK flavor (arinc653/deos/pok/vxworks)

	
-t

	Run Ocarina in terminal interactive mode

	
-real_theorem ARG

	Name of the main REAL theorem to evaluate

	
-real_lib ARG

	Add external library of REAL theorems

	
-real_continue_eval

	Continue evaluation of REAL theorems after first failure (REAL backend)

	
-boundt_process ARG

	Generate .tpo file for process ARG (Bound-T backend)

	
-ec

	Compute coverage metrics

	
-er

	Execute system

	
-asn1

	Generate ASN1 deployment file (PolyORB-HI-C only)

	
-perf

	Enable profiling with gprof (PolyORB-HI-C only)

Note

A man page is also installed in Ocarina installation path, in $OCARINA_PATH/share/man/man1/.

4.2. ocarina-config

ocarina-config returns path and library information on Ocarina
installation. This script can be used to compile user program that
uses Ocarina’s API.

Usage: ocarina-config [OPTIONS]
Options:
 No option:
 Output all the flags (compiler and linker) required
 to compile your program.
 [--prefix[=DIR]]
 Output the directory in which Ocarina architecture-independent
 files are installed, or set this directory to DIR.
 [--exec-prefix[=DIR]]
 Output the directory in which Ocarina architecture-dependent
 files are installed, or set this directory to DIR.
 [--version|-v]
 Output the version of Ocarina.
 [--config]
 Output Ocarina's configuration parameters.
 [--runtime[=<Runtime_Name>]]
 Checks the validity and the presence of the given runtime and
 then, outputs its path. Only one runtime can be requested at
 a time. If no runtime name is given, outputs the root directory
 of all runtimes.
 [--libs]
 Output the linker flags to use for Ocarina.
 [--projects]
 Output the path to GNAT Project files for Ocarina
 [--properties]
 Output the location of the standard property file.
 [--resources]
 Output the location of resource files
 (typically the standard properties)
 [--cflags]
 Output the compiler flags to use for Ocarina.
 [--help]
 Output this message

5. Scenario files

AADL scenario files are a very simple way to set build options when
using Ocarina. AADL scenario may consist of more than one AADL file.

Scenario files rely on the system component category to configure all
elements of the system to be processed. The following scenario file
illustrates this feature. It extends an existing scenario file (see
below) with project-specific configuration data:

package Scenario
public
 with Ocarina_Config;
 with Ocarina_Library;

 system producer_consumer extends Ocarina_Library::Default_PolyORB_HI_C_Config
 properties
 Ocarina_Config::Referencial_Files =>
 ("pr_a", "pr_a.ref",
 "pr_b", "pr_b.ref");
 Ocarina_Config::AADL_Files +=>
 ("producer_consumer.aadl", "software.aadl");
 Ocarina_Config::Root_System_Name => "PC_Simple.impl";
 end producer_consumer;

 system implementation producer_consumer.Impl
 end producer_consumer.Impl;

end scenario;

Scenario files rely on specific properties:

	property AADL_Files lists all files that are part of the system;

	property Root_System_Name is the name of the Root System;

	property Generator is the name of the generator (or back-end) to use

Note

The definition of scenario-specific properties may be found in section Ocarina_Config.

ocarina -x <scenario_file.aadl> will cause the scenario
file to be processed. In addition, the flag -b will
compile generated source files.

5.1. ocarina_library.aadl

package Ocarina_Library

-- This package provides a default scenario files that can be
-- inherited by others.

public
 with Ocarina_Config;

 system Default_PolyORB_HI_C_Config
 properties
 Ocarina_Config::AADL_Version => AADLv2;
 -- Default AADL version

 Ocarina_Config::Generator => PolyORB_HI_C;
 -- Use the PolyORB-HI/C backend

 Ocarina_Config::Needed_Property_Sets =>
 (Ocarina_Config::Data_Model,
 Ocarina_Config::ARINC653_Properties,
 Ocarina_Config::Deployment,
 Ocarina_Config::Cheddar_Properties);
 -- Additional property sets

 Ocarina_Config::Timeout_Property => 4000ms;

 Ocarina_Config::AADL_Files =>
 (Ocarina_Config::Ocarina_Driver_Library);

 end Default_PolyORB_HI_C_Config;

end Ocarina_Library;

6. PolyORB-HI/C

6.1. About

PolyORB-HI/C is a middleware for High-Integrity Systems, it inherits
most concepts of the schizophrenic middleware PolyORB while being
based on a complete new source code base, compatible with the
Ravenscar profile and the restrictions for High-Integrity systems.

PolyORB-HI/C acts as an execution runtime for the AADL language. In
this context, Ocarina acts as a compiler, turning an AADL model into C
code that uses low-level constructs provided by PolyORB-HI/C.

The generated code is in charge of allocating all required ressources
(threads, buffers, message queue), configure communication stacks,
marshallers and concurrency structures.

6.2. Supported Platforms

PolyORB-HI-C has been compiled and sucessfully tested on

Native platforms

	Linux

	Mac OS X

	FreeBSD

	Windows

Embedded platforms

	AIR Hypervisor

	FreeRTOS (alpha stage)

	RTEMS

	Xenomai

	XtratuM

Note

when using RTEMS operating system, you have to define the RTEMS_MAKEFILE_PATH environment variable. See RTEMS documentation for more details.

6.3. Tree structure

PolyORB-HI-C source directory has the following tree structure:

	doc/: documentation,

	examples/: set of examples to test PolyORB-HI-C

	share/: common files (aadl files used by Ocarina, makefiles, …)

	src/: core of PolyORB-HI

	src/drivers: device drivers supported by PolyORB-HI-C

	tools/: some script to handle the packaging and a verification tool to check if the binaries are compliant with the POSIX restrictions

	COPYING3 and COPYING.RUNTIME: licence information

	README: short description of the distribution

When installed with Ocarina, in $OCARINA_PATH directory:

	documentation is in $OCARINA_PATH/share/doc/ocarina

	examples are in $OCARINA_PATH/examples/ocarina/polyorb-hi-c/

	runtime files are in $OCARINA_PATH/include/ocarina/runtime/polyorb-hi-c/

6.4. Generating code from an AADL model

To build your own system, you have to select the PolyORB-HI/C backend,
either using a scenario file or the command line.

	To use a scenario file, refer to Scenario files

	To use command line, you have to select the polyorb_hi_c backend, e.g. by using the command ocarina -g polyorb_hi_c <list-of-aadl-files>. Refer to Ocarina command-line for more details .

6.5. Code generation towards PolyORB-HI/C

6.5.1. The ping example

In the following, and for each component of the distributed
application, we give the AADL entities that are used to model this
component, and then the transformation rules used by the code
generator to generate C code from these entities.

The mapping rules will be illustrated using the following simple
example of a distributed application:

@image{fig/ping, 12cm}

The figure above shows the architecture of the ping example: a
client, which is a process containing one single periodic thread,
sends a message to the server which is a process containing one
sporadic thread that handles incoming ping messages from the
client. Each node of the ping application runs on a different
machine.

In this chapter, we first present the AADL modeling patterns used to
define a distributed application. Then, we give the rules applied to
map AADL entities onto instances of PolyORB-HI/C elements.

In the following, we detail only the rules that are directly related
to the distributed application as a whole system. The rules that are
specific to the components of the distributed application are
explained in the sections that deals with these respective components.

6.5.2. Mapping AADL system

A full system is captured using a root system. The system
implementation shown on the following example models such system.

system PING
end PING;

system implementation PING.Impl
subcomponents
 -- Nodes
 Node_A : process A.Impl;
 Node_B : process B.Impl {ARAO::port_number => 12002;};

 -- Processors
 -- ...
connections
 -- ...
properties
 -- ...
end PING.Impl;

For each node (process) of the system, we instantiate a subcomponent
in the system implementation, and bind it to a processor
component. This processor will configure the build target.

We use the properties section of the AADL system (see
@ref{Hosts` for more details) to map the different nodes on the
different platforms of the distributed application. The
connections section of the system implementation models the
connections between the different nodes of the application.

An AADL system is mapped into a hierarchy of directories:

	the root directory of the distributed application has the same name
as the root system implementation, in lower case, all dot being
converted into underscores. This directory is the root of the
directory hierarchy of the generated C code.

	for each node of the distributed application, a child directory
having the same name as the corresponding process subcomponent (in
lower case) is created inside the root directory. This child
directory will contain all the code generated for the particular
node it was created for (see @ref{Distributed application nodes} for
more details).

6.5.3. Mapping AADL process

We use the process component category to model an application
node (e.g. an element that would ultimately become a Unix process, an
embedded application or an ARINC653 partition). The process
implementation shown in the listing below shows such system.

process A
features
 Out_Port : out event data port Simple_Type;
end A;

process implementation A.Impl
subcomponents
 Pinger : thread P.Impl;
connections
 C1 : event data port Pinger.Data_Source -> Out_Port;
end A.Impl;

For each thread that belongs to a node of the distributed application,
we instantiate a subcomponent in the process implementation. For each
connection between a node and another, a port feature has to be
added to both nodes with the direction out for the source and
in for the destination (see @ref{Connections} for more details
on connections mapping).

Elements associated to this process (threads, subprograms, data types,
etc) are generated in a child directory of the root system directory.
This directory has the same name as the process subcomponent
instance relative to the handled node in the system implementation
that model the distributed application, in lower case.

For example, all the entities relative to the process A.Impl
of the Ping example are generated in the directory
ping_impl/node_a.

The following paragraphs list the C compilation units that are
created for each node of the distributed application.

6.5.3.1. Marshallers functions

The marshallers functions are used to put all request and types values
in a message in order to send them through a network connections. All
marshalling functions are declared in the file marshallers.c.

However, PolyORB-HI-C can also use third-party marshallers. It can
rely on the marshallers generated for ASN1 encoding. Details about
ASN1 marshallers are provided in the next section.

@subsubsection Using ASN1 marshallers

With the ASN1 tools from Semantix
(see. @url{http://www.semantix.gr/assert/}), you can convert ASN1
declarations into AADL models. Then, these models can be used with
AADL components and PolyORB-HI-C relies on Semantix tools to
automatically generates C code that implements the ASN1 types.

For that purpose, you need to install the program asn2aadlPlus
and asn1cc. These programs are freely available on
@url{http://www.semantix.gr/assert/}. Then, when you use ASN1 types
with your AADL model (with the AADL files generated with
asn2aadlPlus), PolyORB-HI-C uses the generated code from ASN1
descriptions and integrate it to marshall data.

6.5.3.2. Node activity

We denote activity the set of the actions performed by one
particular node which are not triggered by other nodes. All the
periodic threads of a node are part of the node activity.

