

 Navigation

 	
 index

 	Obdi Salt Stack Repository latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/obdi-salt-stack-repository/checkouts/latest/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/obdi-salt-stack-repository/checkouts/latest/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Obdi Salt Stack Repository latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 centos_guide.html

 Navigation

 		
 index

 		Obdi Salt Stack Repository latest documentation »

Obdi Salt Stack Setup Guide for Centos 6

		Obdi Salt Stack Setup Guide for Centos 6

		Installing Obdi
		Installation Script

		Running Commands

		Installation
		Install Centos

		Install Obdi

		Test Obdi

		Configuration
		Configure go_root

		Add a Run Interface User

		Add a Worker User

		Install the Obdi Salt Plugins

		Add a Data Centre and Environment

		Change User Permissions

		View the Admin interface

		Local GIT Setup
		Creating the Repository

		Installing Salt Stack

		Final Tasks
		Install the External Node Classifier

		Configure the Salt Job Viewer

		Change Default Passwords

		All done

		Using Obdi
		Quick Guide
		Accept the Minion's Key

		Version the GIT Repo

		Map Classes to Hosts

		Configure the Server

		View the Job Status

		All done

Installing Obdi

The processes required to get the Obdi Salt plugins working are explained in
this guide. The emphasis is to get up and running as simply and as quickly as
possible.

Once this guide has been completed it will be possible to further refine the
installation for your environment.

Installation Script

All the commands in this document have been collected together into an
installation script.

The script can be used instead of typing, or copy/pasting, all the commands in
this document.

The installation script, centos_install_script.sh is available at:

https://github.com/mclarkson/obdi-salt-repository/docs [https://github.com/mclarkson/obdi-salt-repository/blob/master/docs/]

To download and install on a new Ubuntu Trusty server, type:

wget https://raw.githubusercontent.com/mclarkson/obdi-salt-repository/master/docs/centos_install_script.sh
bash centos_install_script.sh

The script can be run many times without causing any problems. This may
need to be done if, for instance, the internet connection was down when
running the script the first time.

Once the script has completed successfully proceed to the Using Obdi section.

Running Commands

All commands should be run as the ‘root’ user.

Copy commands from this document directly into a terminal.

Installation

Install Centos

Install Centos 6 on a server, with a minimal set of packages, and ensure
all packages are up to date.

Install Obdi

Obdi is available from Fedora COPR. EPEL repositories are also required
to install golang, which is required for compile-on-demand.

Install Obdi:

Enable EPEL YUM repository
rpm -ivh https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm

Enable Obdi COPR YUM repository
curl -o /etc/yum.repos.d/obdi.repo \
 https://copr.fedorainfracloud.org/coprs/mclarkson/Obdi/repo/epel-6/mclarkson-Obdi-epel-6.repo

Install Obdi
yum -y install obdi obdi-worker git cronie

Test Obdi

Now that Obdi is installed it would be a good idea to give it a quick test
before continuing further.

Test the Admin Interface

Using a Web Browser, connect to the Admin interface at:

https://SERVER/manager/admin

Replace

‘

SERVER’

 with the host name or IP Address of the server.

A log-in screen should be shown. Log in with user name

‘

admin’

 and
the default password ‘

admin’

.

[bookmark: test-the-run-interface] Test the Run Interface

Log out and test the Run interface by connecting to:

https://SERVER/manager/run

It’s not possible to log in yet, unless a non admin user has been added, but
this verifies that the run interface is accessible.

Test the REST interface

The unix program, curl, is required, so install it:

yum -y install curl

Using an ssh client, log into SERVER and issue two REST commands using
curl; the first will log into Obdi and return a session ID, and the second
will list all users.

Log in
guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Show the session id. This should not be empty.
echo $guid

Show the list of users
curl -ks https://127.0.0.1:443/api/admin/$guid/users

Configuration

Obdi can be configured from the Admin interface using a Web Browser, or by
using REST commands. The REST interface will be used in this guide to keep it
short.

For simplicity, default user names and passwords will be used, where
applicable, and these should be changed after installation.

