

nx-python Documentation

The nx package comes bundled with PyNX and is available to use in your Python
homebrew applications. It allows you to access Switch-specific elements
such as buttons, filesystem, etc. via a high-level, object-oriented
wrapper around libnx.

Getting Started

	Installing PyNX

	How to install nx-python on your Switch or Switch emulator.

	Tutorial

	A guided tutorial on how to use nx-python for your project.

	Examples

	Look at code examples if you prefer learning that way.

Support

	Frequently Asked Questions

	Answers to common questions that may help you.

	Contributing to nx-python

	Instructions on how you can help out and contribute to the nx-python project.

	For module specific info, try the Index or
the documentation of the nx package.

	For any help or further assistance. please visit the
nx-python Discord server [https://discord.gg/5Ga2Whf].

Additional Material

	libnx documentation [https://switchbrew.github.io/libnx/index.html]

	Python 3.5 documentation [https://docs.python.org/3.5/]

Indices and tables

	Index

	Module Index

	Search Page

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nx	

 	
 	
 nx.audio	

 	
 	
 nx.controllers	

 	
 	
 nx.filesystem	

 	
 	
 nx.players	

 	
 	
 nx.title	

 	
 	
 nx.touch	

 	
 	
 nx.users	

 	
 	
 nx.utils	

 	
 	
 nx.utils.cached_properties	

Index

 A
 | B
 | C
 | D
 | F
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 | X
 | Y

A

 	
 	AnsiMenu (class in nx.utils)

 	
 	any_pressed() (in module nx.controllers)

 	(nx.players.Player method)

B

 	
 	backup() (nx.filesystem.Savedata method)

 	bit() (in module nx.utils)

 	
 	Button (class in nx.controllers)

 	ButtonGroup (class in nx.controllers)

C

 	
 	cached_property (class in nx.utils.cached_properties)

 	cached_property_ttl (in module nx.utils.cached_properties)

 	cached_property_with_ttl (class in nx.utils.cached_properties)

 	clear_terminal() (in module nx.utils)

 	
 	commit() (nx.filesystem.MountableFileSystem method)

 	(nx.filesystem.Savedata method)

 	Controller (class in nx.controllers)

 	CONTROLLER_P1_AUTO (nx.utils.AnsiMenu attribute)

D

 	
 	down (nx.controllers.Stick attribute)

 	
 	DualJoyconController (class in nx.controllers)

F

 	
 	FileSystem (class in nx.filesystem)

 	
 	FreeDualJoyconController (class in nx.controllers)

 	from_player() (nx.controllers.Controller static method)

I

 	
 	is_active (nx.users.User attribute)

 	is_attached (nx.controllers.DualJoyconController attribute)

 	(nx.controllers.FreeDualJoyconController attribute)

 	is_mounted (nx.filesystem.MountableFileSystem attribute)

 	(nx.filesystem.RomFS attribute)

 	(nx.filesystem.Savedata attribute)

 	
 	is_pressed (nx.controllers.Button attribute)

 	is_pressed() (in module nx.controllers)

J

 	
 	JoyconController (class in nx.controllers)

K

 	
 	KEY_A (nx.utils.AnsiMenu attribute)

 	
 	KEY_DOWN (nx.utils.AnsiMenu attribute)

 	KEY_UP (nx.utils.AnsiMenu attribute)

L

 	
 	left (nx.controllers.Stick attribute)

M

 	
 	mount() (nx.filesystem.MountableFileSystem method)

 	(nx.filesystem.RomFS method)

 	(nx.filesystem.Savedata method)

 	
 	MountableFileSystem (class in nx.filesystem)

N

 	
 	nx (module)

 	nx.audio (module)

 	nx.controllers (module)

 	nx.filesystem (module)

 	nx.players (module)

 	
 	nx.title (module)

 	nx.touch (module)

 	nx.users (module)

 	nx.utils (module)

 	nx.utils.cached_properties (module)

O

 	
 	open() (nx.filesystem.FileSystem method)

 	(nx.filesystem.MountableFileSystem method)

P

 	
 	Player (class in nx.players)

 	poll_input() (nx.utils.AnsiMenu method)

 	
 	pressed (nx.controllers.ButtonGroup attribute)

 	
 Python Enhancement Proposals

 	PEP 8

Q

 	
 	query() (nx.utils.AnsiMenu method)