The code related to the node activity is generated in an C file
with the name activity.c. An example is shown below :

#include <po_hi_types.h>
#include <po_hi_gqueue.h>
#include <request.h>
#include <deployment.h>
#include <types.h>
#include <subprograms.h>
#include <po_hi_task.h>
#include <po_hi_main.h>
#include <marshallers.h>
extern __po_hi_entity_t __po_hi_port_global_to_entity[__PO_HI_NB_PORTS];
extern __po_hi_port_t __po_hi_port_global_to_local[__PO_HI_NB_PORTS];
__po_hi_int8_t __po_hi_data_source_local_destinations[1] = {ping_me_global_data_sink};
__po_hi_uint8_t __po_hi_pinger_woffsets[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_offsets[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_used_size[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_empties[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_first[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_recent[__po_hi_pinger_nb_ports * sizeof(__po_hi_request_t)];
__po_hi_uint8_t __po_hi_pinger_queue[0 * sizeof(__po_hi_request_t)];
__po_hi_uint16_t __po_hi_pinger_total_fifo_size = 0;
__po_hi_port_t __po_hi_pinger_history[0];
__po_hi_uint8_t __po_hi_pinger_n_dest[__po_hi_pinger_nb_ports] = {1};
__po_hi_int8_t __po_hi_pinger_fifo_size[__po_hi_pinger_nb_ports] = {__PO_HI_GQUEUE_FIFO_OUT};
__po_hi_uint8_t* __po_hi_pinger_destinations[__po_hi_pinger_nb_ports] = {__po_hi_data_source_local_destinations};
/* Periodic task : Pinger*/

/****************/
/* pinger_job */
/****************/

void* pinger_job ()
{
 simple_type data_source_request_var;
 __po_hi_request_t data_source_request;

 __po_hi_gqueue_init(node_a_pinger_k,__po_hi_pinger_nb_ports,__po_hi_pinger_queue,__po_hi_pinger_fifo_size,__po_hi_pinger_first,__po_hi_pinger_offsets,__po_hi_pinger_woffsets,__po_hi_pinger_n_dest,__po_hi_pinger_destinations,__po_hi_pinger_used_size,__po_hi_pinger_history,__po_hi_pinger_recent,__po_hi_pinger_empties,__po_hi_pinger_total_fifo_size);
 __po_hi_wait_initialization();
 while (1)
 {
 /* Call implementation*/
 do_ping_spg(&(data_source_request_var));
 /* Set the OUT port values*/
 data_source_request.vars.pinger_global_data_source.pinger_global_data_source = data_source_request_var;
 data_source_request.port = data_source_request_var;
 __po_hi_gqueue_store_out(node_a_pinger_k,pinger_local_data_source,&(data_source_request));
 /* Send the OUT ports*/
 __po_hi_gqueue_send_output(node_a_pinger_k,pinger_global_data_source);
 __po_hi_wait_for_next_period(node_a_pinger_k);
 }
}

/**************************/
/* __po_hi_main_deliver */
/**************************/

void __po_hi_main_deliver
 (__po_hi_msg_t* message)
{
 __po_hi_request_t request;
 __po_hi_entity_t entity;

 __po_hi_unmarshall_request(&(request),message);
 entity = __po_hi_port_global_to_entity[request.port];
 switch (entity)
 {
 default:
 {
 break;
 }
 }
}

All the naming rules explained in @ref{Whole distributed application}
are also applied to map the package name. This file contains all the
routines mapped from the periodic threads that belong to the handled
node (see @ref{Threads} for more details on thread mapping). This
package contains also the instances of shared objects used in this
node (see @ref{Data} for more details). If the node does not contain
any periodic thread nor shared objects, there is no
activity.c file generated for this node. Thus, the node
B in the Ping example does not have a
activity.c package.

6.5.3.3. Data types

All the data types mapped from AADL data components and used by a
particular node of a distributed application are gathered in a
separate C file called types.h.

For more detail on the mapping of data components, see @ref{Data}.

6.5.3.4. Subprograms

The mapping of all AADL subprogram components used by a particular
node is generated in a separate file called subprograms.c.
The content of the file is shown in the following example:

For more detail on the mapping of subprogram components, see
@ref{Subprograms}.

6.5.3.5. Deployment information

The deployment information is the information each node has on the
other nodes in the distributed applications. This information is used,
to send a request to another node or to receive a request from
another node. The deployment information is generated for each node in
two C files : deployment.h and deployment.c.

The file deployment.h contains the following types

	a first type called __po_hi_node_t. For each node in the
application we create an enum whose name is mapped from the node
instance declared in the system implementation to which we
concatenate the string _k. All the naming rules listed in
@ref{Whole distributed application} have to be respected.

	a second type called __po_hi_entity_t. For each thread in the
the application, we declare an enum.

	a third type called __po_hi_task_id. For each thread that
run on the current node.

	a fourth type called __po_hi_entity_server_t. For each node
that may communicate with the current node, we add a value in this
enum. It will be used by the transport layer. Please note that at least
one server is declared : the value invalid_server.

	a fifth type called __po_hi_port_t that contains all global port
identifier.

More, this file contains the following maccros :

	__PO_HI_NB_ENTITIES is the number of entities in
the whole distributed system.

	__PO_HI_NB_TASKS is the number of the tasks that will
be started on the current node

	__PO_HI_NB_NODES is the number of nodes in the
distributed system.

	__PO_HI_PROTECTED is the number of protected objects
use on the current node.

	__PO_HI_NB_PORTS that represent the total number of ports
in the whole distributed system.

	__PO_HI_NB_DEVICES that represent the total number of devices
in the whole distributed system.

The file deployment.c contains the following variables :

	mynode variable which has the value of the
handled node.

	__po_hi_entity_table variable is used to know on
which node an entity runs.

	__po_hi_port_global_to_local variable is used
to convert a global port identifier to a local port identifier

	__po_hi_port_global_to_entity variable is used
to know on which entity a given port is. This table is used
convert a global port identifier to an entity identifier.

	__po_hi_uint8_t __po_hi_deployment_endiannesses
variable details which the endianess of each node. It is an array
which size is __PO_HI_NB_NODES.

	__po_hi_port_to_device is an array which size is
__PO_HI_NB_PORTS. For each port, it indicates the
value of the device identifier that handles it.

	__po_hi_port_global_model_names is an array which size is
__PO_HI_NB_PORTS. For each port, it contains the name of the
port.

	__po_hi_port_global_names is an array which size is
__PO_HI_NB_PORTS. For each port, it contains the name
generated by the code generator.

	__po_hi_devices_naming is an array which size is
__PO_HI_NB_DEVICES. For each deivce, it contains all relevant
information for their configuration. The configuration string is
deduced from the Configuration property associated with the
device.

The following example shows the Deployment package relative to
the node A of the Ping example:

#ifndef __DEPLOYMENT_H_
#define __DEPLOYMENT_H_
#include <po_hi_protected.h>
typedef enum
{
 pinger_local_data_source = 0
} __po_hi_pinger_t;

#define __po_hi_pinger_nb_ports 1

typedef enum
{
 ping_me_local_data_sink = 0
} __po_hi_ping_me_t;

#define __po_hi_ping_me_nb_ports 1

/* For each node in the distributed application add an enumerator*/

typedef enum
{
 node_a_k = 0,
 node_b_k = 1
} __po_hi_node_t;

/* For each thread in the distributed application nodes, add an enumerator*/

typedef enum
{
 node_a_pinger_k_entity = 0,
 node_b_ping_me_k_entity = 1
} __po_hi_entity_t;

typedef enum
{
 node_a_pinger_k = 0
} __po_hi_task_id;

#define __PO_HI_NB_TASKS 1

/* For each thread in the distributed application nodes THAT MAY COMMUNICATE*/
/* with the current node, add an enumerator*/

typedef enum
{
 invalid_server = -1
} __po_hi_entity_server_t;

#define __PO_HI_NB_SERVERS 0

#define __PO_HI_NB_PROTECTED 0

#define __PO_HI_NB_NODES 2

#define __PO_HI_NB_ENTITIES 2

#define __PO_HI_NB_PORTS 2

typedef enum
{
 pinger_global_data_source = 0,
 ping_me_global_data_sink = 1
} __po_hi_port_t;

#endif

6.5.3.6. OS Configuration

A host is the set formed by a processor and an operating system (or
real-time kernel).

To model both the processor and the OS, we use the processor
AADL component. The characteristics of the processor are defined using
AADL properties. For example, if our distributed application uses
an IP based network to make its node communicate, then each host must
have an IP address. Each host must also precise its platform (native,
LEON…). The listing following example shows how to express this
using a custom property set.

processor the_processor
properties
 ARAO::location => "127.0.0.1";
 ARAO::Execution_Platform => Native;
end the_processor;

To map an application node (processor) to a particular host, we use
the Actual_Processor_Binding property. The following example
shows how the node Node_A is mapped to the processor
Proc_A in the Ping example.

system PING
end PING;

system implementation PING.Impl
subcomponents
 -- Nodes
 Node_A : process A.Impl;
 Node_B : process B.Impl {ARAO::port_number => 12002;};

 -- Processors
 CPU_A : processor the_processor;
 CPU_B : processor the_processor;
connections
 -- ...
properties
 -- Processor bindings
 actual_processor_binding => reference CPU_A applies to Node_A;
 actual_processor_binding => reference CPU_B applies to Node_B;
end PING.Impl;

The C generated code concerning the code generation to model host
mapping is located in the naming.c file. More precisely, the
node_addr and node_port contains, for each node, the
information related to its host. These information are dependant on
the transport mechanism used in the distributed application.

6.5.4. Mapping AADL threads

The threads are the active part of the distributed application. A node
must contain at least one thread and may contain more than one
thread. In this section, we give the AADL entities used to model
threads. Then, we give the mapping rule to generate C code
corresponding to the periodic and aperiodic threads.

The rules are listed relatively to the packages generated for the
nodes and for the distributed application (see @ref{Distributed
application nodes} and @ref{Whole distributed application}). Only
rules that are related directly to a thread as a whole subsystem are
listed here.

6.5.4.1. AADL entities

AADL thread components are used to model execution flows.

The features subclause of the thread component declaration
describes the thread interface. The ports that may be connected to the
ports of other threads, enclosing process, etc.

The properties subclause of the thread implementation lists
the properties of the thread such as its priority, its nature
(periodic, sporadic) and many other properties ares expressed using
AADL properties.

The calls subclause of the thread implementation contains the
sequences of subprograms the thread may call during its job (see
@ref{Subprograms} for more details on the subprogram mapping). If the
thread job consist of calling more than one subprogram, it is
mandatory to encapsulate these calls inside a single subprogram
which will consist the thread job.

The connections section of a thread implementation connects
the parameters of the subprograms called by the thread to the ports of
the threads or to the parameters of other called subprograms in the
same thread.

thread P
features
 Data_Source : event out data port Simple_Type;
end P;

thread implementation P.Impl
calls {
 -- ...
};
connections
 -- ...
properties
 Dispatch_Protocol => Periodic;
 Period => 1000 Ms;
end P.Impl;

The listing above shows the thread P which belongs to the
process A.impl in the Ping example. We can see that
P is a periodic thread with a period of 1000ms, that this
thread has a unique out event data port and that at each
period, the thread performs a call to the Do_Ping_Spg
subprogram whose out parameter is connected to the thread port.

6.5.4.2. Mapping rules for periodic threads

Periodic threads are cyclic threads that are triggered by and only by
a periodic time event. between two time events the periodic threads do
a non blocking job and then they sleep waiting for the next time
event.

The majority of the code generated for the periodic threads is put in
the activity.c file generated for the application node
containing the handled thread. Each periodic thread is created in the
main function (main.c file) with the
__po_hi_create_periodic_task function-call.

The generated code in the activity.c file is a parameterless
function that represents the thread job. The defining identifier of
the function is mapped from the thread instance name in the process
that models the node, to which we append the string
_job. All the naming rules listed in @ref{Whole distributed
application} have to be respected. The body of this subprogram calls
the subprograms mapped from the subprogram calls the thread
performs. Then, it sends the request to the remote threads it may be
connected to. Finally, at the end of the function, we make a call to
the __po_hi_wait_next_period() with the task identifier as
parameter. This call ensure that we wait the next period before we
start the function again.

