

Nalu Wind Utilities User Manual

	Version:	v0.1.0

	Date:	Sep 30, 2017

NaluWindUtils is a companion software library to Nalu [http://nalu.readthedocs.io/en/latest/] — a generalized, unstructured,
massively parallel, low-Mach flow solver for wind energy applications. As the
name indicates, this software repository provides various meshing, pre- and
post-processing utilities for use with the Nalu CFD code to aid setup and
analysis of wind energy LES problems. This software is licensed under Apache
License Version 2.0 [http://www.apache.org/licenses/LICENSE-2.0] open-source
license.

The source code is hosted and all development is coordinated through the Github
repository [https://github.com/NaluCFD/NaluWindUtils] under the NaluCFD
organization [https://github.com/NaluCFD] umbrella. The official documentation
for all released and development versions are hosted on ReadTheDocs [http://naluwindutils.readthedocs.io/en/latest/]. Users are welcome to submit
issues, bugs, or questions via the issues page [https://github.com/NaluCFD/NaluWindUtils/issues]. Users are also encouraged
to contribute to the source code and documentation using pull requests [https://github.com/NaluCFD/NaluWindUtils/pulls] using the normal Github fork
and pull request workflow [https://guides.github.com/activities/forking/].

This documentation is divided into two parts:

User Manual

Directed towards end-users, this part provides detailed documentation
regarding installation and usage of the various utilities available within
this library. Here you will find a comprehensive listing of all available
utilties, and information regarding their usage and current
limitations that the users must be aware of.

Developer Manual

The developer guide is targeted towards users wishing to extend the
functionality provided within this library. Here you will find details
regarding the code structure, API supported by various classes, and links to
source code documentation extracted using Doxygen.

Acknowledgements

This software is developed by researchers at NREL [https://www.nrel.gov] and
Sandia National Laboratories [http://www.sandia.gov] with funding from DOE’s
Exascale Computing Project [https://exascaleproject.org] and DOE WETO
Atmosphere to electrons (A2e) [https://a2e.energy.gov] research initiative.

	User Manual
	Introduction
	Installing NaluWindUtils

	General Usage

	nalu_preprocess – Nalu Preprocessing Utilities
	Command line invocation

	Common input file options

	init_abl_fields

	generate_planes

	create_bdy_io_mesh

	rotate_mesh

	calc_ndtw2d

	wrftonalu – WRF to Nalu Convertor
	Command line invocation

	abl_mesh – Block HEX Mesh Generation
	Command line invocation

	Input File Parameters

	Limitations

	Developer Manual
	Introduction
	Version Control System

	Building API Documentation

	Contributing

	Nalu Pre-processing Utilities
	Task Construction Phase

	Task Initialization Phase

	Task Execution Phase

	Task Destruction Phase

	Registering New Utility

	NaluWindUtils API Documentation
	Core Utilities

	Pre-processing Utilities

	Meshing Utilities

Indices and Tables

	Index

User Manual

	Introduction
	Installing NaluWindUtils
	Compiling from Source

	Building Documentation
	Doc Generation Using CMake

	Doc Generation Without CMake

	CMake Configuration Options

	General Usage

	nalu_preprocess – Nalu Preprocessing Utilities
	Command line invocation

	Common input file options

	init_abl_fields

	generate_planes
	Example using custom vertices

	create_bdy_io_mesh

	rotate_mesh

	calc_ndtw2d

	wrftonalu – WRF to Nalu Convertor
	Command line invocation

	abl_mesh – Block HEX Mesh Generation
	Command line invocation

	Input File Parameters
	Boundary names

	Limitations

Introduction

This section provides a general overview of NaluWindUtils and describes features
common to all utilities available within this package.

Installing NaluWindUtils

NaluWindUtils is written using C++ and Fortran and depends on several packages
for compilation. Every effort is made to keep the list of third party libraries
(TPLs) similar to the Nalu dependencies. Therefore, users who have successfully
built Nalu [http://nalu.readthedocs.io/] on their systems should be able to
build NaluWindUtils without any additional software. The main dependencies are
listed below:

	Operating system — NaluWindUtils has been tested on Linux and Mac OS X
operating systems.

	C++ compiler — Like Nalu, this software package requires a recent
version of the C++ compiler that supports the C++11 standard. The build
system has been tested with GNU GCC, LLVM/Clang, and Intel suite of
compilers.

	Trilinos Project [https://github.com/trilinos/Trilinos] — Particularly
the Sierra ToolKit (STK) and Seacas packages for interacting with Exodus-II [http://prod.sandia.gov/techlib/access-control.cgi/1992/922137.pdf] mesh
and solution database formats used by Nalu.

	YAML C++ [https://github.com/jbeder/yaml-cpp] – YAML C++ parsing library
to process input files.

Users are strongly encouraged to use the Spack [https://spack.io] package
manager to fetch and install Trilinos along with all its dependencies. Spack
greatly simplifies the process of fetching, configuring, and installing packages
without the frustrating guesswork. Users unfamiliar with Spack are referred to
the installation section [http://nalu.readthedocs.io/en/latest/source/build_spack.html] in the official
Nalu documentation that describes the steps necessary to install Trilinos using
Spack. Users unable to use Spack for whatever reason are referred to Nalu manual [http://nalu.readthedocs.io/en/latest/source/build_manually.html] that details
steps necessary to install all the necessary dependencies for Nalu without using Spack.