Configure go_root

Obdi needs to know where to find the Google Go files. The following code will
modify /etc/obdi/obdi.conf with the correct ‘go_root’:

eval `go env | grep GOROOT`
sed -i "s#\(go_root *= *\).*#\1\"$GOROOT\"#" /etc/obdi/obdi.conf

Start the Obdi services, as they do not start automatically:

/etc/init.d/obdi start
/etc/init.d/obdi-worker start

Add a Run Interface User

The ‘admin’ user is not allowed to log into the Run interface, and is blocked
from doing so.

Create a user for logging into the Run interface. Permissions will be applied
later, after data centres and environments have been added.

Add the user, ‘nomen.nescio’ (or any other name):

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"nomen.nescio",
 "passHash":"password",
 "forename":"Nomen",
 "surname":"Nescio",
 "email":"nomen.nescio@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Test this user by logging into the Run interface as detailed in

‘

Test
the Run Interface’

 above. A generic user
interface should be displayed with almost no content.

Add a Worker User

The Worker needs a user set up for it to log into the Manager. By default this
is the user, ‘worker’, with password, ‘pAsSwOrD’, which is defined in
/etc/obdi-worker/obdi-worker.conf.

Add the ‘worker’ user:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"worker",
 "passHash":"pAsSwOrD",
 "forename":"Worker",
 "surname":"Daemon",
 "email":"worker@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Install the Obdi Salt Plugins

Refer to Obdi Plugins
Documentation [https://github.com/mclarkson/obdi/blob/master/doc/plugins.md]
for more information about Plugins.

Add the Repository URLs

The repositories,
obdi-salt-repository [https://github.com/mclarkson/obdi-salt-repository] and
obdi-core-repository [https://github.com/mclarkson/obdi-core-repository], will
be added as follows:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "Url":"https://github.com/mclarkson/obdi-core-repository.git"
}' "https://127.0.0.1:443/api/admin/$guid/repos"

curl -ks -d '{
 "Url":"https://github.com/mclarkson/obdi-salt-repository.git"
}' "https://127.0.0.1:443/api/admin/$guid/repos"

Install the Plugins

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "Name":"systemjobs"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"salt"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltconfigserver"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltjobviewer"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltkeymanager"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltregexmanager"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltupdategit"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

Log into the Run interface again, as detailed in

‘

Test the Run
Interface’

 above. The user interface should now
show navigation links in the left hand side of the window.

Add a Data Centre and Environment

One data centre, ‘testdc’, and one environment, ‘testenv’, will be added using
the following code:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Create the DC

curl -ks -d '{
 "SysName":"testdc",
 "DispName":"Test DC"
 }' "https://127.0.0.1:443/api/admin/$guid/dcs"

Get the ID of the DC

dcid=`curl -ks "https://127.0.0.1:443/api/admin/$guid/dcs?sys_name=testdc" | grep Id | grep -o "[0-9]"`

Check that dcid is a number (probably '1')
echo $dcid

Create the Environment

curl -ks -d '{
 "SysName":"testenv",
 "DispName":"Test Environment",
 "DcId":'"$dcid"',
 "WorkerUrl":"https://127.0.0.1:4443/",
 "WorkerKey":"lOcAlH0St"
}' "https://127.0.0.1:443/api/admin/$guid/envs"

Change User Permissions

Now that the environment, testenv, is set up, the ‘nomen.nescio’ user
needs to be given access to it.

A function, ‘add_perm’, is temporarily added to the shell in the code
below that takes the following arguments:

		login (text)

		data centre (text)

		environment (text)

		Enabled (true|false)

		Writeable (true|false)

Apply the permission:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Add a function to the running shell

add_perm() {
 opts="-ks";proto="https";ipport="127.0.0.1:443"
 userid=`curl $opts "$proto://$ipport/api/admin/$guid/users?login=$1" | grep Id | grep -o "[0-9]"`
 dcid=`curl $opts "$proto://$ipport/api/admin/$guid/dcs?sys_name=$2" | grep Id | grep -o "[0-9]"`
 envid=`curl $opts "$proto://$ipport/api/admin/$guid/envs?sys_name=$3&dc_id=$dcid" | grep -w Id | grep -o "[0-9]"`
 curl $opts -d '{
 "UserId":'"$userid"',
 "EnvId":'"$envid"',
 "Enabled":'"$4"',
 "Writeable":'"$5"'
 }' "$proto://$ipport/api/admin/$guid/perms"
}

Give 'nomen.nescio' rw permission to testenv

add_perm nomen.nescio testdc testenv true true

View the Admin interface

At this point most of the work setting up Obdi is complete, so
take some time in a Web Browser looking through the Admin interface
to see what has been done. All the configuration done thus far could
have been completed using the Admin interface as it makes the same
REST calls. Further configuration using the Admin
interface, such as setting up more environments, or adding users,
might be easier.