The generated code in main.c file is a function call that creates
a periodic task. The task is created with the function
__po_hi_create_periodic_task. This creates a periodic task with
the wanted properties at the elaboration time of the node. The package
instantiation name is mapped from the thread instance name in the process
that model the node, to which we append the string _k. All the
naming rules listed in @ref{Whole distributed application} have to be
respected. The function-call takes the following parameters:

	the enumerator corresponding to the thread

	the task period,

	the task priority. If the user did not specify a priority, then
__PO_HI_DEFAULT_PRIORITY is used,

	the task job which corresponds to the subprogram <Thread_Name>_job.

The following example shows the generated code for the periodic thread
Pinger from the node Node_A of the Ping example:

#include <po_hi_types.h>
#include <po_hi_gqueue.h>
#include <request.h>
#include <deployment.h>
#include <types.h>
#include <subprograms.h>
#include <po_hi_task.h>
#include <po_hi_main.h>
#include <marshallers.h>
extern __po_hi_entity_t __po_hi_port_global_to_entity[__PO_HI_NB_PORTS];
extern __po_hi_port_t __po_hi_port_global_to_local[__PO_HI_NB_PORTS];
__po_hi_int8_t __po_hi_data_source_local_destinations[1] = {ping_me_global_data_sink};
__po_hi_uint8_t __po_hi_pinger_woffsets[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_offsets[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_used_size[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_empties[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_first[__po_hi_pinger_nb_ports];
__po_hi_uint8_t __po_hi_pinger_recent[__po_hi_pinger_nb_ports * sizeof(__po_hi_request_t)];
__po_hi_uint8_t __po_hi_pinger_queue[0 * sizeof(__po_hi_request_t)];
__po_hi_uint16_t __po_hi_pinger_total_fifo_size = 0;
__po_hi_port_t __po_hi_pinger_history[0];
__po_hi_uint8_t __po_hi_pinger_n_dest[__po_hi_pinger_nb_ports] = {1};
__po_hi_int8_t __po_hi_pinger_fifo_size[__po_hi_pinger_nb_ports] = {__PO_HI_GQUEUE_FIFO_OUT};
__po_hi_uint8_t* __po_hi_pinger_destinations[__po_hi_pinger_nb_ports] = {__po_hi_data_source_local_destinations};
/* Periodic task : Pinger*/

/****************/
/* pinger_job */
/****************/

void* pinger_job ()
{
 simple_type data_source_request_var;
 __po_hi_request_t data_source_request;

 __po_hi_gqueue_init(node_a_pinger_k,__po_hi_pinger_nb_ports,__po_hi_pinger_queue,__po_hi_pinger_fifo_size,__po_hi_pinger_first,__po_hi_pinger_offsets,__po_hi_pinger_woffsets,__po_hi_pinger_n_dest,__po_hi_pinger_destinations,__po_hi_pinger_used_size,__po_hi_pinger_history,__po_hi_pinger_recent,__po_hi_pinger_empties,__po_hi_pinger_total_fifo_size);
 __po_hi_wait_initialization();
 while (1)
 {
 /* Call implementation*/
 do_ping_spg(&(data_source_request_var));
 /* Set the OUT port values*/
 data_source_request.vars.pinger_global_data_source.pinger_global_data_source = data_source_request_var;
 data_source_request.port = data_source_request_var;
 __po_hi_gqueue_store_out(node_a_pinger_k,pinger_local_data_source,&(data_source_request));
 /* Send the OUT ports*/
 __po_hi_gqueue_send_output(node_a_pinger_k,pinger_global_data_source);
 __po_hi_wait_for_next_period(node_a_pinger_k);
 }
}

/**************************/
/* __po_hi_main_deliver */
/**************************/

void __po_hi_main_deliver
 (__po_hi_msg_t* message)
{
 __po_hi_request_t request;
 __po_hi_entity_t entity;

 __po_hi_unmarshall_request(&(request),message);
 entity = __po_hi_port_global_to_entity[request.port];
 switch (entity)
 {
 default:
 {
 break;
 }
 }
}

6.5.4.3. Mapping rules for sporadic threads

Sporadic threads are cyclic threads that are triggered by the arrival
of a sporadic event. The minimum inter-arrival time between two
sporadic events is called the period of the sporadic thread.

The majority of the code generated for the sporadic threads is put in
the activity.c file generated for the application node
containing the handled thread. Each periodic thread is created in the
main function (main.c file) with the
__po_hi_create_sporadic_task function-call.

The generated code in the activity.c file is a parameterless function
that represents the thread job. The defining identifier of the function
is mapped from the thread instance name in the process that models the node,
to which we append the string _job. All the naming rules listed
in @ref{Whole distributed application} have to be respected. In the body
of the function, the thread will wait for an event (most of the time : a
message from another entity).

The generated code in main.c file is a function-call that creates
the sporadic task. The task is created with the function
__po_hi_create_sporadic_task. This creates a sporadic task with
the wanted properties at the elaboration time of the node. The package
instantiation name is mapped from the thread instance name in the process
that model the node, to which we append the string _k. All the
naming rules listed in @ref{Whole distributed application} have to be
respected. The function-call takes the following parameters:

	the enumerator corresponding to the thread

	the task priority. If the user did not specify a priority, then
__PO_HI_DEFAULT_PRIORITY is used,

	the task job which corresponds to the subprogram
<Thread_Name>_job.

The following example shows the generated code for the sporadic thread
Ping_Me from the node Node_B of the Ping example.

#include <po_hi_gqueue.h>
#include <po_hi_types.h>
#include <request.h>
#include <deployment.h>
#include <po_hi_task.h>
#include <subprograms.h>
#include <po_hi_main.h>
#include <marshallers.h>
extern __po_hi_entity_t __po_hi_port_global_to_entity[__PO_HI_NB_PORTS];
extern __po_hi_port_t __po_hi_port_global_to_local[__PO_HI_NB_PORTS];
__po_hi_uint8_t __po_hi_ping_me_woffsets[__po_hi_ping_me_nb_ports];
__po_hi_uint8_t __po_hi_ping_me_offsets[__po_hi_ping_me_nb_ports];
__po_hi_uint8_t __po_hi_ping_me_used_size[__po_hi_ping_me_nb_ports];
__po_hi_uint8_t __po_hi_ping_me_empties[__po_hi_ping_me_nb_ports];
__po_hi_uint8_t __po_hi_ping_me_first[__po_hi_ping_me_nb_ports];
__po_hi_uint8_t __po_hi_ping_me_recent[__po_hi_ping_me_nb_ports * sizeof(__po_hi_request_t)];
__po_hi_uint8_t __po_hi_ping_me_queue[16 * sizeof(__po_hi_request_t)];
__po_hi_uint16_t __po_hi_ping_me_total_fifo_size = 16;
__po_hi_port_t __po_hi_ping_me_history[16];
__po_hi_uint8_t __po_hi_ping_me_n_dest[__po_hi_ping_me_nb_ports] = {0};
__po_hi_int8_t __po_hi_ping_me_fifo_size[__po_hi_ping_me_nb_ports] = {16};
__po_hi_uint8_t* __po_hi_ping_me_destinations[__po_hi_ping_me_nb_ports] = {NULL};

/*********************/
/* ping_me_deliver */
/*********************/

void ping_me_deliver
 (__po_hi_request_t* request)
{

 switch (request->port)
 {
 case ping_me_global_data_sink:
 {
 __po_hi_gqueue_store_in(node_b_ping_me_k,ping_me_local_data_sink,request);

 break;
 }
 default:
 {
 break;
 }
 }
}

/* Sporadic task : Ping_Me*/
/* Get the IN ports values*/

/*****************/
/* ping_me_job */
/*****************/

void* ping_me_job ()
{
 __po_hi_port_t port;
 __po_hi_request_t data_sink_request;

 __po_hi_gqueue_init(node_b_ping_me_k,__po_hi_ping_me_nb_ports,__po_hi_ping_me_queue,__po_hi_ping_me_fifo_size,__po_hi_ping_me_first,__po_hi_ping_me_offsets,__po_hi_ping_me_woffsets,__po_hi_ping_me_n_dest,__po_hi_ping_me_destinations,__po_hi_ping_me_used_size,__po_hi_ping_me_history,__po_hi_ping_me_recent,__po_hi_ping_me_empties,__po_hi_ping_me_total_fifo_size);
 __po_hi_wait_initialization();
 while (1)
 {
 __po_hi_gqueue_wait_for_incoming_event(node_b_ping_me_k,&(port));
 __po_hi_compute_next_period(node_b_ping_me_k);
 if (__po_hi_gqueue_get_count(node_b_ping_me_k,ping_me_local_data_sink))
 {
 __po_hi_gqueue_get_value(node_b_ping_me_k,ping_me_local_data_sink,&(data_sink_request));
 __po_hi_gqueue_next_value(node_b_ping_me_k,ping_me_local_data_sink);

 }
 /* Call implementation*/
 ping_spg(data_sink_request.vars.ping_me_global_data_sink.ping_me_global_data_sink);
 __po_hi_wait_for_next_period(node_b_ping_me_k);
 }
}

/**************************/
/* __po_hi_main_deliver */
/**************************/

void __po_hi_main_deliver
 (__po_hi_msg_t* message)
{
 __po_hi_request_t request;
 __po_hi_entity_t entity;

 __po_hi_unmarshall_request(&(request),message);
 entity = __po_hi_port_global_to_entity[request.port];
 switch (entity)
 {
 case node_b_ping_me_k_entity:
 {
 ping_me_deliver(&(request));

 break;
 }
 default:
 {
 break;
 }
 }
}

6.5.5. Deployment information

As said in @ref{Distributed application nodes}, the files
deployment.h and deployment.c are generated for each
node in the distributed application. For each thread port in the whole
distributed application, we declare an enumerator in this type. The
defining identifier of the enumerator is mapped from the process
subcomponent name and the thread subcomponent name as follows:
<Node_Name>_<Thread_Name>_K.

For each that that may communicate, we generate the following elements

	A variable called __po_hi_<thread_name>_local_to_global (in
deployment.c) that is used to convert a local port identifier
of the thread to a global one.

	A type __po_hi_<thread_name>_t that will contain
on local port identifier.

	A macro __po_hi_<thread_name>_nb_ports that will contain
the number of ports for the thread.

For these elements, all the naming rules listed in @ref{Whole
distributed application} must be respected.