While not a direct build dependency for NaluWindUtils, the users might want to
have Paraview [http://www.paraview.org] or VisIt [https://visit.llnl.gov/]
installed to visualize the outputs generated by this package.

Compiling from Source

	If you are on an HPC system that provides Modules Environment, load the
necessary compiler modules as well as any other package modules that are
necessary for Trilinos.

	Clone the latest release of NaluWindUtils from the git repository.

cd ${HOME}/nalu/
git clone https://github.com/NaluCFD/NaluWindUtils.git
cd NaluWindUtils

Create a build directory
mkdir build
cd build

	Run CMake configure. The examples directory provides two sample
configuration scripts for spack and non-spack builds. Copy the appropriate
script into the build directory and edit as necessary for your
particular system. In particular, the users will want to update the paths to
the various software libraries that CMake will search for during the
configuration process. Please see CMake Configuration Options for information
regarding the different options available.

The code snippet below shows the steps with the Spack configuration script,
replace the file name doConfigSpack.sh with doconfig.sh for a
non-spack environment.

Ensure that `build` is the working directory
cp ../examples/doConfigSpack.sh .
Edit the script with the correct paths, versions, etc.

Run CMake configure
./doConfigSpack.sh -DCMAKE_INSTALL_PREFIX=${HOME}/nalu/install/

	Run make to build and install the executables.

make # Use -j N if you want to build in parallel
make install # Install the software to a common location

	Test installation

bash$ ${HOME}/nalu/install/bin/nalu_preprocess -h
Nalu preprocessor utility. Valid options are:
 -h [--help] Show this help message
 -i [--input-file] arg (=nalu_preprocess.yaml)
 Input file with preprocessor options

If you see the help message as shown above, then proceed to
General Usage section to learn how to use the compiled executables.
If you see errors during either the CMake or the build phase, please capture
verbose outputs from both steps and submit an issue on Github.

Note

	The WRF to Nalu inflow conversion utility is not built by default. Users
must explicitly enable compilation of this utility using the
ENABLE_WRFTONALU flag. The default behavior is chose to
eliminate the extra depenency on NetCDF-Fortran package required build
this utility. The examples/doConfigSpack.sh provides an example of
how to build the this utility if desired.

	See Building Documentation for instructions on building a local copy of
this user manual as well as API documentation generated using Doxygen.

	Run make help to see all available targets that CMake understands to
quickly build only the executable you are looking for.

Building Documentation

Official documentation is available online on ReadTheDocs site [http://naluwindutils.readthedocs.io/]. However, users can generate their own
copy of the documentation using the RestructuredText files available within the
docs directory. NaluWindUtils uses the Sphinx [http://www.sphinx-doc.org/en/stable/] documentation generation package to
generate HTML or PDF files from the rst files. Therefore, the documentation
building process will require Python and Sphinx packages to be installed on your
system.

The easiest way to get Sphinx and all its dependencies is to install the
Anaconda Python Distribution [https://www.anaconda.com/download/] for the
operating system of your choice. Expert users can use Miniconda [https://conda.io/miniconda.html] to install basic packages and install
additional packages like Sphinx manually within a conda environment.

Doc Generation Using CMake

	Enable documentation genration via CMake by turning on the
ENABLE_SPHINX_DOCS flag.

	Run make docs to generate the generate the documentation in HTML form.

	Run make sphinx-pdf to generate the documentation using latexpdf. Note:
requires Latex packages installed in your system.

The resulting documentation will be available in doc/manual/html and
doc/manual/latex directories respectively for HTML and PDF builds within
the CMake build directory. See also Building API Documentation.

Doc Generation Without CMake

Since CMake will require users to have Trilinos installed, an alternate path is
provided to bypass CMake and generate documentation using Makefile on
Linux/OS X systems and make.bat file on Windows systems provided in the
docs/manual directory.

cd docs/manual
To generate HTML documentation
make html
open build/html/index.html

To generate PDF documentation
make latexpdf
open build/latex/NaluWindUtils.pdf

To generate help message
make help

Note

Users can also use pipenv or virtualenv as documented here [http://docs.python-guide.org/en/latest/dev/virtualenvs/#pipenv-virtual-environments]
to manage their python packages without Anaconda.

CMake Configuration Options

Users can use the following variables to control the CMake behavior during
configuration phase. These variables can be added directly to the configuration
script or passed as arguments to the script via command line as shown in the
previous section.

	
CMAKE_INSTALL_PREFIX

	The directory where the compiled executables and libraries as well as headers
are installed. For example, passing
-DCMAKE_INSTALL_PREFIX=${HOME}/software will install the executables in
${HOME}/software/bin when the user executes the make install command.

	
CMAKE_BUILD_TYPE

	Controls the optimization levels for compilation. This variable can take the
following values:

	Value
	Typical flags

	RELEASE
	-O2 -DNDEBUG

	DEBUG
	-g

	RelWithDebInfo
	-O2 -g

Example: -DCMAKE_BUILD_TYPE:STRING=RELEASE

	
Trilinos_DIR

	Absolute path to the directory where Trilinos is installed.