Local GIT Setup

Obdi relies on GIT [https://git-scm.com/] branches to map environments and
versions. Refer to the
obdi-saltconfigserver [https://github.com/mclarkson/obdi-saltconfigserver]
plugin page for more information.

A GIT repository should be created with a branch named ‘testenv’ to match
the environment named ‘testenv’ that was set up earlier. The ‘testenv’ GIT
branch holds the Salt Stack files for the ‘testenv’ environment.

A bare GIT repository will be created at /srv/repos/saltrepo.git, then this
repository will be cloned and populated with a single Salt Formula. Obdi will
apply version numbers to this repository using branches.

NOTE: If using a remote repository, this local repository will still need
to be created, but the local repository should be created as a ‘mirror’ of the
remote one. Obdi ‘fetches’ changes from the remote repository before applying
versions thereby keeping the remote repository free of multiple version
branches.

The obdi-saltupdategit [https://github.com/mclarkson/obdi-saltupdategit]
plugin deals with versioning and was installed earlier.

Creating the Repository

The following commands will set up GIT as described above.

Create the bare GIT repository:

mkdir -p /srv/repos/saltrepo.git
cd /srv/repos/saltrepo.git/
git --bare init

Set GIT up:

git config --global user.email "YOUR.EMAIL@ADDRESS"
git config --global user.name "YOUR NAME"

Clone the GIT repository and set up the ‘master’ and ‘testenv’ branches.

cd
git clone file:///srv/repos/saltrepo.git
cd saltrepo

echo "The master branch is not used and no top.sls is required" >README

git add README
git commit -am "Added README"
git push -u origin master

git branch testenv
git checkout testenv

echo "This is the 'testenv' branch. No top.sls is required" >README

mkdir root
git add root
git commit -am "Initial setup"
git push -u origin testenv

Now add a Salt Formula for installing the Unix tree command:

mkdir -p ~/saltrepo/root/tree
cd ~/saltrepo/root/tree
echo "# INFO: Installs the 'tree' command." >init.sls
echo -e "\ntree:\n pkg.installed" >>init.sls
cd ..
git add tree
git commit -am "Added tree formula"
git push -u origin testenv

Installing Salt Stack

Install Salt Stack from the Ubuntu PPA (Instructions were taken from
the Salt Docs [http://docs.saltstack.com/en/latest/topics/installation/rhel.html]). At the time of writing the following steps installed Salt Stack version 2015.5.2.

The following code block installs the Salt Master and Minion:

Add a convenience 'hosts' entry so the Minion doesn't need configuring

echo "127.0.1.2 salt" >>/etc/hosts

Install Salt

yum -y install salt-master salt-minion GitPython

Create a Salt configuration file:

Back up the original salt master config file
cp /etc/salt/master /etc/salt/master.orig

Write a new salt master config file
cat >/etc/salt/master <<EnD
fileserver_backend:
 - git
gitfs_remotes:
 - file:///srv/repos/saltrepo.git
gitfs_root: root

Use the Obdi external node classifier
master_tops:
 ext_nodes: enc_query.py

JSON output on a single line
output_indent: Null

Required since version 2014.7.0 if using GitPython. Salt doesn't check
for it anymore. (https://github.com/saltstack/salt/issues/17945).
gitfs_provider: gitpython
EnD

Start the Salt services, as they do not start automatically:

/etc/init.d/salt-master start
/etc/init.d/salt-minion start

Final Tasks

Install the External Node Classifier

The External Node Classifier, or ENC, replaces top.sls files. A python
script, enc_query.py, should be copied to the system PATH so that
Salt can find it.

cp /usr/share/obdi/static/plugins/saltconfigserver/scripts/enc_query.py /usr/bin/

chmod +x /usr/bin/enc_query.py

Configure the Salt Job Viewer

The Salt Job Viewer relies on a daemon that watches for changes in Salt’s
job queue.