#ifndef __DEPLOYMENT_H_
#define __DEPLOYMENT_H_
#include <po_hi_protected.h>
typedef enum
{
 pinger_local_data_source = 0
} __po_hi_pinger_t;

#define __po_hi_pinger_nb_ports 1

typedef enum
{
 ping_me_local_data_sink = 0
} __po_hi_ping_me_t;

#define __po_hi_ping_me_nb_ports 1

/* For each node in the distributed application add an enumerator*/

typedef enum
{
 node_a_k = 0,
 node_b_k = 1
} __po_hi_node_t;

/* For each thread in the distributed application nodes, add an enumerator*/

typedef enum
{
 node_a_pinger_k_entity = 0,
 node_b_ping_me_k_entity = 1
} __po_hi_entity_t;

typedef enum
{
 node_a_pinger_k = 0
} __po_hi_task_id;

#define __PO_HI_NB_TASKS 1

/* For each thread in the distributed application nodes THAT MAY COMMUNICATE*/
/* with the current node, add an enumerator*/

typedef enum
{
 invalid_server = -1
} __po_hi_entity_server_t;

#define __PO_HI_NB_SERVERS 0

#define __PO_HI_NB_PROTECTED 0

#define __PO_HI_NB_NODES 2

#define __PO_HI_NB_ENTITIES 2

#define __PO_HI_NB_PORTS 2

typedef enum
{
 pinger_global_data_source = 0,
 ping_me_global_data_sink = 1
} __po_hi_port_t;

#endif

#include <deployment.h>
__po_hi_entity_server_t server_entity_table[__PO_HI_NB_ENTITIES] = {invalid_server,invalid_server};
__po_hi_node_t entity_table[__PO_HI_NB_ENTITIES] = {node_a_k,node_b_k};
__po_hi_node_t mynode = node_a_k;

The listing above shows the generated __po_hi_entity_server_t and
entity_table for the nodes B from the
Ping example.

6.5.6. Mapping of AADL ports

Threads can contain one or several ports. To handle them, we declared several
arrays in the activity.c

	
	__po_hi_<port_name>_destinationsarray for each port of

	the thread which contains all destinations of the port.

	
	__po_hi_<thread_name>_woffsetsarray (size = number of

	ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_offsets : array (size = number of
ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_used_size : array (size = number of
ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_empties : array (size = number of
ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_first : array (size = number of ports
in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_recent : array (size = number of ports
in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_queue : array (size = size of the
global queue for the thread) used by pohic to handle the global
queue.

	__po_hi_<thread_name>_total_fifo_size : variable that
contains the size of the global queue. It is the sum of all port
size for the thread.

	__po_hi_<thread_name>_history : array (size = number of
ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_n_dest : array (size = number of ports
in the thread) used by pohic for the global queue of the
thread. It contains the number of destinations for each port of
the thread.

	__po_hi_<thread_name>_fifo_size : array (size = number of
ports in the thread) used by pohic for the global queue of the
thread.

	__po_hi_<thread_name>_destinations : array (size = number of ports
in the thread) that contains all destinations for each port.

6.5.7. Mapping of AADL Connections

The connections are entities that support communication between the
application nodes. In this section, we present the AADL entities used
to model connection between nodes.

A connection between two nodes of the system is modeled by:

	The ports features that exist on each one of the nodes. Ports
can be declared inside processes or threads. The direction of the
port (in, out or in out) indicates the
direction of the information flow.

	The connections section in the system implementation
relative to the distributed application and in the process and
thread implementations.

system PING
end PING;

system implementation PING.Impl
subcomponents
 -- Nodes
 Node_A : process A.Impl;
 Node_B : process B.Impl {ARAO::port_number => 12002;};

 -- Processors
 CPU_A : processor the_processor;
 CPU_B : processor the_processor;
connections
 -- Port connections
 event data port Node_A.Out_Port -> Node_B.In_Port;
properties
 -- Processor bindings
 actual_processor_binding => reference CPU_A applies to Node_A;
 actual_processor_binding => reference CPU_B applies to Node_B;
end PING.Impl;

The listing above shows the connection between the node A and
B in the system implementation.

The nature of the port (event port, data port or event
data port) depends on the nature of the connection between the two
nodes:

	if the message sent from one node to another node is only a
triggering event and contains no data, we create an event port.

	if the message sent from one node to another node is a data message
but it does not trigger the receiver thread, we create a data
port.

	if the message sent from one node to another node is a data message
that triggers the receiver thread, we create an @i{event data} port.

In a distributed system, when we send any data to a node, we need to
put them in a stream. We call that the marshall operation. On the
other hand, find data in a stream is called the unmarshall
operation. In each distributed application, we generate marshallers
for each types and request. These functions will marshall/unmarshall
data in/from a message.

All marshallers functions are generated in a file called
marshallers.c. The marshall (or unmarshall) functions for
request are prefixed by the string __po_hi_marshall_request_
(or __po_hi_unmarshall_request_). Marshall (or unmarshall)
functions for types are prefixed by the string
__po_hi_marshall_type_ (or
__po_hi_unmarshall_type_). Each function has the name of the
type or the request it marshalls.

Finally, a function __po_hi_marshall_request and
__po_hi_unmarshall_request is generated to handle all
requests. Then, is called the appropriate function to call to marshall
or unmarshall the data.

#include <types.h>
#include <po_hi_types.h>
#include <po_hi_marshallers.h>

/***************************************/
/* __po_hi_marshall_type_simple_type */
/***************************************/

void __po_hi_marshall_type_simple_type
 (simple_type value,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_marshall_int(value,message,offset);
}

/***/
/* __po_hi_unmarshall_type_simple_type */
/***/

void __po_hi_unmarshall_type_simple_type
 (simple_type* value,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_unmarshall_int(value,message,offset);
}

/**/
/* __po_hi_marshall_request_ping_me_data_sink */
/**/

void __po_hi_marshall_request_ping_me_data_sink
 (__po_hi_request_t* request,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_marshall_type_simple_type(request->vars.ping_me_global_data_sink.ping_me_global_data_sink,message,offset);
}

/**/
/* __po_hi_unmarshall_request_ping_me_data_sink */
/**/

void __po_hi_unmarshall_request_ping_me_data_sink
 (__po_hi_request_t* request,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_unmarshall_type_simple_type(&(request->vars.ping_me_global_data_sink.ping_me_global_data_sink),message,offset);
}

/***/
/* __po_hi_marshall_request_pinger_data_source */
/***/

void __po_hi_marshall_request_pinger_data_source
 (__po_hi_request_t* request,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_marshall_type_simple_type(request->vars.pinger_global_data_source.pinger_global_data_source,message,offset);
}

/***/
/* __po_hi_unmarshall_request_pinger_data_source */
/***/

void __po_hi_unmarshall_request_pinger_data_source
 (__po_hi_request_t* request,
 __po_hi_msg_t* message,
 __po_hi_uint16_t* offset)
{

 __po_hi_unmarshall_type_simple_type(&(request->vars.pinger_global_data_source.pinger_global_data_source),message,offset);
}

/******************************/
/* __po_hi_marshall_request */
/******************************/

void __po_hi_marshall_request
 (__po_hi_request_t* request,
 __po_hi_msg_t* message)
{
 __po_hi_uint16_t offset;

 offset = 0;
 __po_hi_marshall_port(request->port,message);
 switch (request->port)
 {
 case ping_me_global_data_sink:
 {
 __po_hi_marshall_request_ping_me_data_sink(request,message,&(offset));

 break;
 }
 case pinger_global_data_source:
 {
 __po_hi_marshall_request_pinger_data_source(request,message,&(offset));

 break;
 }
 default:
 {
 break;
 }
 }
}

/********************************/
/* __po_hi_unmarshall_request */
/********************************/

void __po_hi_unmarshall_request
 (__po_hi_request_t* request,
 __po_hi_msg_t* message)
{
 __po_hi_uint16_t offset;

 offset = 0;
 __po_hi_unmarshall_port(&(request->port),message);
 switch (request->port)
 {
 case ping_me_global_data_sink:
 {
 __po_hi_unmarshall_request_ping_me_data_sink(request,message,&(offset));

 break;
 }
 case pinger_global_data_source:
 {
 __po_hi_unmarshall_request_pinger_data_source(request,message,&(offset));

 break;
 }
 default:
 {
 break;
 }
 }
}

6.5.8. Mapping of AADL Subprograms

Subprograms are used to encapsulate behavioural aspects of the
application.

To model a subprogram, we use the subprogram AADL component
category. The parameters of the subprogram are specified in the
features subclausen of the component declaration. If the
subprogram does only the job of calling other declared subprograms,
then the calls subclause of the subprogram implementation has
to contain such calls. To point to the actual implementation of the
subprogram, we use the AADL properties.

The following example shows the AADL model for the Do_Ping_Spg
from the Ping example. It precises that the C implementation of
the subprogram is located in the function user_ping. The file
which contains this function must be stored with the aadl model.

Subprograms are generally called by threads or by other subprograms.
To express this, we use the calls subclause of a component
implementation. Then we perform all the connections between the called
subprograms parameters and the caller components ports (or parameters
if the caller is a subprogram).

The following listing shows the calls and connections sections of the
periodic thread P in the Ping example.

subprogram Do_Ping_Spg
features
 Data_Source : out parameter Simple_Type;
properties
 source_language => C;
 source_name => "user_ping";
end Do_Ping_Spg;

Each subprogram instance model a hand-written function. In the
subprograms.c file, we declare the definition of this function
and we generate a new one that will call the one provided by the user.

The following listing shows the calls and connections sections of the
subprogram ping_spg in the Ping example.

#include <types.h>
#include <subprograms.h>
void user_do_ping_spg
 (simple_type* data_source);
/*****************/
/* do_ping_spg */
/*****************/

void do_ping_spg
 (simple_type* data_source)
{

 user_do_ping_spg(data_source);
}

For each subprogram call in a thread, we generate an C subprogram call
to the subprogram implementing the thread and given by mean of the
AADL properties.

On the client side, the function sth_Job begins by calling the
subprogram in its call sequence. then it calls the stubs of all the
subprogram it is connected to.

On the server side, and in the function of the
process_request, the subprogram implementation corresponding
to the operation (coded in the message) is called.

6.5.9. Mapping of AADL data

The data are the messages exchanged amongst the nodes of the
application.

AADL data components are used to model data exchanged in the
distributed application. Properties are used to precise the nature of
the data. To model a data structure (which contains fields of others
data types) we use data component implementation and we add a
subcomponent for each field of the structure.

The simple data types that can be modeled using AADL are

	boolean,

	integer,

	fixed point types,

	characters,

	wide characters

-- Boolean type

data Boolean_Data
properties
 ARAO::Data_Type => Boolean;
end Boolean_Data;

-- Integer type

data Integer_Data
properties
 ARAO::Data_Type => Integer;
end Integer_Data;

-- Fixed point type

data Fixed_Point_Type
properties
 ARAO::Data_Type => Fixed;

 ARAO::Data_Digits => 10;
 -- The total number of digits is 10

 ARAO::Data_Scale => 4;
 -- The precision is 10**(-4)
end Fixed_Point_Type;

-- Character type

data Character_Data
properties
 ARAO::Data_Type => Character;
end Character_Data;

-- Wide character type

data W_Character_Data
properties
 ARAO::Data_Type => Wide_Character;
end W_Character_Data;

The complex data types that can be modeled using AADL are

	Bounded strings

	Bounded wide strings

	Bounded arrays of a type that can be modeled

	Structure where the fields types are types that can be
modeled

-- Bounded string type

data String_Data
properties
 ARAO::Data_Type => String;
 ARAO::Max_Length => <User_Defined_Length>;
end String_Data;

-- Bounded wide string type

data W_String_Data
properties
 ARAO::Data_Type => Wide_String;
 ARAO::Max_Length => <User_Defined_Length>;
end W_String_Data;

-- Bounded array type: Only the component implementation should be
-- used in the ports or parameters!

data Data_Array
properties
 ARAO::Length => <User_Defined_Length>;
end Data_Array;

data implementation Data_Array.i;
subcomponents
 -- Only one subcomponent
 Element : data String_Data;
end Data_Array.i;

-- Data structure type: Only the component implementation should be
-- used in the ports or parameters!

data Data_Structure
end Data_Structure;

data implementation Data_Structure.i;
subcomponents
 Component_1 : data String_Data;
 Component_2 : data W_String_Data;
 Component_3 : data Data_Array.i;
end Data_Structure.i;

Data components may also contain subprogram features. Depending on
the AADL properties given by the user. These component may denote a
protected object or a non protected object. In either case, they are
used to model a data structure that can be handled only by the
subprograms it exports (which are the feature of the data structure).