	
YAML_ROOT

	Absolute path to the directory where the YAML C++ library is installed.

	
ENABLE_WRFTONALU

	A boolean flag indicating whether the WRF to Nalu conversion utility is to be
built along with the C++ utilities. By default, this utility is not built as
it requires the NetCDF-Fortran library support that is not part of the
standard Nalu build dependency. Users wishing to enable this library must
make sure that the NetCDF-Fortran library has been installed and configure
the NETCDF_F77_ROOT appropriately.

	
NETCDF_F77_ROOT

	Absolute path to the location of the NETCDF Fortran 77 library.

	
ENABLE_SPHINX_DOCS

	Boolean flag to enable building Sphinx-based documentation via CMake. Default: OFF.

	
ENABLE_DOXYGEN_DOCS

	Boolean flag to enable extract source code documentation using Doxygen. Default: OFF.

Further fine-grained control of the build environment can be achieved by using
standard CMake flags, please see CMake documentation [https://cmake.org/cmake/help/v3.9/] for details regarding these variables.

	
CMAKE_VERBOSE_MAKEFILE

	A boolean flag indicating whether the build process should output verbose
commands when compiling the files. By default, this flag is OFF and
make only shows the file being processed. Turn this flag ON if you
want to see the exact command issued when compiling the source code.
Alternately, users can also invoke this flag during the make invocation
as shown below:

bash$ make VERBOSE=1

	
CMAKE_CXX_COMPILER

	Set the C++ compiler used for compiling the code

	
CMAKE_C_COMPILER

	Set the C compiler used for compiling the code

	
CMAKE_Fortran_COMPILER

	Set the Fortran compiler used for compiling the code

	
CMAKE_CXX_FLAGS

	Additional flags to be passed to the C++ compiler during compilation. For
example, to enable OpenMP support during compilation pass
-DCMAKE_CXX_FLAGS=" -fopenmp" when using the GNU GCC compiler.

	
CMAKE_C_FLAGS

	Additional flags to be passed to the C compiler during compilation.

	
CMAKE_Fortran_FLAGS

	Additional flags to be passed to the Fortran compiler during compilation.

General Usage

Most utilities require a YAML input file containing all the information
necessary to run the utility. The executables have been configured to look for a
default input file name within the run directory, this default filename can be
overridden by providing a custom filename using the -i option flag. Users
can use the -h or the --help flag with any executable to look at various
command line options available as well as the name of the default input file as
shown in the following example:

bash$ src/preprocessing/nalu_preprocess -h
Nalu preprocessor utility. Valid options are:
 -h [--help] Show this help message
 -i [--input-file] arg (=nalu_preprocess.yaml)
 Input file with preprocessor options

The output above shows the default input file name as
nalu_preprocess.yaml for the nalu_preprocess utility.

Note

It is assumed that the bin directory where the utilities were
installed are accessible via the user’s PATH variable. Please refer
to Installing NaluWindUtils for more details.

nalu_preprocess – Nalu Preprocessing Utilities

This utility loads an input mesh and performs various pre-processing tasks so
that the resulting output database can be used in a wind LES simulation.
Currently, the following tasks have been implemented within this utility.

	Task type
	Description

	init_abl_fields
	Initialize ABL velocity and temperature fields

	generate_planes
	Generate horizontal sampling planes for dp/dx forcing

	create_bdy_io_mesh
	Create an I/O transfer mesh for sampling inflow planes

	rotate_mesh
	Rotate mesh

Warning

Not all tasks are capable of running in parallel. Please consult
documentation of individual tasks to determine if it is safe to run it in
parallel using MPI. It might be necessary to set
automatic_decomposition_type when running in parallel.

The input file (download) must contain
a nalu_preprocess section as shown below. Input options for the individual
tasks are provided as sub-sections within nalu_preprocess with the
corresponding task names provided under tasks. For example, in the sample
shown below, the program will expect to see two sub-sections, namely
init_abl_fields and generate_planes based on the list of tasks shown in
lines 22-23.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	# -*- mode: yaml -*-
#
Nalu Preprocessing Utility - Example input file
#

Mandatory section for Nalu preprocessing
nalu_preprocess:
 # Name of the input exodus database
 input_db: abl_mesh.g
 # Name of the output exodus database
 output_db: abl_mesh_precursor.g

 # Flag indicating whether the database contains 8-bit integers
 ioss_8bit_ints: false

 # Flag indicating mesh decomposition type (for parallel runs)
 # automatic_decomposition_type: rcb

 # Nalu preprocessor expects a list of tasks to be performed on the mesh and
 # field data structures
 tasks:
 - init_abl_fields
 - generate_planes

Command line invocation

mpiexec -np <N> nalu_preprocess -i [YAML_INPUT_FILE]

	
-i, --input-file

	Name of the YAML input file to be used. Default: nalu_preprocess.yaml.

