

Welcome to oaktree’s documentation!

Contents:

	oaktree
	Using

	Shape of the Project

	Installation

	Oaktree Design

	Frequently Asked Questions
	Why gRPC and not REST?

	Why write it in Python rather than XXX?

	Can I add support for my project?

	Work Needed
	Design the auth story

	Design Glance Image / Swift Object Uploads and Downloads

	Design and implement Capabilities API

	Implement API surfaces

	Implement oaktree backend in shade

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

oaktree

Make your cloud throw some shade

oaktree is a gRPC interface for interacting with OpenStack clouds that is
inherently interoperable and multi-cloud aware. It is based on the python
shade library, which grew all of the logic needed to interact with OpenStack
clouds and to work around differences in vendor deployment choices. Rather
than keep all of that love in Python Library form, oaktree allows other
languages to reap the benefits as well.

oaktree is not a replacement for all of the individual project REST APIs.
Those are all essential for cross-project communication and are well suited
for operators who can be expected to know things about how they have
deployed their clouds - and who in fact WANT to be able to make changes in
the cloud knowing deployment specifics. oaktree will never be for them.

oaktree is for end-users who do not and should not know what hypervisor, what
storage driver or what network stack the deployer has chosen. The two sets
of people are different audiences, so oaktree is a project to support the
end user.

Using

Install oaktreemodel by hand. Then:

In one window:

python oaktree/server.py

oaktree/server.py assumes you have a clouds.yaml accessible.

In another window:

python -i devstack/test.py

You’ll have an images and a flavors object you can poke at.

If you want to operate against a different cloud than devstack, you can
pass it to devstack/test.py as the first command line argument.

Shape of the Project

oaktree should be super simple to deploy, and completely safe for deployers
to upgrade from master constantly. Once it’s released as a 1.0, it should
NEVER EVER EVER EVER EVER EVER EVER have a backwards incompatible change.
There is no reason, no justification, no obsession important enough to
inflict such pain on the user.

The shade library will grow the ability to detect if a cloud has an oaktree
api available, and if it does, it will use it. Hopefully we’ll quickly reach
a point where all deployers are deploying oaktree.

	Documentation: http://docs.openstack.org/developer/oaktree

	Source: http://git.openstack.org/cgit/openstack/oaktree

	Bugs: http://bugs.launchpad.net/oaktree

Installation

At the command line:

$ pip install oaktree

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv oaktree
$ pip install oaktree

Oaktree Design

Once 1.0.0 is released, oaktree pledges to never break backwards compatability.

Oaktree is intended to be safe for deployers to run CD from master. In fact,
a deployer running a kilo OpenStack should be able to install tip of master
of oaktree and have everything be perfectly fine.

Oaktree must be simple to install and operate. A single node install with no
shared caching or locking is likely fine for most smaller clouds. For larger
clouds, shared caching and locking are essential for scale out. Both must be
supported, and simple.

Oaktree is not pluggable.

Oaktree does not allow selectively enabling or disabling features or part of
its API.

Oaktree should be runnable by an end user pointed at a local clouds.yaml file.

Oaktree should be able to talk to other oaktrees.

Oaktree users should never need to know any information about the cloud other
than the address of the oaktree endpoint. Cloud-specific information the
user needs to know must be exposed via a capabilities API. For instance, in
order for a user to upload an image to a cloud, the user must know what format
the cloud requires the image to be in. The user must be able to ask oaktree
what image format(s) the cloud accepts.

Data returned from oaktree should be normalized such that it is consistent
no matter what drivers the cloud in question has chosen. This work is done in
shade, but shapes the design of the protobuf messages.

All objects in oaktree should have a Location. A Location defines the cloud,
the region, the zone and the project that contains the object. For objects
that exist at a region and not a zone level, like flavors and images, zone
will be null. For objects that exist at a cloud level, region will be null.

Frequently Asked Questions

Why gRPC and not REST?

There are three main reasons.

We already have REST APIs. oaktree is not intended to replace them, but to
supplement them to grease the 80% case that can be inter-operable.

gRPC comes out of the gate with direct support for a pile of languages, so
supporting our non-Python friends is direct and straightforward.