@include protected_object_types.texi

The example above shows an example of
a protected data component (@code{Protected_Object.Impl}).
The object has a single field (subcomponent) which is a simple data
component. Note that the description of the feature subprograms of
these data component is a little bit different from the description of
classic subprograms: each feature subprogram must have a full access
to the internal structure of the object type. To achieve this, we use
the @code{require data access} facility of AADL. To model a non
protected data component, user should simply change the
@code{ARAO::Object_Kind => Protected;} into
@code{ARAO::Object_Kind => Non_Protected;} in the implementation
of data component.

@subsection C mapping rules

Data component declaration are mapped into C type declaration in the
file @code{types.h}.
In the following we give the C type corresponding to each data component
type that could be modeled.

@subsubsection Simple types

Simple data components are mapped into an C type definition whose
defining identifier is mapped from the component declaration
identifier (with respect to the naming rules listed
in @ref{Whole distributed application}) and whose parent subtypes is:
@itemize @bullet

@item @code{int} for boolean data types
@item @code{int} for integer data types
@item @code{float} for fixed point types
@item @code{chat} for character data types

@end itemize

@subsubsection Bounded strings and wide strings

Bounded strings and wide strings are not supported in the C generator at this
time.

@subsubsection Bounded arrays

Bounded arrays and wide strings are not supported in the C generator at this
time.

@subsubsection Data structures

Data structures are mapped into a C structure defined in the file @file{types.h}.
The identifier of the record type is mapped from the data component name
with respect to the naming rules given in @ref{Whole distributed
application}. Each field defining identifier is mapped from the
subcomponent name given in the data component implementation with the
same naming rules. The type of the field is the C type mapped from
the data corresponding component. The following example shows the C
mapping of the data structure defined given earlier in this part.

@include data_struct.h.texi

@subsubsection Object types

Protected object types are mapped into an a C structure. We add automatically a
member in the structure with the type @code{__po_hi_protected_id} and the name
@code{protected_id}. This member
will identify the protected type in the distributed system. All other members of
the object are declared as in Data Structures (see previous subsection). The
features subprograms of the object types are declared in the @file{types.h}
file, whereas the body of these functions are defined in the @file{types.c}
file. Moreover, the value of the @code{protected_id} must be initialized. This
is done in the main function (@file{main.c}), before the initialization.
All the naming conventions given in @ref{Whole distributed application} have to
be respected. The following example shows the specification of the protected type
mapped from the @code{Protected_Object.Impl} shown earlier in this part. We show
the files @file{types.h}, @file{types.c} and @file{main.c} (that initialize the
@code{protected_id} member of the structure.

@include toy_types.h.texi
@include toy_types.c.texi
@include toy_main.c.texi

Non protected object types are mapped similarly to protected object
types. The only difference, is that instead of creating a protected
type, we create a generic parameterless nested package.

7. OSATE2-Ocarina plug-in

The OSATE2-Ocarina plugin brings all Ocarina’s features to OSATE2:
code generation, generation of Petri nets, mapping of AADL models to
scheduling analysis tools, and constraint analysis using REAL.

7.1. Installation

An eclipse update site is available at:
https://raw.github.com/yoogx/osate2-ocarina/master/org.osate.ocarina.update/

To install the plug-in, select “Install New Software”, add the install
site and then select the OSATE-OCARINA plug-in in the droplist.

7.2. Configuration

The plugin can be configured from the OSATE2 Preferences panel. The
plug-in preferences are located under OSATE Preferences/Ocarina.

[image: _images/ocarina_preferences.jpg]

OSATE Ocarina preferences

7.3. Usage

Right-click a system implementation in the Outline, then select
Ocarina, and then the command to execute.

The output of the command (generated source code, etc.) is stored in
the ocarina_out folder in your project.

[image: _images/osate_ocarina.jpg]

OSATE Ocarina usage

8. Python bindings for Ocarina

8.1. Ocarina Python bindings

Ocarina proposes Python bindings to its internal APIs. This binding is
available if configured properly, first at compile-time, then at
run-time.

At compile time, Ocarina must be configured with shared libraries
support. Refer to the Installation;

At run-time, the following environment variables must be set up:

% export PATH=`ocarina-config --prefix`/bin:$PATH
% export OCARINA_PATH=`ocarina-config --prefix`
% export LD_LIBRARY_PATH=$OCARINA_PATH/lib:$LD_LIBRARY_PATH
% export PYTHONPATH=$OCARINA_PATH/include/ocarina/runtime/python:$OCARINA_PATH/lib:$PYTHONPATH

8.2. Example

The following example illustrates the capabilities of the Python API,
it implements a visitor that iterates of the AADL model elements:

#!/usr/bin/env python

visitor.py: A simple script to visit all nodes of an AADL instance tree
#
Note: this scripts require the docopt package

"""visitor.py: A simple script to visit all nodes of an AADL instance tree

Usage: visitor.py FILE
 visitor.py (-h | --help)
 visitor.py --version

Arguments:
 FILE AADL file to process

Options:
 -h, --help Help information
 --version Version information

"""

from docopt import docopt
import sys

###################################
args = sys.argv[1:]
XXX: we have to do a back-up of the command-line arguments prior to
importing Ocarina, as its initialization phase will erase sys.argv
To be investigated, see github issue #45 for details
###################################

import ocarina
import lmp
from ocarina_common_tools import *
import libocarina_python

def visitor (component, level):
 """
 This function visits an AADL component, and prints information
 about its features, subcomponents and properties.

 Args:
 component (str): the NodeId of the component
 level (int): indentation level

 """

 print ' ' * level,'Visiting ',lmp.getInstanceName(component)[0]

 features=ocarina.AIN.Features(component)[0];
 if features is not None :
 print ' ' * level,' -> features:',features
 for feature in features :
 print ' ' * level,' -> feature:',feature,', ',lmp.getInstanceName(feature)[0]
 print ' ' * level,' source feature: ', lmp.getInstanceName(ocarina.getSourcePorts(feature)[0])[0]
 print ' ' * level,' destination feature: ', lmp.getInstanceName(ocarina.getDestinationPorts(feature)[0])[0]

 properties = ocarina.AIN.Properties(component)[0];
 if properties is not None :
 print ' ' * level,' -> properties:'
 for property in properties:
 print ' ' * level,' ',ocarina.getPropertyValue(component,property)[0]

 subcomponents=ocarina.AIN.Subcomponents(component)[0];
 if subcomponents is not None :
 print ' ' * level,' -> subcomponents:',subcomponents
 for subcomponent in subcomponents :
 print ' ' * level,' -> ',subcomponent,",",lmp.getInstanceName(subcomponent)[0]
 visitor(str(ocarina.AIN.Corresponding_Instance(subcomponent)[0]),level+3)

 print ' ' * level,'end of visit of ',component

def main ():
 # read command line arguments

 arguments = docopt(__doc__, args, version="visitor.py 0.1")

 # build the repository path
 repo = arguments['FILE']

 err = ocarina.load(repo); # load a file
 err = ocarina.analyze(); # analyze models
 err = ocarina.instantiate(""); # instantiate system

 print '--'
 print 'Visit AADL Instance tree'
 print '--'

 root=lmp.getRoot()[0]
 visitor(root,0)

if __name__ == "__main__":
 main ()

8.3. Python API description

The following lists all functions defined in the ocarina module

8.3.1. ocarina – Python binding to the Ocarina AADL processor

This module provides direct access to top-level functions of Ocarina
to load, parse, instantiate AADL models, and to invoke backends.

	
ocarina.ocarina.Backends = ('polyorb_hi_ada', 'polyorb_hi_c', 'real_theorem')

	List of supported backends, used by generate

	
class ocarina.ocarina.Enum[source]

	

	
ocarina.ocarina.add_real_library(libraryname)[source]

	
	Parameters

	libraryname (string) – name of the REAL library file to include

	
ocarina.ocarina.analyze()[source]

	Analyze models

	
ocarina.ocarina.generate(generator)[source]

	Generate code

	Parameters

	generator – one supported backends, from Backends

For instance, to use the PolyORB-HI/Ada backend, you may use the following

>>> generate (Backends.polyorb_hi_ada)

	
ocarina.ocarina.getDestinationPorts(nodeId)[source]

	Get the destination port associated to the feature_nodeId passed as
parameter, in the case feature_nodeId participates in a
connection.

	
ocarina.ocarina.getPropertyValue(nodeId, propertyId)[source]

	Get the value of the property

	
ocarina.ocarina.getPropertyValueByName(nodeId, propertyString)[source]

	Get the value of the property propertyString applied to model
element nodeId.

	
ocarina.ocarina.getSourcePorts(feature_nodeId)[source]

	Get the source port associated to the feature_nodeId passed as
parameter, in the case feature_nodeId participates in a
connection.

	
ocarina.ocarina.instantiate(root_system)[source]

	Instantiate model, starting from root_system

	Parameters

	root_system (string) – name of the root system to instantiate

	
ocarina.ocarina.load(filename)[source]

	Load a file

	Parameters

	filename (string) – name of the file to be loaded, using Ocarina search path

E.g. to load “foo.aadl”:

>>> load("foo.aadl")

	
ocarina.ocarina.reset()[source]

	Reset Ocarina internal state

Note: this function must be called before processing a new set of
models.

	
ocarina.ocarina.set_real_theorem(theorem_name)[source]

	Set main REAL theorem

	Parameters

	theorem_name (string) – name of the theorem

	
ocarina.ocarina.status()[source]

	Print Ocarina status

	
ocarina.ocarina.version()[source]

	Print Ocarina version

8.3.2. lmp – Port of Ellidiss LMP to Ocarina Python API

This module is an adaptation of Ellidiss LMP “Logical Model Processing”
to Python.

	
ocarina.lmp.getAliasDeclarations()[source]

	Return the list of all the alias declaration defined in the
current AADL project

	
ocarina.lmp.getAnnexes()[source]

	Return the list of all the annexes defined in the current AADL project

	
ocarina.lmp.getComponentFullname(nodeId)[source]

	Get the full qualified name of an AADL component

	Parameters

	nodeId – the id of the component whose full qualified name is searched

For instance, to retrieve the full qualified name of MyComponent,
retrieve its id (nodeId) and use the following

>>> getComponentFullname (nodeId)

	
ocarina.lmp.getComponentImplementations(category)[source]

	Return a list of component implementations defined in the
current AADL project

	Parameters

	category – one of the AADL category defined in the standard

For instance, to retrieve all the system implementations from the
current project, you may use the following

>>> getComponentImplementations (System)

	
ocarina.lmp.getComponentName(nodeId)[source]

	Get the name of an AADL component

	Parameters

	nodeId – the id of the component whose name is searched

For instance, to retrieve the name of MyComponent,
retrieve its id (nodeId) and use the following