Common input file options

	
input_db

	Path to an existing Exodus-II mesh database file, e.g.., ablNeutralMesh.g

	
output_db

	Filename where the pre-processed results database is output, e.g.,
ablNeutralPrecursor.g

	
automatic_decomposition_type

	Used only for parallel runs, this indicates how the a single mesh database
must be decomposed amongst the MPI processes during initialization. This
option should not be used if the mesh has already been decomposed by an
external utility. Possible values are:

	Value
	Description

	rcb
	recursive coordinate bisection

	rib
	recursive inertial bisection

	linear
	elements in order first n/p to proc 0, next to proc 1.

	cyclic
	elements handed out to id % proc_count

	
tasks

	A list of task names that define the various pre-processing tasks that will
be performed on the input mesh database by this utility. The program expects
to find additional sections with headings matching the task names that
provide additional inputs for individual tasks. By default, the task names
found within the list should correspond to one of the task types
discussed earlier in this section. If the user desires to use custom names,
then the exact task type should be provided with a type within the task
section. A specific use-case where this is useful is when the user desires to
rotate the mesh, perform additional operations, and, finally, rotate it back
to the original orientation.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	tasks:
 - rotate_mesh_ccw # Rotate mesh such that sides align with XYZ axes
 - generate_planes # Generate sampling planes using bounding box
 - rotate_mesh_cw # Rotate mesh back to the original orientation

rotate_mesh_ccw:
 task_type: rotate_mesh
 mesh_parts:
 - unspecified-2-hex

 angle: 30.0
 origin: [500.0, 0.0, 0.0]
 axis: [0.0, 0.0, 1.0]

rotate_mesh_cw:
 task_type: rotate_mesh
 mesh_parts:
 - unspecified-2-hex
 - zplane_0080.0 # Rotate auto generated parts also

 angle: -30.0
 origin: [500.0, 0.0, 0.0]
 axis: [0.0, 0.0, 1.0]

	
transfer_fields

	A Boolean flag indicating whether the time histories of the fields available
in the input mesh database must be transferred to the output database.
Default: false.

	
ioss_8bit_ints

	A Boolean flag indicating whether the output database must be written out
with 8-bit integer support. Default: false.

init_abl_fields

This task initializes the vertical velocity and temperature profiles for use
with an ABL precursor simulations based on the parameters provided by the user
and writes it out to the output_db. It is safe to run
init_abl_fields in parallel. A sample invocation is shown below

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 init_abl_fields:
 fluid_parts: [Unspecified-2-HEX]

 temperature:
 heights: [0, 650.0, 750.0, 10750.0]
 values: [280.0, 280.0, 288.0, 318.0]

 velocity:
 heights: [0.0, 10.0, 30.0, 70.0, 100.0, 650.0, 10000.0]
 values:
 - [0.0, 0.0, 0.0]
 - [4.81947, -4.81947, 0.0]
 - [5.63845, -5.63845, 0.0]
 - [6.36396, -6.36396, 0.0]
 - [6.69663, -6.69663, 0.0]
 - [8.74957, -8.74957, 0.0]
 - [8.74957, -8.74957, 0.0]

	
fluid_parts

	A list of element block names where the velocity and/or temperature fields
are to be initialized.

	
temperature

	A YAML dictionary containing two arrays: heights and the corresponding
values at those heights. The data must be provided in SI units. No
conversion is performed within the code.

	
velocity

	A YAML dictionary containing two arrays: heights and the corresponding
values at those heights. The data must be provided in SI units. No
conversion is performed within the code. The values in this case are two
dimensional lists of shape [nheights, 3] where nheights is the length
of the heights array provided.

Note

Only one of the entries velocity or temperature needs to be present.
The program will skip initialization of a particular field if it cannot find
an entry in the input file. This can be used to speed up the execution
process if the user intends to initialize uniform velocity throughout the
domain within Nalu.

generate_planes

Generates horizontal planes of nodesets at given heights that are used for
sampling velocity and temperature fields during an ABL simulation. The resulting
spatial average at given heights is used within Nalu to determine the driving
pressure gradient necessary to achieve the desired ABL profile during the
simulation. This task is capable of running in parallel.

The horizontal extent of the sampling plane can be either prescribed manually,
or the program will use the bounding box of the input mesh. Note that the latter
approach only works if the mesh boundaries are oriented along the major axes.
The extent and orientation of the sampling plane is controlled using the
boundary_type option in the input file.

	
boundary_type

	Flag indicating how the program should estimate the horizontal extents of the
sampling plane when generating nodesets. Currently, two options are supported:

	Type
	Description

	bounding_box
	Automatically estimate based on bounding box of the mesh

	quad_vertices
	Use user-provided vertices

This flag is optional, and if it is not provided the program defaults to
using the bounding_box approach to estimate horizontal extents.

	
fluid_part

	A list of element block names used to compute the extent using bounding box approach.

	
heights

	A list of vertical heights where the nodesets are generated.

	
part_name_format

	A printf style string that takes one floating point argument %f
representing the height of the plane. For example, if the user desires to
generate nodesets at 70m and 90m respectively and desires to name the plane
zh_070 and zh_090 respectively, this can be achieved by setting
part_name_format: zh_%03.0f.

	
dx, dy

	Uniform resolutions in the x- and y-directions when generating nodesets. Used
only when boundary_type is set to bounding_box.

	
nx, ny

	Number of subdivisions of along the two axes of the quadrilateral provided.
Given 4 points, nx will divide segments 1-2 and 3-4, and ny
will divide segments 2-3 and 4-1. Used only when
boundary_type is set to quad_vertices.