This daemon:

		Should be run from the cron daemon.

		Requires a new user to accept job status submissions.

		Needs a configuration file at /etc/obdi/job_status.conf.

Set up the Job Viewer:

Add a user with no permissions to any environments

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"jobviewer",
 "passHash":"CHANGE_THIS_PASSWORD",
 "forename":"Jobviewer",
 "surname":"Daemon",
 "email":"jobviewer@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Write the configuration file

echo -e 'STATUS_USER="jobviewer"\nSTATUS_PASS="CHANGE_THIS_PASSWORD"' >/etc/obdi/job_status.conf

Add a cron job

crontab -l >newcron
echo "* * * * * /usr/share/obdi/static/plugins/saltjobviewer/scripts/job_notify.sh" >>newcron
crontab newcron
rm newcron

Change Default Passwords

Change the ‘admin’ password

Log into the Admin interface, click

‘

Users’

, then change
the password for the ‘admin’ user.

Change the worker passwords

In /etc/obdi-worker/obdi-worker.conf change:

		The ‘key’ variable. Then:

Log into the Admin interface, click

‘

Environments’

,
then change the password for the relevant environment.

		The ‘man_password’ variable. Then:

Log into the Admin interface, click

‘

Users’

, and change
the password for the relevant user. The user to change is defined in
the ‘man_user’ variable in the obdi-worker.conf file.

All done

That’s it for the configuration side. Read on for a quick
tour of the user interface.

Using Obdi

This section provides a whirlwind tour of the user interface.

Quick Guide

Using a Web Browser, log into the Run Interface.

Click on

‘

Salt Tools’

 to expand the menu item.

Accept the Minion’s Key

Click the ‘tick’ icon to accept the key and wait for it to move to the Accepted
Keys section.

Click the Environment Setting icon and enter the following details:

		Datacentre: testdc

		Environment: testenv

		Version: leave empty

Click Apply. Wait. Click Go Back.

Version the GIT Repo

In the left menu, click Update Git Repository.

Choose the Environment then Show Git Versions,

Use the arrows to choose ‘0.1.0’ for the initial version, or any other version you like.

Click Apply. Wait. A version list will appear.

Map Classes to Hosts

An entry that installs ‘tree’ on all servers will be created.

Click Map Classes to Hosts in the left hand side menu.

Choose the Environment then Show Host Mappings. Wait - this
will take a long time to load as the Go source
is compiled. The source file uses sqlite, which takes a long
time to compile.

Click Add Regular Expression and enter the following details:

		Name: allservers

		Description: All servers

		Regex: .*

Note that the Regex field accepts Perl regular expressions only. If server host
names reflect their purpose then this feature can reduce the amount of
configuration that needs to be done when setting up a new server.

Click Apply. Wait. Go Back

Click the Configure Classes icon. Wait - it’s compiling.

Click Choose option and select ‘tree’ then click the Add Class icon.

Click Apply. Wait. Go Back.

Configure the Server

Click Map Configure Server in the left hand side menu.

Choose the Environment then List Servers. Wait. The server will be
shown.Configure Classes

Click the check box in the left most column of the table and the row will be
hilighted.

Click the plus sign in the Version column and choose the ‘0.1.0’ version. Click
Apply, wait, then Go Back.

Click the Server Configuration icon. Wait - it’s compiling.
The server already has ‘tree’ in the list since it was added
earlier in Map Classes to Hosts.

Go Back.

Click View Server Grains to see some server details.

Go Back.

Click Review.

Click Apply.

View the Job Status

Wait a couple minutes for ‘tree’ to be installed, the click
Job Viewer in the left hand side menu.

Choose the Environment then Show Salt Jobs.

Lots of jobs will be shown. Filter the jobs by typing ‘high’
into the Search box above the left hand side menu.

Click the View Result icon to see the output from state.highstate.