>>> getComponentName (nodeId)

	
ocarina.lmp.getComponentTypes(category)[source]

	Return a list of component types defined in the current AADL project

	Parameters

	category – one of the AADL category defined in the standard

For instance, to retrieve all the system types from the current project,
you may use the following

>>> getComponentTypes (System)

	
ocarina.lmp.getFlowImplementations()[source]

	Return the list of all the flow implementation defined in the
current AADL project

	
ocarina.lmp.getFlowSpecifications()[source]

	Return the list of all the flow specification defined in the
current AADL project

	
ocarina.lmp.getImportDeclarations()[source]

	Return the list of all the import declarations used in the
current AADL project

	
ocarina.lmp.getInModes()[source]

	Return the list of all the in mode used in the current AADL project

	
ocarina.lmp.getInstanceName(nodeId)[source]

	Get the name of an AADL instance

	Parameters

	nodeId – the id of the instance whose name is searched

For instance, to retrieve the name of MyInstance,
retrieve its id (nodeId) and use the following

>>> getInstanceName (nodeId)

	
ocarina.lmp.getInstances(category)[source]

	Return a list of instances defined in the current AADL project

	Parameters

	category – one of the AADL category defined in the standard

For instance, to retrieve all the system instances from the current project,
you may use the following

>>> getInstances (System)

	
ocarina.lmp.getModeTransitions()[source]

	Return the list of all the mode transition defined in the
current AADL project

	
ocarina.lmp.getModes()[source]

	Return the list of all the modes defined in the current AADL project

	
ocarina.lmp.getNodeId(name)[source]

	Get the Id of a component from its name

	Parameters

	name – the AADL name of the node whose id is queried

For instance, to retrieve the id of MyHome, you may use the following

>>> getNodeId (MyHome)

	
ocarina.lmp.getPackages()[source]

	Return the list of all the packages defined in the current AADL project

	
ocarina.lmp.getPropertyConstants(propertySetId)[source]

	Return the list of all the constant property defined in the
provided property set

	Parameters

	propertySetId – the nodeId of the property set in the
current AADL project to search in

For instance, to retrieve all the constant property from property
set propertySet, retrieve its id (propertySetId) and use the following

>>> getPropertyConstants (propertySetId)

	
ocarina.lmp.getPropertyDefinitions(propertySetId)[source]

	Return the list of all the property declaration defined in the
provided property set

	Parameters

	propertySetId – the nodeId of the property set in the
current AADL project to search in

For instance, to retrieve all the property declaration from
property set propertySet, retrieve its id (propertySetId)
and use the following

>>> getPropertyDefinitions (propertySetId)

	
ocarina.lmp.getPropertySets()[source]

	Return the list of all the property set defined in the
current AADL project

	
ocarina.lmp.getPropertyTypes(propertySetId)[source]

	Return the list of all the property types defined in the
provided property set

	Parameters

	propertySetId – the nodeId of the property set in the
current AADL project to search in

For instance, to retrieve all the property types from property
set propertySet, retrieve its id (propertySetId) and use the following

>>> getPropertyTypes (propertySetId)

	
ocarina.lmp.getPrototypeBindings()[source]

	Return the list of all the prototype bindings defined in the
current AADL project

	
ocarina.lmp.getPrototypes()[source]

	Return the list of all the prototypes defined in the current AADL project

	
ocarina.lmp.getRoot()[source]

	Get the Id of the current root instantiated model

9. Editor support

The AADL modes for Emacs and vim provide syntax coloration and
automatic indentation features when editing AADL files.

[image: _images/aadl-editors.png]

AADL mode for emacs and vim

9.1. Emacs

To load the AADL mode for Emacs, you need to add the following line to
your emacs configuration file (usually located in ~/.emacs)

(load "/path/to/this/file.el")

For more details on this mode, please refer to the emacs contextual help.

9.2. vim

The AADL mode for vim is made of two files aadl.vim: one for syntactic
coloration, and the other for indentation. The file for indentation
must be placed into ~/.vim/indent/ while the one for syntactic
coloration must be placed into ~/.vim/syntax/

To load the AADL mode whenever you edit AADL files, create a file
named ~/.vim/filetype.vim, in which you write:

augroup filetypedetect
 au BufNewFile,BufRead *.aadl setf aadl
augroup END

For more details, please read the documentation of vim.

10. Ocarina property sets

10.1. Deployment

property set Deployment is

 Allowed_Transport_APIs : type enumeration
 (BSD_Sockets,
 SpaceWire);
 -- Supported transport API

 Transport_API : Deployment::Allowed_Transport_APIs applies to (bus);
 -- Transport API of a bus

 Location : aadlstring applies to (processor, device);
 -- Processor IP address (BSD_Sockets specific)

 Port_Number : aadlinteger applies to (process, device);
 -- IP port number of a process (BSD_Sockets specific)

 Protocol_Type : type enumeration (iiop, diop);
 -- Supported communication protocols
 Protocol : Deployment::Protocol_Type applies to (system);

 Allowed_Execution_Platform : type enumeration
 (Native, -- Native platforms (GNU/Linux, Solaris, Windows...)
 Native_Compcert, -- Native platforms using the Compcert compiler
 bench, -- Benchmark platform (native with instrumentation).
 GNAT_Runtime, -- Use a GNAT Runtime, e.g. from the Ada_Drivers_Library
 LEON_ORK,
 LEON_RTEMS, -- LEON2 board or tsim-leon (RTEMS)
 LEON_RTEMS_POSIX, -- LEON2 board or tsim-leon (RTEMS)
 LEON3_SCOC3, -- LEON3 with RTEMS for SCOC3
 LEON3_XTRATUM, -- LEON3 with Xtratum
 LEON3_XM3, -- RTEMS for XTRATUM/LEON3
 LEON_GNAT, -- LEON2 board or qemu (GNATPRO/HI-E)
 LINUX32, -- Linux 32 bits
 LINUX_DLL, -- Linux Dynamic Library
 LINUX32_XENOMAI_NATIVE, -- Linux 32 bits with native Xenomai
 LINUX32_XENOMAI_POSIX, -- Linux 32 bits with Xenomai and POSIX skin
 LINUX64, -- Linux 64 bits
 ERC32_ORK, -- ERC32 board or tsim-erc32 (ORK)
 X86_RTEMS_POSIX, -- x86 under RTEMS with POSIX layer
 X86_LINUXTASTE, -- TASTE-specific linux distribution
 MARTE_OS, -- MaRTE OS
 WIN32, -- WIN32
 VXWORKS, -- VXWORKS
 FREERTOS, -- FREERTOS
 MSP430_FREERTOS, -- MSP430 board with FreeRTOS
 AIR, -- AIR Hypervisor, by GMV
 AIR_IOP -- AIR IOP partition
);
 -- Supported platforms

 Execution_Platform : Deployment::Allowed_Execution_Platform
 applies to (all);
 -- Execution platform of a processor

 Ada_Runtime : aadlstring applies to (processor);
 -- If Execution_Platform is set to GNAT_Runtime, this property
 -- points to the name of the GNAT Project file that configures the
 -- Ada_Runtime, e.g. from the Ada Device Drivers project.

 USER_CFLAGS : aadlstring applies to (processor);
 USER_LDFLAGS : aadlstring applies to (processor);
 -- User defined CFLAGS and LDFLAGS

 Supported_Execution_Platform : list of Deployment::Allowed_Execution_Platform
 applies to (device);
 -- List execution platforms supported by a particular driver

 USER_ENV: aadlstring applies to (processor);
 -- Additional configuration parameters passed as environment
 -- variables as part of the build phase. These env. variables are
 -- passed in the generated makefiles.

 Runtime : type enumeration
 (PolyORB_HI_C,
 PolyORB_HI_Ada,
 POK);
 -- List of supported runtime

 Supported_Runtime : Deployment::Runtime applies to (all);
 -- List the runtime compatible with the component

 Priority_Type : type aadlinteger 0 .. 255;

 Priority : Deployment::Priority_Type applies to (data, thread);
 -- Thread and data component priority

 Driver_Name : aadlstring applies to (device);

 Configuration : aadlstring applies to (device, thread);

 Config : aadlstring applies to (device);

 ASN1_Module_Name : aadlstring applies to (all);

 Help : aadlstring applies to (all);

 Version : aadlstring applies to (all);

 Configuration_Type : classifier (data) applies to (all);

end Deployment;

10.2. Ocarina_Config

-- Property set containing the configuration properties of Ocarina.
-- This property set is not intended to be used by the AADL model of
-- an application, but, by the AADL model of its scenario.

property set Ocarina_Config is

 Generator_Type : type enumeration
 (PolyORB_QoS_Ada,
 PolyORB_HI_Ada,
 PolyORB_HI_C,
 PolyORB_HI_RTSJ,
 POK_C,
 Xtratum_Configuration,
 Petri_Nets);

 Generator : Ocarina_Config::Generator_Type applies to (system);
 -- The code generator that will be used for the current application

 Generator_Options_Type : type enumeration
 (gprof,
 ASN1);

 Generator_Options : list of Ocarina_Config::Generator_Options_Type
 applies to (system);
 -- Code generation options.

 AADL_Files : list of aadlstring applies to (system);
 -- List of the AADL source files used by the current application

 Cheddar_Properties : constant aadlstring => "Cheddar_Properties";
 Data_Model : constant aadlstring => "Data_Model";
 Deployment : constant aadlstring => "Deployment";
 POK_Properties : constant aadlstring => "pok_properties";
 ARINC653_Properties : constant aadlstring => "arinc653";
 ASSERT_Properties : constant aadlstring => "ASSERT_Properties";
 TASTE_Properties : constant aadlstring => "taste_properties";
 -- List of the predefined NON STANDARD property sets that can be used
 -- by an AADL application.

 Needed_Property_Sets : list of aadlstring applies to (system);
 -- The actual property sets needed by one particular application.
 -- This avoid to parse systematically all the predefined non
 -- standard property sets. The user can also give the name of a
 -- custom property set (which may be used by many AADL models),
 -- provided that the value of the string matches exactly the base
 -- name (without the .aadl suffix and in a case-sensitive manner)
 -- the user property sey file name and provided that this property
 -- set file is located in the same directory as the Ocarina
 -- non-standard property sets.

 Ocarina_Driver_Library : constant list of aadlstring =>
 ("devices.aadl",
 "buses",
 "base_types",
 "exarm-ni-6071e-analog.aadl",
 "grspw.aadl",
 "rasta-serial.aadl",
 "sockets-rtems-ne2000.aadl",
 "exarm-ni-6071e-digital.aadl",
 "gruart.aadl",
 "rasta-spacewire.aadl",
 "tcp_protocol.aadl",
 "generic-keyboard.aadl",
 "leon-eth.aadl",
 "scoc3-spacewire.aadl",
 "udp-exarm.aadl",
 "generic_bus.aadl",
 "leon-serial.aadl",
 "sd-spw-usb.aadl",
 "generic_native.aadl",
 "native_uart.aadl",
 "serial-raw.aadl",
 "gr_cpci_x4cv.aadl",
 "rasta-1553.aadl",
 "sockets-raw.aadl",
 "grspw_packet.aadl",
 "apbuart.aadl",
 "greth.aadl",
 "stardundee.aadl");

 Root_System_Name : aadlstring applies to (system);
 -- If present, indicates the name of the root of the instance tree

 AADL_Version_Type : type enumeration (AADLv1, AADLv2);

 AADL_Version : Ocarina_Config::AADL_Version_Type applies to (system);
 -- AADL version of the model

 Use_Components_Library : aadlboolean applies to (system);

 Referencial_Files : list of aadlstring applies to (system);
 -- The list of referencial files used to compute the regression test

 Timeout_Property : Time applies to (system);
 -- The timeout used to stop an execution

 Annex_Type : type enumeration
 (annex_all,
 annex_none,
 behavior_specification,
 real_specification,
 emv2);
 -- Designates the list of annexes supported in ocarina. annex_all
 -- and annex_none designate respectively all supported annexes
 -- and none of them for properties that accept this kind of
 -- designation.