	
vertices

	Used to provide the horizontal extents of the sampling plane to the utility. For example

vertices:
 - [250.0, 0.0] # Vertex 1 (S-W corner)
 - [500.0, -250.0] # Vertex 2 (S-E corner)
 - [750.0, 0.0] # Vertex 3 (N-E corner)
 - [500.0, 250.0] # Vertex 4 (N-W corner)

Example using custom vertices

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	generate_planes:
 boundary_type: quad_vertices # Override default behavior
 fluid_part: Unspecified-2-hex # Fluid part

 heights: [70.0] # Heights were sampling planes are generated
 part_name_format: "zplane_%06.1f" # Name format for new nodesets
 nx: 25 # X resolution
 ny: 25 # Y resolution
 vertices: # Vertices of the quadrilateral
 - [250.0, 0.0]
 - [500.0, -250.0]
 - [750.0, 0.0]
 - [500.0, 250.0]

create_bdy_io_mesh

Create an I/O transfer mesh containing the boundaries of a given ABL precursor
mesh. The I/O transfer mesh can be used with Nalu during the precursor runs to
dump inflow planes for use with a later wind farm LES simulation with
inflow/outflow boundaries. Unlike other utilities described in this section,
this utility creates a new mesh instead of adding to the database written out by
the nalu_preprocess executable. It is safe to invoke this task in a
parallel MPI run.

	
output_db

	Name of the I/O transfer mesh where the boundary planes are written out. This
argument is mandatory.

	
boundary_parts

	A list of boundary parts that are saved in the I/O mesh. The names in the
list must correspond to the names of the sidesets in the given ABL mesh.

rotate_mesh

Rotates the mesh given angle, origin, and axis using quaternion rotations.

	
mesh_parts

	A list of element block names that must be rotated.

	
angle

	The rotation angle in degrees.

	
origin

	An (x, y, z) coordinate for mesh rotation.

	
axis

	A unit vector about which the mesh is rotated.

	1
2
3
4
5
6
7

	rotate_mesh:
 mesh_parts:
 - unspecified-2-hex

 angle: 30.0
 origin: [500.0, 0.0, 0.0]
 axis: [0.0, 0.0, 1.0]

calc_ndtw2d

Deprecated since version 0.1.0: The implementation uses a brute-force method to compute the nearest wall
distance and as such is unsitable for production use. Use only on small
two-dimensional meshes.

Calculate the nearest distance to wall (NDTW) for 2-D airfoil meshes.

	1
2
3
4
5
6
7

	calc_ndtw2d:
 fluid_parts:
 - Unspecified-2-QUAD
 - Unspecified-3-QUAD

 wall_parts:
 - airfoil

wrftonalu – WRF to Nalu Convertor

This program converts WRF data to the Nalu [https://github.com/NaluCFD/Nalu]
(Exodus II) data format. Exodus II is part of
SEACAS [https://gsjaardema.github.io/seacas] and one can find other utilities to work
with Exodus II files there. The objective is to provide Nalu with input WRF data
as boundary conditions (and, optionally, initial conditions).

This program was started as WRFTOOF, a WRF to OpenFoam converter,
which was written by J. Michalakes and M. Churchfield. It was adapted
for converting to Nalu data by M. T. Henry de Frahan.

Note

This utility is not built by default. The user must set
ENABLE_WRFTONALU to ON during the CMake configure phase.

Command line invocation

bash$ wrftonalu [options] wrfout

where wrfout is the WRF data file used to generate inflow conditions for
the Nalu simulations. The user must provide the relevant boundary files in the
run directory named west.g, east.g, south.g,
north.g, lower.g, and upper.g. Only the boundaries where
inflow data is required need to exist. The interpolated WRF data is written out
to files with extension *.nc for the corresponding grid files for use with
Nalu. The following optional parameters can be supplied to customize the
behavior of wrftonalu.

	
-startdate

	Date string of the form YYYY-mm-dd_hh_mm_ss or YYYY-mm-dd_hh:mm:ss

	
-offset

	Number of seconds to start Exodus directory naming (default: 0)

	
-coord_offset lat lon

	Latitude and longitude of origin for Exodus mesh. Default: center of WRF data.

	
-ic

	Populate initial conditions as well as boundary conditions.

	
-qwall

	Generate temperature flux for the terrain (lower) BC file.

abl_mesh – Block HEX Mesh Generation

The abl_mesh executable can be used to generate structured mesh with HEX-8
elements in Exodus-II format. The interface is similar to OpenFOAM’s
blockMesh utility and can be used to generate simple meshes for ABL
simulations on flat terrain without resorting to commercial mesh generation
software, e.g., Pointwise.

Command line invocation

bash$ abl_mesh -i abl_mesh.yaml

Nalu ABL Mesh Generation Utility
Input file: abl_mesh.yaml
HexBlockMesh: Registering parts to meta data
 Mesh block: fluid_part
Num. nodes = 1331; Num elements = 1000
 Generating node IDs...
 Creating nodes... 10% 20% 30% 40% 50% 60% 70% 80% 90%
 Generating element IDs...
 Creating elements... 10% 20% 30% 40% 50% 60% 70% 80% 90%
 Finalizing bulk modifications...
 Generating X Sideset: west
 Generating X Sideset: east
 Generating Y Sideset: south
 Generating Y Sideset: north
 Generating Z Sideset: terrain
 Generating Z Sideset: top
 Generating coordinates...
Writing mesh to file: ablmesh.exo

	
-i, --input-file

	YAML input file to be processed for mesh generation details. Default:
nalu_abl_mesh.yaml.