All done

That’s it for the quick tour of the Salt Tools user
interface.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

ubuntu_guide.html

 Navigation

 		
 index

 		Obdi Salt Stack Repository latest documentation »

Obdi Salt Stack Setup Guide for Ubuntu Trusty

		Obdi Salt Stack Setup Guide for Ubuntu Trusty

		Installing Obdi
		Installation Script

		Running Commands

		Installation
		Install Ubuntu

		Install Obdi

		Test Obdi

		Configuration
		Configure go_root

		Add a Run Interface User

		Add a Worker User

		Install the Obdi Salt Plugins

		Add a Data Centre and Environment

		Change User Permissions

		View the Admin interface

		Local GIT Setup
		Creating the Repository

		Installing Salt Stack

		Final Tasks
		Install the External Node Classifier

		Configure the Salt Job Viewer

		Change Default Passwords

		All done

		Using Obdi
		Quick Guide
		Accept the Minion's Key

		Version the GIT Repo

		Map Classes to Hosts

		Configure the Server

		View the Job Status

		All done

Installing Obdi

The processes required to get the Obdi Salt plugins working are explained in
this guide. The emphasis is to get up and running as simply and as quickly as
possible.

Once this guide has been completed it will be possible to further refine the
installation for your environment.

Installation Script

All the commands in this document have been collected together into an
installation script.

The script can be used instead of typing, or copy/pasting, all the commands in
this document.

The installation script, ubuntu_install_script.sh is available at:

https://github.com/mclarkson/obdi-salt-repository/docs [https://github.com/mclarkson/obdi-salt-repository/blob/master/docs/]

To download and install on a new Ubuntu Trusty server, type:

wget https://raw.githubusercontent.com/mclarkson/obdi-salt-repository/master/docs/ubuntu_install_script.sh
bash ubuntu_install_script.sh

The script can be run many times without causing any problems. This may
need to be done if, for instance, the internet connection was down when
running the script the first time.

Once the script has completed successfully proceed to the Using Obdi section.

Running Commands

All commands should be run as the ‘root’ user.

Copy commands from this document directly into a terminal.

Installation

Install Ubuntu

Install Ubuntu Trusty on a server, with a minimal set of packages, and ensure
all packages are up to date.

Install Obdi

Obdi can be installed directly from the Ubuntu PPA as follows:

apt-get -y install software-properties-common
add-apt-repository -y ppa:mark-clarkson/obdi
apt-get update
apt-get -y install obdi obdi-worker golang-go build-essential

Obdi plugins are compiled on-demand, hence the requirement for ‘golang-go’ and
‘gcc’ in the last line of the previous code block.

Test Obdi

Now that Obdi is installed it would be a good idea to give it a quick test
before continuing further.

Test the Admin Interface

Using a Web Browser, connect to the Admin interface at:

https://SERVER/manager/admin

Replace

‘

SERVER’

 with the host name or IP Address of the server.

A log-in screen should be shown. Log in with user name

‘

admin’

 and
the default password ‘

admin’

.

[bookmark: test-the-run-interface] Test the Run Interface

Log out and test the Run interface by connecting to:

https://SERVER/manager/run

It’s not possible to log in yet, unless a non admin user has been added, but
this verifies that the run interface is accessible.

Test the REST interface

The unix program, curl, is required, so install it:

apt-get -y install curl

Using an ssh client, log into SERVER and issue two REST commands using
curl; the first will log into Obdi and return a session ID, and the second
will list all users.

Log in
guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Show the session id. This should not be empty.
echo $guid

Show the list of users
curl -ks https://127.0.0.1:443/api/admin/$guid/users

Configuration

Obdi can be configured from the Admin interface using a Web Browser, or by
using REST commands. The REST interface will be used in this guide to keep it
short.

For simplicity, default user names and passwords will be used, where
applicable, and these should be changed after installation.

Configure go_root

Obdi needs to know where to find the Google Go files. The following code will
modify /etc/obdi/obdi.conf with the correct ‘go_root’:

eval `go env | grep GOROOT`
sed -i "s#\(go_root *= *\).*#\1\"$GOROOT\"#" /etc/obdi/obdi.conf
restart obdi

Add a Run Interface User

The ‘admin’ user is not allowed to log into the Run interface, and is blocked
from doing so.

Create a user for logging into the Run interface. Permissions will be applied
later, after data centres and environments have been added.