R

 	
 	refresh_inputs() (in module nx.controllers)

 	render() (nx.utils.AnsiMenu method)

 	
 	right (nx.controllers.Stick attribute)

 	RomFS (class in nx.filesystem)

S

 	
 	Savedata (class in nx.filesystem)

 	selected_idx (nx.utils.AnsiMenu attribute)

 	Singleton (class in nx.utils)

 	sl_button (nx.controllers.JoyconController attribute)

 	
 	sr_button (nx.controllers.JoyconController attribute)

 	StandardController (class in nx.controllers)

 	Stick (class in nx.controllers)

 	SwitchProController (class in nx.controllers)

T

 	
 	timed_cached_property (in module nx.utils.cached_properties)

 	Title (class in nx.title)

 	
 	Touch (class in nx.touch)

 	touches (nx.touch.TouchScreen attribute)

 	TouchScreen (class in nx.touch)

U

 	
 	unmount() (nx.filesystem.MountableFileSystem method)

 	(nx.filesystem.RomFS method)

 	(nx.filesystem.Savedata method)

 	
 	up (nx.controllers.Stick attribute)

 	User (class in nx.users)

W

 	
 	which_pressed() (in module nx.controllers)

X

 	
 	x (nx.controllers.Stick attribute)

Y

 	
 	y (nx.controllers.Stick attribute)

nx

	nx package
	Subpackages
	nx.utils package
	Submodules

	nx.utils.cached_properties module

	Module contents

	Submodules

	nx.audio module

	nx.controllers module

	nx.filesystem module

	nx.players module

	nx.title module

	nx.touch module

	nx.users module

	Module contents

nx.utils package

Submodules

nx.utils.cached_properties module

A decorator for caching properties in classes.

Copyright (c) 2015, Daniel Greenfeld
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice,

this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,

this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

	Neither the name of cached-property nor the names of its contributors may be

used to endorse or promote products derived from this software without specific
prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	
class nx.utils.cached_properties.cached_property(func)

	Bases: object

A property that is only computed once per instance and then replaces itself
with an ordinary attribute. Deleting the attribute resets the property.
Source: https://github.com/bottlepy/bottle/commit/fa7733e075da0d790d809aa3d2f53071897e6f76

	
nx.utils.cached_properties.cached_property_ttl

	alias of nx.utils.cached_properties.cached_property_with_ttl

	
class nx.utils.cached_properties.cached_property_with_ttl(ttl=None)

	Bases: object

A property that is only computed once per instance and then replaces itself
with an ordinary attribute. Setting the ttl to a number expresses how long
the property will last before being timed out.

	
nx.utils.cached_properties.timed_cached_property

	alias of nx.utils.cached_properties.cached_property_with_ttl

Module contents

	
class nx.utils.AnsiMenu(entries, console=<_io.BufferedWriter name='<stdout>'>)

	Bases: object

ANSI menu by DavidBuchanan314

	
CONTROLLER_P1_AUTO = 10

	

	
KEY_A = 1

	

	
KEY_DOWN = 8945664

	

	
KEY_UP = 2236416

	

	
poll_input()

	

	
query()

	

	
render()

	

	
selected_idx = 0

	

	
class nx.utils.Singleton

	Bases: type

	
nx.utils.bit(n: int)

	

	
nx.utils.clear_terminal()

	

nx package

Subpackages

	nx.utils package
	Submodules

	nx.utils.cached_properties module

	Module contents

Submodules

nx.audio module

Yet to be implemented.

nx.controllers module

	
class nx.controllers.Button(player, *key_bits)

	Bases: object

Represents a button or button-like object.

	
is_pressed

	Indicates whether the Button is pressed.

	
class nx.controllers.ButtonGroup(*buttons)

	Bases: nx.controllers.Button

Represents a group of Button objects.

	
pressed

	

	
class nx.controllers.Controller(player)

	Bases: object

Represents an abstract controller.

	Attribute

	player

	Type

	Player

The player to whom the Controller belongs to.

	Attribute

	a_button

	Type

	Button

The A button of the controller.

	Attribute

	b_button

	Type

	Button

The B button of the controller.

	Attribute

	x_button

	Type

	Button

The X button of the controller.