Input File Parameters

The input file must contain a nalu_abl_mesh section that contains the input
parameters.A sample input file is shown below

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	nalu_abl_mesh:
 output_db: ablmesh.exo

 spec_type: bounding_box

 vertices:
 - [0.0, 0.0, 0.0]
 - [10.0, 10.0, 10.0]

 mesh_dimensions: [10, 10, 10]

	
output_db

	The Exodus-II filename where the mesh is output. No default, must be provided
by the user.

	
spec_type

	Specification type used to define the extents of the structured HEX mesh.
This option is used to interpret the vertices read from the input
file. Currently, two options are supported:

	Type
	Description

	bounding_box
	Use axis aligned bounding box as domain boundaries

	vertices
	Use user provided vertices to define extents

	
vertices

	The coordinates specifying the extents of the computational domain. This
entry is interpreted differently depending on the spec_type. If
type is set to bounding_box then the code expects a list of two 3-D
coordinate points describing bounding box to generate an axis aligned mesh.
Otherwise, the code expects a list of 8 points describing the vertices of the
trapezoidal prism.

	
mesh_dimensions

	Mesh resolution for the resulting structured HEX mesh along each direction.
For a trapezoidal prism, the code will interpret the major axis along
1-2, 1-4, and 1-5 edges respectively.

	
fluid_part_name

	Name of the element block created with HEX-8 elements. Default value:
fluid_part.

Boundary names

The user has the option to provide custom boundary names through the input file.
Use the boundary name input parameters to change the default parameters. If
these are not provided the default boundary names are described below:

	Boundary
	Default sideset name

	xmin_boundary_name
	west

	xmax_boundary_name
	east

	ymin_boundary_name
	south

	ymax_boundary_name
	north

	zmin_boundary_name
	terrain

	zmax_boundary_name
	top

Limitations

	Currently the code is setup to only generate constant size grids in each direction.

	Does not support the ability to generate multiple blocks

	Must be run on a single processor, running with multiple MPI ranks is currently
unsupported.

Developer Manual

	Introduction
	Version Control System

	Building API Documentation

	Contributing

	Nalu Pre-processing Utilities
	Task Construction Phase

	Task Initialization Phase

	Task Execution Phase

	Task Destruction Phase

	Registering New Utility

	NaluWindUtils API Documentation
	Core Utilities
	CFDMesh

	Interpolation utilities

	YAML utilities

	Pre-processing Utilities
	PreProcessDriver

	PreProcessingTask

	ABLFields

	BdyIOPlanes

	SamplingPlanes

	RotateMesh

	NDTW2D

	Meshing Utilities
	HexBlockMesh

Introduction

This part of the documentation is intended for users who wish to extend or add
new functionality to the NaluWindUtilities toolsuite. End users who want to use
existing utilities should consult the User Manual for documentation on
standalone utilities.

Version Control System

Like Nalu [http://nalu.readthedocs.io/en/latest/], NaluWindUtils uses Git
SCM [https://www.git-scm.com] to track all development activity. All
development is coordinated through the Github repository [https://github.com/NaluCFD/NaluWindUtils]. Pro Git [https://www.git-scm.com/book/en/v2], a book that covers all aspects of Git is
a good resource for users unfamiliar with Git SCM. Github Desktop [https://desktop.github.com] and Git Kraken [https://www.gitkraken.com] are
two options for users who prefer a GUI based interaction with Git source code.

Building API Documentation

In-source comments can be compiled and viewed as HTML files using Doxygen [http://www.stack.nl/~dimitri/doxygen/index.html]. If you want to generate
class inheritance and other collaboration diagrams, then you will need to
install Graphviz [http://www.graphviz.org] in addition to Doxygen.

	API Documentation generation is disabled by default in CMake. Users will have
to enable this by turning on the ENABLE_DOXYGEN_DOCS flag.

	Run make api-docs to generate the documentation in HTML form.

The resulting documentation will be available in doc/doxygen/html/
within the CMake build directory.

Contributing

The project welcomes contributions from the wind research community. Users can
contribute to the source code using the normal Github fork and pull request
workflow [https://guides.github.com/activities/forking/]. Please follow these
general guidelines when submitting pull requests to this project

	All C++ code must conform to the C++11 standard. Consult C++ Core Guidelines [http://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines] on
best-practices to writing idiomatic C++ code.

	Check and fix all compiler warnings before submitting pull requests. Use
-Wall -Wextra -pedantic options with GNU GCC or LLVM/Clang to check for
warnings.

	New feature pull-requests must include doxygen-compatible in source
documentation, additions to user manual describing the enchancements and their
usage, as well as the necessary updates to CMake files to enable configuration
and build of these capabilities.

	Prefer Markdown format when documenting code using Doxgen-compatible comments.

	Avoid incurring additional third-party library (TPL) dependencies beyond what
is required for building Nalu. In cases where this is unavoidable, please
discuss this with the development team by creating an issue on issues page [https://github.com/NaluCFD/NaluWindUtils/issues] before submitting the pull
request.