Add the user, ‘nomen.nescio’ (or any other name):

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"nomen.nescio",
 "passHash":"password",
 "forename":"Nomen",
 "surname":"Nescio",
 "email":"nomen.nescio@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Test this user by logging into the Run interface as detailed in

‘

Test
the Run Interface’

 above. A generic user
interface should be displayed with almost no content.

Add a Worker User

The Worker needs a user set up for it to log into the Manager. By default this
is the user, ‘worker’, with password, ‘pAsSwOrD’, which is defined in
/etc/obdi-worker/obdi-worker.conf.

Add the ‘worker’ user:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"worker",
 "passHash":"pAsSwOrD",
 "forename":"Worker",
 "surname":"Daemon",
 "email":"worker@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Install the Obdi Salt Plugins

Refer to Obdi Plugins
Documentation [https://github.com/mclarkson/obdi/blob/master/doc/plugins.md]
for more information about Plugins.

Add the Repository URLs

The repositories,
obdi-salt-repository [https://github.com/mclarkson/obdi-salt-repository] and
obdi-core-repository [https://github.com/mclarkson/obdi-core-repository], will
be added as follows:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "Url":"https://github.com/mclarkson/obdi-core-repository.git"
}' "https://127.0.0.1:443/api/admin/$guid/repos"

curl -ks -d '{
 "Url":"https://github.com/mclarkson/obdi-salt-repository.git"
}' "https://127.0.0.1:443/api/admin/$guid/repos"

Install the Plugins

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "Name":"systemjobs"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"salt"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltconfigserver"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltjobviewer"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltkeymanager"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltregexmanager"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

curl -ks -d '{
 "Name":"saltupdategit"
}' "https://127.0.0.1:443/api/admin/$guid/repoplugins"

Log into the Run interface again, as detailed in

‘

Test the Run
Interface’

 above. The user interface should now
show navigation links in the left hand side of the window.

Add a Data Centre and Environment

One data centre, ‘testdc’, and one environment, ‘testenv’, will be added using
the following code:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Create the DC

curl -ks -d '{
 "SysName":"testdc",
 "DispName":"Test DC"
 }' "https://127.0.0.1:443/api/admin/$guid/dcs"

Get the ID of the DC

dcid=`curl -ks "https://127.0.0.1:443/api/admin/$guid/dcs?sys_name=testdc" | grep Id | grep -o "[0-9]"`

Check that dcid is a number (probably '1')
echo $dcid

Create the Environment

curl -ks -d '{
 "SysName":"testenv",
 "DispName":"Test Environment",
 "DcId":'"$dcid"',
 "WorkerUrl":"https://127.0.0.1:4443/",
 "WorkerKey":"lOcAlH0St"
}' "https://127.0.0.1:443/api/admin/$guid/envs"

Change User Permissions

Now that the environment, testenv, is set up, the ‘nomen.nescio’ user
needs to be given access to it.

A function, ‘add_perm’, is temporarily added to the shell in the code
below that takes the following arguments:

		login (text)

		data centre (text)

		environment (text)

		Enabled (true|false)

		Writeable (true|false)

Apply the permission:

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

Add a function to the running shell

add_perm() {
 opts="-ks";proto="https";ipport="127.0.0.1:443"
 userid=`curl $opts "$proto://$ipport/api/admin/$guid/users?login=$1" | grep Id | grep -o "[0-9]"`
 dcid=`curl $opts "$proto://$ipport/api/admin/$guid/dcs?sys_name=$2" | grep Id | grep -o "[0-9]"`
 envid=`curl $opts "$proto://$ipport/api/admin/$guid/envs?sys_name=$3&dc_id=$dcid" | grep -w Id | grep -o "[0-9]"`
 curl $opts -d '{
 "UserId":'"$userid"',
 "EnvId":'"$envid"',
 "Enabled":'"$4"',
 "Writeable":'"$5"'
 }' "$proto://$ipport/api/admin/$guid/perms"
}

Give 'nomen.nescio' rw permission to testenv

add_perm nomen.nescio testdc testenv true true

View the Admin interface

At this point most of the work setting up Obdi is complete, so
take some time in a Web Browser looking through the Admin interface
to see what has been done. All the configuration done thus far could
have been completed using the Admin interface as it makes the same
REST calls. Further configuration using the Admin
interface, such as setting up more environments, or adding users,
might be easier.