 Enable_Annexes : list of Ocarina_Config::Annex_Type applies to (system);
 -- List of annexes to be enabled in the parsed model
end Ocarina_Config;

11. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 51 Franklin Street,
Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and
distribute verbatim copies of this license document, but changing it is
not allowed.

11.1. Preamble

The purpose of this License is to make a manual, textbook, or other
written document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for
free software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether
it is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

11.2. Applicability and Definition

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed under
the terms of this License. The “Document”, below, refers to any such
manual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection
with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose
titles are designated, as being those of Invariant Sections, in the
notice that says that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says
that the Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification
by readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not
generally available, and the machine-generated HTML produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in formats
which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

11.3. Verbatim Copying

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number of copies
you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above,
and you may publicly display copies.

11.4. Copying in Quantity

If you publish printed copies of the Document numbering more than
100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these
Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts
on the back cover. Both covers must also clearly and legibly identify you
as the publisher of these copies. The front cover must present the full
title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit reasonably)
on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-readable
Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a publicly-accessible computer-network location containing a
complete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously at no
charge using public-standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of
the Document well before redistributing any large number of copies, to
give them a chance to provide you with an updated version of the
Document.

11.5. Modifications

You may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

	Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous
version if the original publisher of that version gives
permission.

	List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has less
than five).

	State on the Title page the name of the publisher of the
Modified Version, as the publisher.

	Preserve all the copyright notices of the Document.

	Add an appropriate copyright notice for your modifications
adjacent to the other copyright notices.

	Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified Version under
the terms of this License, in the form shown in the Addendum
below.

	Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s license
notice.

	Include an unaltered copy of this License.

	Preserve the section entitled “History”, and its title, and add
to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page. If
there is no section entitled “History” in the Document, create one
stating the title, year, authors, and publisher of the Document as
given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

	Preserve the network location, if any, given in the Document
for public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions it
was based on. These may be placed in the “History” section. You may
omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the
version it refers to gives permission.

	In any section entitled “Acknowledgements” or “Dedications”,
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

	Preserve all the Invariant Sections of the Document, unaltered
in their text and in their titles. Section numbers or the equivalent
are not considered part of the section titles.

	Delete any section entitled “Endorsements”. Such a section may
not be included in the Modified Version.

	Do not retitle any existing section as “Endorsements” or to
conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all of
these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles
must be distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties–for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text,
and a passage of up to 25 words as a Back-Cover Text, to the end of the
list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a
cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add
another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this
License give permission to use their names for publicity for or to assert
or imply endorsement of any Modified Version.

11.6. Combining Documents

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and list
them all as Invariant Sections of your combined work in its license
notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license
notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one section entitled
“History”; likewise combine any sections entitled “Acknowledgements”, and
any sections entitled “Dedications”. You must delete all sections
entitled “Endorsements.”

11.7. Collections of Documents

You may make a collection consisting of the Document and other
documents released under this License, and replace the individual copies
of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other
respects.

You may extract a single document from such a collection, and
distribute it individually under this License, provided you insert a copy
of this License into the extracted document, and follow this License in
all other respects regarding verbatim copying of that document.

11.8. Aggregation with Independent Works

A compilation of the Document or its derivatives with other
separate and independent documents or works, in or on a volume of a
storage or distribution medium, does not as a whole count as a Modified
Version of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an “aggregate”, and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter of
the entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they must
appear on covers around the whole aggregate.

11.9. Translation

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of
these Invariant Sections. You may include a translation of this License
provided that you also include the original English version of this
License. In case of a disagreement between the translation and the
original English version of this License, the original English version
will prevail.

11.10. Termination

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will not
have their licenses terminated so long as such parties remain in full
compliance.

11.11. Future Revisions of this License

The Free Software Foundation may publish new, revised versions of
the GNU Free Documentation License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in
detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version
number. If the Document specifies that a particular numbered version of
this License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft)
by the Free Software Foundation.

11.12. How to use this License for your documents

To use this License in a document you have written, include a copy
of the License in the document and put the following copyright and
license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy,
distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.1 or any later version published by
the Free Software Foundation; with the Invariant Sections being LIST
THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is included in the
section entitled “GNU Free Documentation License”.

If you have no Invariant Sections, write “with no Invariant
Sections” instead of saying which ones are invariant. If you have no
Front-Cover Texts, write “no Front-Cover Texts” instead of “Front-Cover
Texts being LIST”; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of free
software license, such as the GNU General Public License, to permit their
use in free software.

12. Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 o

 		 	

 		
 o	

 	[image: -]
 	
 ocarina	

 	
 	
 ocarina.lmp	

 	
 	
 ocarina.ocarina	

Index

 Symbols
 | A
 | B
 | E
 | G
 | I
 | L
 | O
 | R
 | S
 | V

Symbols

 	
 	
 --list-backends

 	ocarina command line option

 	
 --spark2014

 	ocarina command line option

 	
 --version

 	ocarina command line option

 	
 -aadlv[ARG]

 	ocarina command line option

 	
 -asn1

 	ocarina command line option

 	
 -b

 	ocarina command line option

 	
 -boundt_process ARG

 	ocarina command line option

 	
 -d

 	ocarina command line option

 	
 -disable-annexes=ARG

 	ocarina command line option

 	
 -ec

 	ocarina command line option

 	
 -er

 	ocarina command line option

 	
 -f

 	ocarina command line option

 	
 -g ARG

 	ocarina command line option

 	
 -h, --help

 	ocarina command line option

 	
 -i

 	ocarina command line option

 	
 -I ARG

 	ocarina command line option

 	
 	
 -k ARG

 	ocarina command line option

 	
 -o ARG

 	ocarina command line option

 	
 -p

 	ocarina command line option

 	
 -perf

 	ocarina command line option

 	
 -q

 	ocarina command line option

 	
 -r ARG

 	ocarina command line option

 	
 -real_continue_eval

 	ocarina command line option

 	
 -real_lib ARG

 	ocarina command line option

 	
 -real_theorem ARG

 	ocarina command line option

 	
 -s

 	ocarina command line option

 	
 -t

 	ocarina command line option

 	
 -v, --verbose

 	ocarina command line option

 	
 -x

 	ocarina command line option

 	
 -y

 	ocarina command line option

 	
 -z

 	ocarina command line option

A

 	
 	AADL

 	
 	add_real_library() (in module ocarina.ocarina)

 	analyze() (in module ocarina.ocarina)

B

 	
 	Backends (in module ocarina.ocarina)

E

 	
 	Enum (class in ocarina.ocarina)

G

 	
 	generate() (in module ocarina.ocarina)

 	getAliasDeclarations() (in module ocarina.lmp)

 	getAnnexes() (in module ocarina.lmp)

 	getComponentFullname() (in module ocarina.lmp)

 	getComponentImplementations() (in module ocarina.lmp)

 	getComponentName() (in module ocarina.lmp)

 	getComponentTypes() (in module ocarina.lmp)

 	getDestinationPorts() (in module ocarina.ocarina)

 	getFlowImplementations() (in module ocarina.lmp)

 	getFlowSpecifications() (in module ocarina.lmp)

 	getImportDeclarations() (in module ocarina.lmp)

 	getInModes() (in module ocarina.lmp)

 	getInstanceName() (in module ocarina.lmp)

 	getInstances() (in module ocarina.lmp)

 	
 	getModes() (in module ocarina.lmp)

 	getModeTransitions() (in module ocarina.lmp)

 	getNodeId() (in module ocarina.lmp)

 	getPackages() (in module ocarina.lmp)

 	getPropertyConstants() (in module ocarina.lmp)

 	getPropertyDefinitions() (in module ocarina.lmp)

 	getPropertySets() (in module ocarina.lmp)

 	getPropertyTypes() (in module ocarina.lmp)

 	getPropertyValue() (in module ocarina.ocarina)

 	getPropertyValueByName() (in module ocarina.ocarina)

 	getPrototypeBindings() (in module ocarina.lmp)

 	getPrototypes() (in module ocarina.lmp)

 	getRoot() (in module ocarina.lmp)

 	getSourcePorts() (in module ocarina.ocarina)

I

 	
 	instantiate() (in module ocarina.ocarina)

L

 	
 	load() (in module ocarina.ocarina)

O

 	
 	Ocarina (introduction)

 	
 ocarina command line option

 	--list-backends

 	--spark2014

 	--version

 	-I ARG

 	-aadlv[ARG]

 	-asn1

 	-b

 	-boundt_process ARG

 	-d

 	-disable-annexes=ARG

 	-ec

 	-er

 	-f

 	-g ARG

 	-h, --help

 	-i

 	-k ARG

 	-o ARG

 	-p

 	-perf

 	-q

 	-r ARG

 	-real_continue_eval

 	-real_lib ARG

 	-real_theorem ARG

 	-s

 	-t

 	-v, --verbose

 	-x

 	-y

 	-z

 	
 	Ocarina plug-in

 	ocarina.lmp (module)

 	ocarina.ocarina (module)

 	OSATE

R

 	
 	reset() (in module ocarina.ocarina)

 	
 	root system

S

 	
 	scenario files

 	
 	set_real_theorem() (in module ocarina.ocarina)

 	status() (in module ocarina.ocarina)

V

 	
 	version() (in module ocarina.ocarina)

 All modules for which code is available

	ocarina.lmp

	ocarina.ocarina

 Source code for ocarina.lmp

#! /usr/bin/python
'''
:mod:`lmp` -- Port of Ellidiss LMP to Ocarina Python API
==

.. moduleauthor:: Jerome Hugues, Arnaud Schach

This module is an adaptation of Ellidiss LMP "Logical Model Processing"
to Python.