A TON of time is spent in shade polling OpenStack for results. That may not
sound like a problem - but when you spin up thousands of VMs a day like Infra
does, the polling becomes a major engineering challenge. gRPC operates over
http/2 and has support for bi-directional channels - which means you can just
have a function notify you when something is done. That’s a win for everyone

Why write it in Python rather than XXX?

The hard part of this isn’t the gRPC api - it’s the business logic that’s in
the shade library. If we wrote oaktree from scratch in C++ (because hello
super-high-performance gRPC backend!) - we’d be faced with the task of
re-implementing all of the shade business logic in C++. If you haven’t looked,
there is a LOT.

shade is what infra uses for nodepool. It has copious features in it already
to deal with extremely high scale - including configurable caching, batched
list update operations to prevent thundering herds and well exercised
multi-threaded support.

The interesting part also isn’t the server (it’s a simple proxy layer) - it’s
the clients. THOSE definitely want much love in the different languages. The
infrastructure is in place for Python, C++ and Go. Ruby, javascript and C#
should follow asap.

Can I add support for my project?

Yes. It has to be added to shade first, which accepts patches from anything
that can be tested consistently in a devstack job. We require all new features
in shade to come with functional tests. Once it’s in shade, it can be added as
an API to oaktree.

However ... oaktree and shade both promise 100% backwards compatibility at all
times. If your project is still young, be aware that once an API is added to
shade or oaktree it will need to be supported until the end of time.

Work Needed

Design the auth story

The native/default auth for gRPC is oauth. It has the ability for pluggable
auth, but that would raise the barrier for new languages. I’d love it if we
can come up with a story that involves making API users in keystone and
authorizing them to use oaktree via an oauth transaction. The keystone auth
backends currently are all about integrating with other auth management
systems, which is great for environments where you have a web browser, but not
so much for ones where you need to put your auth credentials into a file so
that your scripts can work. I’m waving my hands wildly here - because all I
really have are problems to solve and none of the solutions I have are great.

Design Glance Image / Swift Object Uploads and Downloads

Having those two data operations go through an API proxy seems inefficient.
However, having them not in the API seems like a bad user experience. Perhaps
if we take advantage of the gRPC streaming protocol support doing a direct
streaming passthrough actually wouldn’t be awful. Or maybe the better approach
would be for the gRPC call to return a URL and token for a user to POST/PUT to
directly. Literally no clue.

Design and implement Capabilities API

shade and the current oaktree codebase rely on os-client-config and clouds.yaml
for information about the cloud and what it can do. As a service, some of the
pieces of information in os-client-config need to be queriable by the user.

Implement API surfaces

In general, all of the API operations shade can perform should be exposed in
oaktree. In order to shape that work, we should tackle them in the following
order:

	API surface needed for nodepool

	API surface needed for existing Ansible modules

	Everything else

The API surface needed for nodepool is:

list_flavors

create_image
delete_image
get_image
list_images

create_keypair
delete_keypair
list_keypairs

create_server
delete_server
get_server
list_servers

// These two require the most thought
wait_for_server
delete_unattached_floating_ips

Implement oaktree backend in shade

It’s turtles all the way down. If shade sees that a cloud has an oaktree
service, shade should talk to it over gRPC instead of talking to the REST
APIs directly.

Contributing

If you would like to contribute to the development of OpenStack, you must
follow the steps in this page:

http://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your
OpenStack accounts are set up, you can skip to the development workflow
section of this documentation to learn how changes to OpenStack should be
submitted for review via the Gerrit tool:

http://docs.openstack.org/infra/manual/developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Storyboard, not GitHub:

https://storyboard.openstack.org/#!/project/855

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		Welcome to oaktree's documentation!

 		oaktree

 		Using

 		Shape of the Project

 		Installation

 		Oaktree Design

 		Frequently Asked Questions

 		Why gRPC and not REST?

 		Why write it in Python rather than XXX?

 		Can I add support for my project?

 		Work Needed

 		Design the auth story

 		Design Glance Image / Swift Object Uploads and Downloads

 		Design and implement Capabilities API

 		Implement API surfaces

 		Implement oaktree backend in shade

 		Contributing

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