Nalu Pre-processing Utilities

NaluWindUtils provides several pre-processing utilities that are built as
subclasses of PreProcessingTask. These utilities are
configured using a YAML input file and driven through the
PreProcessDriver class – see nalu_preprocess – Nalu Preprocessing Utilities for
documentation on the available input file options. All pre-processing utilities
share a common interface and workflow through the
PreProcessingTask API, and there are three distinct
phases for each utility namely: construction, initialization, and execution. The
function of each of the three phases as well as the various actions that can be
performed during these phases are described below.

Task Construction Phase

The driver initializes each task through a constructor that takes two
arguments:

	CFDMesh – a mesh instance that contains the MPI
communicator, STK MetaData and BulkData instances as well as other mesh
related utilities.

	YAML::Node – a yaml-cpp node instance containing the user defined
inputs for this particular task.

The driver class initializes the instances in the order that was specified in
the YAML input file. However, the classes must not assume existence or
dependency on other task instances.

The base class PreProcessingTask already stores a reference to the
CFDMesh instance in mesh_, that is accessible to subclasses via
protected access. It is the responsibility of the individual task instances to
process the YAML node during construction phase. Currently, this is typically
done via the load(), a private method in the concrete task specialization
class.

No actions on STK MetaData or BulkData instances should be performed during the
construction phase. The computational mesh may not be loaded at this point. The
construction should only initialize the class member variables that will be used
in subsequent phases. The instance may store a reference to the YAML Node if
necessary, but it is better to process and validate YAML data during this phase
and store them as class member variables of correct types.

It is recommended that all tasks created support execution in parallel and, if
possible, handle both 2-D and 3-D meshes. However, where this is not possible,
the implementation much check for the necessary conditions via asserts and throw
errors appropriately.

Task Initialization Phase

Once all the task instances have been created and each instance has checked the
validity of the user provided input files, the driver instance calls the
initialize method on all the available task instances. All
stk::mesh::MetaData updates, e.g., part or field creation and
registration, must be performed during this phase. No
stk::mesh::BulkData modifications should be performed during this
stage. Some tips for proper initialization of parts and fields:

	Access to stk::mesh::MetaData and stk::mesh::BulkData is
through meta() and bulk()
respectively. They return non-const references to the instances stored in
the mesh object.

	Use MetaData::get_part() to check for the existence of a part in the
mesh database, MetaData::declare_part() will automatically create a
part if none exists in the database.

	As with parts, use MetaData::declare_field() or
MetaData::get_field() to create or perform checks for existing fields
as appropriate.

	New fields created by pre-processing tasks must be registered as an output
field if it should be saved in the result output ExodusII database. The
default option is to not output all fields, this is to allow creation of
temporary fields that might not be necessary for subsequent Nalu
simulations. Field registration for output is achieved by calling
add_output_field() from within the initialize() method.

// Register velocity and temperature fields for output
mesh_.add_output_field("velocity");
mesh_.add_output_field("temperature");

	The coordinates field is registered on the universal part, so it is not
strictly necessary to register this field on newly created parts.

Once all tasks have been initialized, the driver will commit the STK
MetaData object and populate the BulkData object. At this point, the mesh is
fully loaded and BulkData modifications can begin and the driver moves to the
execution phase.

Task Execution Phase

The driver initiates execution phase of individual tasks by calling the
run() method, which performs the core pre-processing task of the
instance. Since STK MetaData has been committed, no further MetaData
modifications (i.e., part/field creation) can occur during this phase. All
actions at this point are performed on the BulkData instance. Typical examples
include populating new fields, creating new entities (nodes, elements,
sidesets), or moving mesh by manipulating coordinates. If the mesh does not
explicitly create any new fields, the task instance can still force a write of
the output database by calling the set_write_flag() to indicate
that the database modifications must be written out. By default, no output
database is created if no actions were performed.

Task Destruction Phase

All task implementations must provide proper cleanup procedures via
destructors. No explicit clean up task methods are called by the driver utility.
The preprocessing utility depends on C++ destructor actions to free resources
etc.

Registering New Utility

The sierra::nalu::PreProcessingTask class uses a runtime selection
mechanism to discover and initialize available utilities. To achieve this, new
utilities must be registered by invoking a pre-defined macro
(REGISTER_DERIVED_CLASS) that wrap the logic necessary to register classes
with the base class. For example, to register a new utility MyNewUtility the developer must add the following line

REGISTER_DERIVED_CLASS(PreProcessingTask, MyNewUtility, "my_new_utility");

in the C++ implementation file (i.e., the .cpp file and not the .h
header file). In the above example, my_new_utility is the lookup type (see
tasks) used by the driver when processing the YAML input file. Note
that this macro must be invoked from within the sierra::nalu namespace.

NaluWindUtils API Documentation

	Core Utilities
	CFDMesh

	Interpolation utilities

	YAML utilities

	Pre-processing Utilities
	PreProcessDriver

	PreProcessingTask

	ABLFields

	BdyIOPlanes

	SamplingPlanes

	RotateMesh

	NDTW2D

	Meshing Utilities
	HexBlockMesh

Core Utilities

CFDMesh

	
class sierra::nalu::CFDMesh

	STK Mesh interface.

This class provides a thin wrapper around the STK mesh objects (MetaData, BulkData, and StkMeshIoBroker) for use with various preprocessing utilities.