Local GIT Setup

Obdi relies on GIT [https://git-scm.com/] branches to map environments and
versions. Refer to the
obdi-saltconfigserver [https://github.com/mclarkson/obdi-saltconfigserver]
plugin page for more information.

A GIT repository should be created with a branch named ‘testenv’ to match
the environment named ‘testenv’ that was set up earlier. The ‘testenv’ GIT
branch holds the Salt Stack files for the ‘testenv’ environment.

A bare GIT repository will be created at /srv/repos/saltrepo.git, then this
repository will be cloned and populated with a single Salt Formula. Obdi will
apply version numbers to this repository using branches.

NOTE: If using a remote repository, this local repository will still need
to be created, but the local repository should be created as a ‘mirror’ of the
remote one. Obdi ‘fetches’ changes from the remote repository before applying
versions thereby keeping the remote repository free of multiple version
branches.

The obdi-saltupdategit [https://github.com/mclarkson/obdi-saltupdategit]
plugin deals with versioning and was installed earlier.

Creating the Repository

The following commands will set up GIT as described above.

Create the bare GIT repository:

mkdir -p /srv/repos/saltrepo.git
cd /srv/repos/saltrepo.git/
git --bare init

Set GIT up:

git config --global user.email "YOUR.EMAIL@ADDRESS"
git config --global user.name "YOUR NAME"
git config --global push.default simple

Clone the GIT repository and set up the ‘master’ and ‘testenv’ branches.

cd
git clone file:///srv/repos/saltrepo.git
cd saltrepo

echo "The master branch is not used and no top.sls is required" >README

git add README
git commit -am "Added README"
git push -u origin master

git branch testenv
git checkout testenv

echo "This is the 'testenv' branch. No top.sls is required" >README

mkdir root
git add root
git commit -am "Initial setup"
git push -u origin testenv

Now add a Salt Formula for installing the Unix tree command:

mkdir -p ~/saltrepo/root/tree
cd ~/saltrepo/root/tree
echo "# INFO: Installs the 'tree' command." >init.sls
echo -e "\ntree:\n pkg.installed" >>init.sls
cd ..
git add tree
git commit -am "Added tree formula"
git push -u origin testenv

Installing Salt Stack

Install Salt Stack from the Ubuntu PPA (Instructions were taken from
the Salt Docs [http://docs.saltstack.com/en/latest/topics/installation/ubuntu.html]). At the time of writing the following steps installed Salt Stack version 2015.5.2.

The following code block installs the Salt Master and Minion:

Add a convenience 'hosts' entry so the Minion doesn't need configuring

echo "127.0.1.2 salt" >>/etc/hosts

Install Salt

add-apt-repository -y ppa:saltstack/salt
apt-get update
apt-get -y install salt-master salt-minion

Create a Salt configuration file:

Back up the original salt master config file
cp /etc/salt/master /etc/salt/master.orig

Write a new salt master config file
cat >/etc/salt/master <<EnD
fileserver_backend:
 - git
gitfs_remotes:
 - file:///srv/repos/saltrepo.git
gitfs_root: root

Use the Obdi external node classifier
master_tops:
 ext_nodes: enc_query.py

JSON output on a single line
output_indent: Null

Required since version 2014.7.0 if using GitPython. Salt doesn't check
for it anymore. (https://github.com/saltstack/salt/issues/17945).
gitfs_provider: gitpython
EnD

Final Tasks

Install the External Node Classifier

The External Node Classifier, or ENC, replaces top.sls files. A python
script, enc_query.py, should be copied to the system PATH so that
Salt can find it.

cp /usr/share/obdi/static/plugins/saltconfigserver/scripts/enc_query.py /usr/bin/

chmod +x /usr/bin/enc_query.py

Configure the Salt Job Viewer

The Salt Job Viewer relies on a daemon that watches for changes in Salt’s
job queue.

This daemon:

		Should be run from the cron daemon.

		Requires a new user to accept job status submissions.

		Needs a configuration file at /etc/obdi/job_status.conf.