	Attribute

	y_button

	Type

	Button

The Y button of the controller.

	
static from_player(player)

	<todo>

	Parameters

	player – <todo>

	Returns

	<todo> Controller class

	Return type

	Controller

	
class nx.controllers.DualJoyconController(player)

	Bases: nx.controllers.StandardController

Represents two Joy-Cons in combination, attached to rails

	
is_attached = True

	

	
class nx.controllers.FreeDualJoyconController(player)

	Bases: nx.controllers.DualJoyconController

Represents two Joy-Cons in combination, detached from rails

	
is_attached = False

	

	
class nx.controllers.JoyconController(player, is_left, parent=None)

	Bases: nx.controllers.Controller

Represents a single Joycon controller.

	Attribute

	is_left

	Type

	bool

Whether the JoyconController is the left or right Joy-Con.

	Attribute

	parent

	Type

	<todo>

The parent Controller of the Joy-Con.

	Attribute

	stick_button

	Type

	Button

The button located in the analogue stick, when it is pressed.

	Attribute

	l_or_r_button

	Type

	Button

Either the L or R button on the controller, dependent on which Joy-Con.

	Attribute

	zl_or_zr_button

	Type

	Button

Either the ZL or ZR button on the controller, dependent on which Joy-Con.

	Attribute

	plus_or_minus_button

	Type

	Button

Either the + or - button on the controller, dependent on which Joy-Con.

	Attribute

	stick

	Type

	Stick

The analogue stick of the controller.

	Attribute

	left

	Type

	Button

The analogue stick in the left position.

	Attribute

	right

	Type

	Button

The analogue stick in the right position.

	Attribute

	up

	Type

	Button

The analogue stick in the up position.

	Attribute

	down

	Type

	Button

The analogue stick in the down position.

	
sl_button

	

	
sr_button

	

	
class nx.controllers.StandardController(player)

	Bases: nx.controllers.Controller

	
class nx.controllers.Stick(player, is_left)

	Bases: object

Represents the analogue stick on the controller.

	
down

	
	Returns

	A value indicating whether or not the stick is in the down position

	Return type

	bool

	
left

	
	Returns

	A value indicating whether or not the stick is in the left position

	Return type

	bool

	
right

	
	Returns

	A value indicating whether or not the stick is in the right position

	Return type

	bool

	
up

	
	Returns

	A value indicating whether or not the stick is in the up position

	Return type

	bool

	
x

	The current x value of the analogue stick

	Returns

	The float value of the stick’s x location.

	Return type

	float

	
y

	The current y value of the analogue stick

	Returns

	The float value of the stick’s y location.

	Return type

	float

	
class nx.controllers.SwitchProController(player)

	Bases: nx.controllers.StandardController

Represents a Switch Pro Controller.
Can also be a similar controller with the same buttons.

	
nx.controllers.any_pressed(player, *buttons, refresh_input=False)

	Checks if any of the given buttons are pressed, or if
any buttons are pressed at all in case no buttons are given.

	player: Player

	The player to check with.

	buttons: Optional[one or more Button objects OR Tuple[Button]]

	Buttons to check for. Checks if no Button is pressed if none given.

	refresh_input: Optional[bool]

	Whether or not to check for new inputs.
Checks with inputs from last refresh if False.
Defaults to False.

	
nx.controllers.is_pressed(player, button: nx.controllers.Button, refresh_input=False)

	Checks if any of the given buttons are pressed, or if
any buttons are pressed at all in case no buttons are given.

	player: Player

	The player to check with.

	button: Button

	Button to check for.

	refresh_input: Optional[bool]

	Whether or not to check for new inputs.
Checks with inputs from last refresh if False.
Defaults to False.

	
nx.controllers.refresh_inputs()

	Refreshes inputs.
Should normally be called at least once
within every iteration of your main loop.

	
nx.controllers.which_pressed(player, *buttons, refresh_input=False)

	Checks which of the given buttons are pressed.

	player: Player

	The player to check with.

	buttons: one or more Button objects OR Tuple[Button]

	Buttons to check for.

	refresh_input: Optional[bool]

	Whether or not to check for new inputs.
Checks with inputs from last refresh if False.
Defaults to False.