'''

##

try:
 import libocarina_python # Ocarina bindings
 import ocarina_me_aadl_aadl_instances_nodes as AIN
 import ocarina_me_aadl_aadl_tree_nodes as ATN
 from ocarina_common_tools import *
 import io
except ImportError:
 pass

##

[docs]def getPackages ():
 '''Return the list of all the packages defined in the current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getPackages)

##

[docs]def getImportDeclarations ():
 '''Return the list of all the import declarations used in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getImportDeclarations)

##

[docs]def getAliasDeclarations ():
 '''Return the list of all the alias declaration defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getAliasDeclarations)

##

[docs]def getComponentTypes (category):
 '''Return a list of component types defined in the current AADL project

 :param category: one of the AADL category defined in the standard

 For instance, to retrieve all the system types from the current project,
 you may use the following

 >>> getComponentTypes (System)
 '''

 return runOcarinaFunction (libocarina_python.getComponentTypes, category)

##

[docs]def getComponentImplementations (category):
 '''Return a list of component implementations defined in the
 current AADL project

 :param category: one of the AADL category defined in the standard

 For instance, to retrieve all the system implementations from the
 current project, you may use the following

 >>> getComponentImplementations (System)
 '''
 return runOcarinaFunction (libocarina_python.getComponentImplementations, category)

##

[docs]def getAnnexes ():
 '''Return the list of all the annexes defined in the current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getAnnexes)

##

[docs]def getPrototypes ():
 '''Return the list of all the prototypes defined in the current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getPrototypes)

##

[docs]def getPrototypeBindings ():
 '''Return the list of all the prototype bindings defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getPrototypeBindings)

##

[docs]def getFlowSpecifications ():
 '''Return the list of all the flow specification defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getFlowSpecifications)

##

[docs]def getFlowImplementations ():
 '''Return the list of all the flow implementation defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getFlowImplementations)

##

[docs]def getModes ():
 '''Return the list of all the modes defined in the current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getModes)

##

[docs]def getModeTransitions ():
 '''Return the list of all the mode transition defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getModeTransitions)

##

[docs]def getInModes ():
 '''Return the list of all the in mode used in the current AADL project
 '''

##

[docs]def getPropertySets ():
 '''Return the list of all the property set defined in the
 current AADL project
 '''

 return runOcarinaFunction (libocarina_python.getPropertySets)

##

[docs]def getPropertyTypes (propertySetId):
 '''Return the list of all the property types defined in the
 provided property set

 :param propertySetId: the nodeId of the property set in the
 current AADL project to search in

 For instance, to retrieve all the property types from property
 set propertySet, retrieve its id (propertySetId) and use the following

 >>> getPropertyTypes (propertySetId)
 '''

 return runOcarinaFunction (libocarina_python.getPropertyTypes, propertySetId)

##

[docs]def getPropertyDefinitions (propertySetId):
 '''Return the list of all the property declaration defined in the
 provided property set

 :param propertySetId: the nodeId of the property set in the
 current AADL project to search in

 For instance, to retrieve all the property declaration from
 property set propertySet, retrieve its id (propertySetId)
 and use the following

 >>> getPropertyDefinitions (propertySetId)
 '''

 return runOcarinaFunction (libocarina_python.getPropertyDefinitions, propertySetId)

##

[docs]def getPropertyConstants (propertySetId):
 '''Return the list of all the constant property defined in the
 provided property set

 :param propertySetId: the nodeId of the property set in the
 current AADL project to search in

 For instance, to retrieve all the constant property from property
 set propertySet, retrieve its id (propertySetId) and use the following

 >>> getPropertyConstants (propertySetId)

 '''

 return runOcarinaFunction (libocarina_python.getPropertyConstants,propertySetId)

##

[docs]def getInstances (category):
 '''Return a list of instances defined in the current AADL project

 :param category: one of the AADL category defined in the standard

 For instance, to retrieve all the system instances from the current project,
 you may use the following

 >>> getInstances (System)
 '''

 return runOcarinaFunction (libocarina_python.getInstances, category)

##

[docs]def getComponentName (nodeId):
 '''Get the name of an AADL component

 :param nodeId: the id of the component whose name is searched

 For instance, to retrieve the name of MyComponent,
 retrieve its id (nodeId) and use the following

 >>> getComponentName (nodeId)
 '''

 return runOcarinaFunction (libocarina_python.getComponentName, nodeId)

##

[docs]def getComponentFullname (nodeId):
 '''Get the full qualified name of an AADL component

 :param nodeId: the id of the component whose full qualified name is searched

 For instance, to retrieve the full qualified name of MyComponent,
 retrieve its id (nodeId) and use the following

 >>> getComponentFullname (nodeId)
 '''

 return runOcarinaFunction (libocarina_python.getComponentFullname, nodeId)

##

[docs]def getInstanceName (nodeId):
 '''Get the name of an AADL instance

 :param nodeId: the id of the instance whose name is searched

 For instance, to retrieve the name of MyInstance,
 retrieve its id (nodeId) and use the following

 >>> getInstanceName (nodeId)
 '''

 return runOcarinaFunction (libocarina_python.getInstanceName, nodeId)

##

[docs]def getNodeId (name):
 '''Get the Id of a component from its name

 :param name: the AADL name of the node whose id is queried

 For instance, to retrieve the id of MyHome, you may use the following

 >>> getNodeId (MyHome)
 '''

 return runOcarinaFunction (libocarina_python.getNodeId, name)

##

[docs]def getRoot ():
 '''Get the Id of the current root instantiated model
 '''

 return runOcarinaFunction (libocarina_python.getRoot)

 Source code for ocarina.ocarina

#! /usr/bin/python
'''
:mod:`ocarina` -- Python binding to the Ocarina AADL processor
==

.. moduleauthor:: Jerome Hugues, Arnaud Schach

This module provides direct access to top-level functions of Ocarina
to load, parse, instantiate AADL models, and to invoke backends.

'''

##

try:
 import libocarina_python # Ocarina bindings
 import ocarina_me_aadl_aadl_instances_nodes as AIN
 import ocarina_me_aadl_aadl_tree_nodes as ATN
 from ocarina_common_tools import *
 import io
except ImportError:
 pass

[docs]class Enum(tuple): __getattr__ = tuple.index

##
[docs]def version ():
 '''Print Ocarina version'''
 libocarina_python.version()

##
[docs]def status ():
 '''Print Ocarina status'''
 libocarina_python.status()

##
[docs]def reset ():
 '''Reset Ocarina internal state

 Note: this function must be called before processing a new set of
 models.'''

 libocarina_python.reset()

##
[docs]def load (filename):
 '''Load a file

 :param filename: name of the file to be loaded, using Ocarina search path
 :type filename: string

 E.g. to load "foo.aadl":

 >>> load("foo.aadl")

 '''
 return runOcarinaFunction (libocarina_python.load, filename)

##
[docs]def analyze ():
 '''Analyze models'''

 return runOcarinaFunction (libocarina_python.analyze)

##
[docs]def instantiate (root_system):
 '''Instantiate model, starting from root_system

 :param root_system: name of the root system to instantiate
 :type root_system: string

 '''

 return runOcarinaFunction (libocarina_python.instantiate, root_system)

##
[docs]def set_real_theorem (theorem_name):
 '''Set main REAL theorem

 :param theorem_name: name of the theorem
 :type theorem_name: string

 '''

 return runOcarinaFunction (libocarina_python.set_real_theorem, theorem_name)

##
[docs]def add_real_library (libraryname):
 '''

 :param libraryname: name of the REAL library file to include
 :type libraryname: string

 '''

 return runOcarinaFunction (libocarina_python.add_real_library, libraryname)

##
Backends = Enum (["polyorb_hi_ada", "polyorb_hi_c", "real_theorem"])
'''List of supported backends, used by :data:`generate`'''
Note, this list should match backend names as specified by Ocarina CLI

[docs]def generate (generator):
 '''Generate code

 :param generator: one supported backends, from :data:`Backends`

 For instance, to use the PolyORB-HI/Ada backend, you may use the following

 >>> generate (Backends.polyorb_hi_ada)
 '''

 return runOcarinaFunction (libocarina_python.generate, Backends[generator])

##

[docs]def getPropertyValue (nodeId,propertyId):
 '''Get the value of the property
 '''
 return runOcarinaFunction (libocarina_python.getPropertyValue, nodeId,propertyId)

##

[docs]def getPropertyValueByName (nodeId,propertyString):
 '''Get the value of the property propertyString applied to model
 element nodeId.
 '''
 return runOcarinaFunction (libocarina_python.getPropertyValueByName, nodeId, propertyString)

##

[docs]def getSourcePorts (feature_nodeId):
 '''Get the source port associated to the feature_nodeId passed as
 parameter, in the case feature_nodeId participates in a
 connection.
 '''
 return runOcarinaFunction (libocarina_python.getSourcePorts, feature_nodeId)

##

[docs]def getDestinationPorts (nodeId):
 '''Get the destination port associated to the feature_nodeId passed as
 parameter, in the case feature_nodeId participates in a
 connection.
 '''

 return runOcarinaFunction (libocarina_python.getDestinationPorts, nodeId)

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_images/assert.png
/AADL Process. AADL Thread as AADL Data as.

X Parkion A Task objoct A Protocted object

_images/ocarina_preferences.jpg
006 Preferences

type filter text Ocarina o~

»General
»Aadi2

:E"‘ovMﬂdE' Note you should first install Ocarina. See documentat
elp

> Install/Update External tools

»lava
7 OSATE Preferences Path to Ocarina bin/ directory: | /Users/hugues/local /ocarina/bin | [Browse...

Ocarina

> Properties
»REAL
»Run/Debug
»Team

Ocarina configuration page.

n for more details

[Restore Defaults

@ ([Cancel] (OIS

_images/aadl-editors.png
" Nere 15 the Ve of the pira of & typical AW chip:

W e com/ By

7 oot
s gacsrsamomy
kA 3
R ey
2 Gacmnia)
gy
e o
%

i

S gy

. Gasaoey
17 QoS

2 pette spar
2

o perisaics

_images/osate_ocarina.jpg
e ot o Gttt omths Qo9+ 2110 0090 OOCG OO
B eCmnnoxx0EAL “OUeNOOsn e

Mo i 5| O] B maa 0 ot [
ST e

s
ok REAL Tesrems
nsartaeSyem

nav.xhtml

 Table of Contents

 		
 Ocarina User’s Guide

 		
 About This Guide

 		
 About this Guide

 		
 Document Conventions

 		
 Copyright Information

 		
 Introduction

 		
 About Ocarina

 		
 Licence

 		
 About AADL

 		
 Ocarina concepts

 		
 Installation

 		
 Supported platforms

 		
 Build requirements

 		
 Semi-automated build instructions

 		
 Manual build instructions

 		
 Build options

 		
 Windows-specific options

 		
 Usage

 		
 Ocarina command-line

 		
 ocarina-config

 		
 Scenario files

 		
 ocarina_library.aadl

 		
 PolyORB-HI/C

 		
 About

 		
 Supported Platforms

 		
 Tree structure

 		
 Generating code from an AADL model

 		
 Code generation towards PolyORB-HI/C

 		
 The ping example

 		
 Mapping AADL system

 		
 Mapping AADL process

 		
 Mapping AADL threads

 		
 Deployment information

 		
 Mapping of AADL ports

 		
 Mapping of AADL Connections

 		
 Mapping of AADL Subprograms

 		
 Mapping of AADL data

 		
 OSATE2-Ocarina plug-in

 		
 Installation

 		
 Configuration

 		
 Usage

 		
 Python bindings for Ocarina

 		
 Ocarina Python bindings

 		
 Example

 		
 Python API description

 		
 ocarina – Python binding to the Ocarina AADL processor

 		
 lmp – Port of Ellidiss LMP to Ocarina Python API

 		
 Editor support

 		
 Emacs

 		
 vim

 		
 Ocarina property sets

 		
 Deployment

 		
 Ocarina_Config

 		
 GNU Free Documentation License

 		
 Preamble

 		
 Applicability and Definition

 		
 Verbatim Copying

 		
 Copying in Quantity

 		
 Modifications

 		
 Combining Documents

 		
 Collections of Documents

 		
 Aggregation with Independent Works

 		
 Translation

 		
 Termination

 		
 Future Revisions of this License

 		
 How to use this License for your documents

 		
 Indices and tables

_static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