Set up the Job Viewer:

Add a user with no permissions to any environments

guid=`curl -ks -d '{"Login":"admin","Password":"admin"}' https://127.0.0.1:443/api/login | grep -o "[a-z0-9][^\"]*"`

curl -ks -d '{
 "login":"jobviewer",
 "passHash":"CHANGE_THIS_PASSWORD",
 "forename":"Jobviewer",
 "surname":"Daemon",
 "email":"jobviewer@invalid",
 "enabled":true}' "https://127.0.0.1:443/api/admin/$guid/users"

Write the configuration file

echo -e 'STATUS_USER="jobviewer"\nSTATUS_PASS="CHANGE_THIS_PASSWORD"' >/etc/obdi/job_status.conf

Add a cron job

crontab -l >newcron
echo "* * * * * /usr/share/obdi/static/plugins/saltjobviewer/scripts/job_notify.sh" >>newcron
crontab newcron
rm newcron

Change Default Passwords

Change the ‘admin’ password

Log into the Admin interface, click

‘

Users’

, then change
the password for the ‘admin’ user.

Change the worker passwords

In /etc/obdi-worker/obdi-worker.conf change:

		The ‘key’ variable. Then:

Log into the Admin interface, click

‘

Environments’

,
then change the password for the relevant environment.

		The ‘man_password’ variable. Then:

Log into the Admin interface, click

‘

Users’

, and change
the password for the relevant user. The user to change is defined in
the ‘man_user’ variable in the obdi-worker.conf file.

All done

That’s it for the configuration side. Read on for a quick
tour of the user interface.

Using Obdi

This section provides a whirlwind tour of the user interface.

Quick Guide

Using a Web Browser, log into the Run Interface.

Click on

‘

Salt Tools’

 to expand the menu item.

Accept the Minion’s Key

Click the ‘tick’ icon to accept the key and wait for it to move to the Accepted
Keys section.

Click the Environment Setting icon and enter the following details:

		Datacentre: testdc

		Environment: testenv

		Version: leave empty

Click Apply. Wait. Click Go Back.

Version the GIT Repo

In the left menu, click Update Git Repository.

Choose the Environment then Show Git Versions,

Use the arrows to choose ‘0.1.0’ for the initial version, or any other version you like.

Click Apply. Wait. A version list will appear.

Map Classes to Hosts

An entry that installs ‘tree’ on all servers will be created.

Click Map Classes to Hosts in the left hand side menu.

Choose the Environment then Show Host Mappings. Wait - this
will take a long time to load as the Go source
is compiled. The source file uses sqlite, which takes a long
time to compile.

Click Add Regular Expression and enter the following details:

		Name: allservers

		Description: All servers

		Regex: .*

Note that the Regex field accepts Perl regular expressions only. If server host
names reflect their purpose then this feature can reduce the amount of
configuration that needs to be done when setting up a new server.

Click Apply. Wait. Go Back

Click the Configure Classes icon. Wait - it’s compiling.

Click Choose option and select ‘tree’ then click the Add Class icon.

Click Apply. Wait. Go Back.

Configure the Server

Click Map Configure Server in the left hand side menu.

Choose the Environment then List Servers. Wait. The server will be
shown.Configure Classes

Click the check box in the left most column of the table and the row will be
hilighted.

Click the plus sign in the Version column and choose the ‘0.1.0’ version. Click
Apply, wait, then Go Back.

Click the Server Configuration icon. Wait - it’s compiling.
The server already has ‘tree’ in the list since it was added
earlier in Map Classes to Hosts.

Go Back.

Click View Server Grains to see some server details.

Go Back.

Click Review.

Click Apply.

View the Job Status

Wait a couple minutes for ‘tree’ to be installed, the click
Job Viewer in the left hand side menu.

Choose the Environment then Show Salt Jobs.

Lots of jobs will be shown. Filter the jobs by typing ‘high’
into the Search box above the left hand side menu.

Click the View Result icon to see the output from state.highstate.

All done

That’s it for the quick tour of the Salt Tools user
interface.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

search.html

 Navigation

 		
 index

 		Obdi Salt Stack Repository latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/plus.png

_static/down-pressed.png

_static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