A list of Button objects.

nx.filesystem module

	
class nx.filesystem.FileSystem(base_path: str)

	Bases: object

Represents a filesystem.

	base_path: pathlib.Path

	The base path of the filesystem.

	
open(file_path: str, mode='r', buffering=-1, encoding=None, errors=None, newline=None)

	Opens a file given a file path and returns a file-like object.
Apart from the file_path: str parameter, this method works
the same way as pathlib.Path.open, thus it works pretty much
the same way as the open function.

	
class nx.filesystem.MountableFileSystem(base_path)

	Bases: nx.filesystem.FileSystem

Represents a filesystem that is able to be mounted.

	base_path: pathlib.Path

	The base path of the filesystem.

	
commit()

	Commits the filesystem.

	
is_mounted

	Whether or not the filesystem is currently mounted.

	
mount()

	Mounts the filesystem.

	
open(file_path: str, mode='r', buffering=-1, encoding=None, errors=None, newline=None)

	Opens a file given a file path and returns a file-like object.
Apart from the file_path: str parameter, this method works
the same way as pathlib.Path.open, thus it works pretty much
the same way as the open function.

	
unmount()

	Unmounts the filesystem.

	
class nx.filesystem.RomFS(title)

	Bases: nx.filesystem.MountableFileSystem

Represents the data filesystem of a title.
Do not instantiate this. Rather, get a RomFS object via
nx.titles[MY_TITLE_ID].romfs.

	title: Title

	The title this RomFS belongs to.

	base_path: pathlib.Path

	The base path of the RomFS.

	
is_mounted

	Whether the RomFS is mounted.

	
mount()

	Yet to be implemented. Mounts the RomFS.

	
unmount()

	Unmounts the mounted RomFS.

	
class nx.filesystem.Savedata(title, user=None)

	Bases: nx.filesystem.MountableFileSystem

Represents the savedata filesystem of a title.
Do not instantiate this. Rather, get a Savedata object via
nx.titles[MY_TITLE_ID].savedata.

	title: Title

	The title this Savedata belongs to.

	base_path: pathlib.Path

	The base path of the savedata filesystem.

	
backup(destination: str = None)

	Creates a backup of the savedata.

	destination: str

	Directory path where the backup will be created.
If the directory doesn’t exist already, it will be created.
The operation will fail if the directory already exists and is not empty.
Defaults to ‘/backups/savedata/{title_id}/’.

	
commit()

	Commits the savedata filesystem.

	
is_mounted

	Whether the savedata filesystem has been mounted.

	
mount()

	Mounts the savedata filesystem.

	
unmount()

	Unmounts the savedata filesystem.

nx.players module

	
class nx.players.Player(number)

	Bases: object

Represents a player.
You shouldn’t instantiate this yourself.
Rather, access Player objects via
nx.p1, nx.p2, … nx.p8.

	number: int

	The player’s number, e.g. Player 1’s number is 1.

	controller: Controller

	The player’s controller.

In addition, a Player has several properties depending on
the type of Controller they are using.
To begin with, a Player will have a property that points to
a Button for each of the Buttons their Controller has.
These properties can return None if a Button is not available
on the Controller used by the Player.
Furthermore, a Player will always have the properties left,
right, up, down and stick. These work similar
to the ones found in the Controller classes.
Finally, a Player can also have the properties left_stick,
right_stick, left_joycon and right_joycon if their
controller has these attributes.

	
any_pressed(*buttons, refresh_input=False)

	

nx.title module

	
class nx.title.Title(id: int)

	Bases: object

Represents a title that is installed on or inserted into the Switch.
Do not instantiate this. Rather, get a Title object via
nx.titles[MY_TITLE_ID]

	id: int

	The title ID.

	romfs: RomFS

	The title’s ROM filesystem.

	savedata: Savedata

	The title’s savedata filesystem.

nx.touch module

	
class nx.touch.Touch(x, y, dx, dy, angle)

	Bases: object

Represents a touch point.

	x: float

	The x coordinate of the touch.

	y: float

	The y coordinate of the touch.

	dx: float

	The width of the touch in pixels.

	dy: float

	The height of the touch in pixels.

	angle: float

	The angle of the touch.

	
class nx.touch.TouchScreen

	Bases: nx.controllers.Button

Represents the Switch’s touchscreen.

	
touches

	Returns a tuple of Touch objects that
represent where and how the touchscreen is touched.
Can return an empty tuple.

nx.users module

	
class nx.users.User(id)

	Bases: object

Represents a user who is registered on the Switch.

	id: int

	The user ID.

	
is_active

	
	Returns

	Whether the specified user is the current active user

	Return type

	bool

Module contents

Examples

 To run Python code on your Switch, or a Switch emulator, you need to use PyNX. Here’s how to get started.

Installing PyNX

Switch

You need a Switch with access to the Homebrew Menu in order to run PyNX on your Switch.

	Insert the SD card into your development device.

	Copy the content of the zip release of PyNX [https://github.com/nx-python/PyNX/releases] into the /switch directory on your SD card.

	Edit the main.py file within the extracted contents.

	Insert the SD card back into the Switch.

	Run PyNX from the Homebrew Menu.

Yuzu

	Install the Yuzu emulator if you haven’t already. You can build it from source [https://github.com/yuzu-emu/yuzu] or get a pre-compiled build from their website [https://yuzu-emu.org/downloads/].

	Run Yuzu at least once so that it can create default directories.

	Build PyNX from source [https://github.com/nx-python/PyNX], or download a release build from here [https://github.com/nx-python/PyNX/releases].

	
	Extract the nx-python files into Yuzu’s sdmc directory.

	
	On Windows this directory is located in C:/Users/{USER}/AppData/Roaming/yuzu/sdmc.

	On Linux and OS X it is located in ~/.local/share/yuzu-emu/.

	Edit the main.py file as you wish, then launch the PyNX.nro with Yuzu.

RyujiNX

<todo>

Tutorial

This quick tutorial will explain how you can use the nx-python to develop Switch homebrew software in Python.

Pre-requisites

	A Switch device with access to the Homebrew Menu or a Switch emulator.
Check out these resources if you need help with setting up the former:

	Switch Hacks Guide [https://switch.hacks.guide/]

	Nintendo Homebrew Discord [https://discord.gg/C29hYvh]

	nx-python Discord [https://discord.gg/5Ga2Whf]

	A device that you can develop Python applications on (preferably a PC though it is possible on a mobile device)

	
	An integrated development environment eg.

	
	Visual Studio Code (Recommended)

	PyCharm (Recommended)

	Eclipse with PyDev

	IDLE

	Pydroid 3 (Android 4.4+)

	Pythonista 3 (iOS 9.0+)

	
	A basic understanding of Python 3. There are many resources for learning Python including the ones below:

	
	If you are new to programming and want to learn how to code in Python, this Udemy course [https://www.udemy.com/automate/?couponCode=FOR_LIKE_10_BUCKS] gets you started.

	Python Discord Resources Page [https://pythondiscord.com/info/resources]

	nx-python Discord [https://discord.gg/5Ga2Whf] (Just ask, we’re always happy to help!)

To get started with nx-python, you will need to install the latest release of PyNX on your Switch, or use Yuzu. See Installing PyNX for more information.

Starting development

To start developing, first clone the nx repository using the following command:

git clone https://github.com/nx-python/nx.git

or by simply downloading a ZIP version of the source code from GitHub [https://github.com/nx-python/nx/master.zip]. There are three ways to test your Python homebrew software.

Firstly, you can launch your IDE and open the freshly cloned repository as a workspace/project. Then open and edit test.py, and run it normally. (Note: Controller input can not yet be tested on your development device.) The included dummy version of the _nx module [https://github.com/nx-python/_nx] will serve as a substitute to make your homebrew app work like a regular Python app.

or

You can test Python code on the Switch using the TCP REPL script [https://github.com/nx-python/PyNX/blob/examples/tcp_repl.py].
Use it as your main.py to be able to enter Python code from your PC to be executed on the Switch via an interactive prompt.

After you launch PyNX on the device, connect to your Switch via a TCP client on port 1337. The IP address can be found in your Switch’s settings under the “Internet” tab. On Linux, you can connect with the following command:

rlwrap cat | tee log.py | nc <SWITCH_IP> 1337

This command will also log the inputs to a file called log.py.

or

You can run an FTP server such as ftpd [https://github.com/TuxSH/ftpd/tree/switch_pr] (releases [https://www.switchbru.com/appstore/#/app/ftpd]) on your Switch and replace main.py using an FTP client.

A Simple Savedata Backup tool

We will start with a simple homebrew app that allows the user to backup the savedata of a selection of games.

Firstly, we need to import some libraries to begin work on our homebrew app, primarily the nx package.
We also want to show a selection menu to the user, so we should import the AnsiMenu utility class as well:

import nx
from nx.utils import AnsiMenu

Next, we create constants that store the title IDs of The Legend of Zelda: Breath of the Wild and Super Mario Odyssey:

title IDs are hexadecimal numbers
BOTW_TITLE_ID = 0x01007EF00011E000
SMO_TITLE_ID = 0x0100000000010000

After that, we create two lists. The names of the titles the user can select from are stored in title_name. title_ids is used to store the title IDs of the games in the same order:

title_names = ["The Legend of Zelda - Breath of the Wild", "Super Mario Odyssey"]
title_ids = [BOTW_TITLE_ID, SMO_TITLE_ID]

Once our lists are set up, we can create a menu using the AnsiMenu utility class. This menu will allow the user to choose the game of which the savedata backup will be created:

select_title_menu = AnsiMenu(title_names)

The main execution flow of every Python program (homebrew apps are no exception) must be wrapped in a conditional clause as follows:

if __name__ == '__main__':

The menu can now be rendered and queried using its query method:

selected_index = select_title_menu.query()

The query method returns the index of the item selected by the user, which is now stored in the selected_index variable. As the order of the two lists we created earlier is equal, we can use the index to get the title ID from the title_ids list:

selected_title_id = title_ids[selected_index]

selected_title_id now contains the title ID of the selected title. We can now use this title ID to create a functional Title object:

selected_title = nx.titles[selected_title_id]

Now we’re interested in accessing and backing up the savedata of the title. To do this, we first need to mount the title’s savedata. This is done by entering a new context with the title’s savedata:

with selected_title.savedata as savedata:

Hint: You can also use selected_title.savedata.mount, selected_title.savedata.commit and selected_title.savedata.unmount, however, using a with block might save you from a lot of potential headache, and is typically more simple and improves readability.
Now that the savedata filesystem of the title is mounted, you can backup its content simply by calling its backup method:

savedata.backup()

This creates a backup of the savedata in /backups/savedata/{title_id}/. You can also provide your own backup path like this:

savedata.backup('/savedata_backups/{}/'.format(title_names[selected_index]))

When the with block ends, the savedata filesystem is automatically committed and unmounted.

That’s it! Your code should now look like this:

import nx
from nx.utils import AnsiMenu

title IDs are hexadecimal numbers
BOTW_TITLE_ID = 0x01007EF00011E000
SMO_TITLE_ID = 0x0100000000010000
title_names = ["The Legend of Zelda - Breath of the Wild", "Super Mario Odyssey"]
title_ids = [BOTW_TITLE_ID, SMO_TITLE_ID]

select_title_menu = AnsiMenu(title_names)

if __name__ == '__main__':
 selected_title = select_title_menu.query()

 selected_title = title_ids[selected_title]
 selected_title = nx.titles[selected_title]

 with selected_title.savedata as savedata:
 savedata.backup('/savedata_backups/{}/'.format(title_names[selected_index]))

Congratulations, you have created your first Switch homebrew application in Python!

Contributing to nx-python

There is a variety of ways in which you can help the nx-python project, listed below.

Submitting code

If you feel like a feature sure be added to nx-python and you have knowledge of Python/C programming then feel free to submit to the repository [https://github.com/nx-python/nx].

All you have to do is fork the repo, make your changes, and then submit a pull request.

The request will then be checked and potentially merged into the master branch. If you are unsure of whether your changes have a high chance of being merged, then come discuss your ideas with us on the discord [https://discord.gg/5Ga2Whf].

Note

When submitting code, please keep to the PEP 8 [https://www.python.org/dev/peps/pep-0008] standard style, and create informative docstrings wherever possible for ease of maintainability.

Reporting issues

You can report any issues you find on the Discord server [https://discord.gg/5Ga2Whf]. However, before you do, check if the Frequently Asked Questions don’t cover thie issue already.

Frequently Asked Questions

What versions of Python are supported?

Currently, Python version 3.5 is supported.

Where can I get the most up-to-date, cutting edge version of PyNX?

You can build it yourself from the source [https://github.com/nx-python/PyNX]. (Requires the devkitA64 toolchain.)

Does nx-python have an interactive interpreter I can use?

Yes, check the Tutorial.

Can I run this on an emulator such as Yuzu or RyujiNX?

Yes, an installation tutorial for these emulators is available on the Installing PyNX page.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 nx-python Documentation