Public Functions

	
CFDMesh(stk::ParallelMachine &comm, const std::string filename)

	
	Parameters

	
	comm: MPI Communicator object

	filename: Exodus database filename

	
CFDMesh(stk::ParallelMachine &comm, const int ndim)

	

	
~CFDMesh()

	

	
void init()

	Initialize the mesh database.

If an input DB is provided, the mesh is read from the file. The MetaData is committed and the BulkData is ready for use/manipulation.

	
stk::ParallelMachine &comm()

	

	
stk::mesh::MetaData &meta()

	

	
stk::mesh::BulkData &bulk()

	

	
stk::io::StkMeshIoBroker &stkio()

	

	
void add_output_field(const std::string field)

	Register a field for output during write.

	
void write_database(std::string output_db, double time = 0.0)

	Write the Exodus results database with modifications.

	Parameters

	
	output_db: Filename for the output Exodus database

	time: (Optional) time to write (default = 0.0)

	
void write_database_with_fields(std::string output_db)

	Write database with restart fields.

	
BoxType calc_bounding_box(const stk::mesh::Selector selector, bool verbose = true)

	Calculate the bounding box of the mesh.

The selector can pick parts that are not contiguous. However, the bounding box returned will be the biggest box that encloses all parts selected.

	Return

	An stk::search::Box instance containing the min and max points (3-D).

	Parameters

	
	selector: An instance of stk::mesh::Selector to filter parts of the mesh where bounding box is calculated.

	verbose: If true, then print out the bounding box to standard output.

	
void set_decomposition_type(std::string decompType)

	Set automatic mesh decomposition property.

	
void set_64bit_flags()

	

	
bool db_modified()

	Flag indicating whether the DB has been modified.

	
void set_write_flag()

	Force output of the results DB.

Interpolation utilities

	
struct sierra::nalu::utils::OutOfBounds

	Flags and actions for out-of-bounds operation.

Public Types

	
enum boundLimits

	Out of bounds limit types.

Values:

	
LOWLIM = -2

	xtgt < xarray[0]

	
UPLIM = -1

	xtgt > xarray[N]

	
VALID = 0

	xarray[0] <= xtgt <= xarray[N]

	
enum OobAction

	Flags indicating action to perform on Out of Bounds situation.

Values:

	
ERROR = 0

	Raise runtime error.

	
WARN

	Warn and then CLAMP.

	
CLAMP

	Clamp values to the end points.

	
EXTRAPOLATE

	Extrapolate linearly based on end point.

	
template <typename T>

	
InterpTraits<T>::index_type sierra::nalu::utils::check_bounds(const Array1D<T> &xinp, const T &x)

	Determine whether the given value is within the limits of the interpolation table.

	
template <typename T>

	
InterpTraits<T>::index_type sierra::nalu::utils::find_index(const Array1D<T> &xinp, const T &x)

	Return an index object corresponding to the x-value based on interpolation table.

The std::pair returned contains two values: the bounds indicator and the index of the element in the interpolation table such that xarray[i] <= x < xarray[i+1]

	
template <typename T>

	
void sierra::nalu::utils::linear_interp(const Array1D<T> &xinp, const Array1D<T> &yinp, const T &xout, T &yout, OutOfBounds::OobAction oob = OutOfBounds::CLAMP)

	Perform a 1-D linear interpolation.

	Parameters

	
	xinp: A 1-d vector of x-values

	yinp: Corresponding 1-d vector of y-values

	xout: Target x-value for interpolation

	yout: Interpolated value at xout

	oob: (Optional) Out-of-bounds handling (default: CLAMP)

YAML utilities

Miscellaneous utilities for working with YAML C++ library.

	
namespace sierra

	
	
namespace nalu

	
	
namespace wind_utils

	
Functions

	
template <typename T>

	
bool get_optional(const YAML::Node &node, const std::string &key, T &result)

	

	
template <typename T>

	
bool get_optional(const YAML::Node &node, const std::string &key, T &result, const T &default_value)

	

Pre-processing Utilities

PreProcessDriver

	
class sierra::nalu::PreProcessDriver

	A driver that runs all preprocessor tasks.

This class is responsible for reading the input file, parsing the user-requested list of tasks, initializing the task instances, executing them, and finally writing out the updated Exodus database with changed inputs.

Public Functions

	
PreProcessDriver(stk::ParallelMachine &comm, const std::string filename)

	
	Parameters

	
	comm: MPI Communicator reference

	filename: Name of the YAML input file

	
void run()

	Run all tasks and output the updated Exodus database.

PreProcessingTask

	
class sierra::nalu::PreProcessingTask

	An abstract implementation of a PreProcessingTask.

This class defines the interface for a pre-processing task and contains the infrastructure to allow concrete implementations of pre-processing tasks to register themselves for automatic runtime discovery. Derived classes must implement two methods:

	initialize - Perform actions on STK MetaData before processing BulkData

	run - All actions on BulkData and other operations on mesh after it has been loaded from the disk.

For automatic class registration, the derived classes must implement a constructor that takes two arguments: a CFDMesh reference, and a const reference to YAML::Node that contains the inputs necessary for the concrete task implementation. It is the derived class’ responsibility to process the input dictionary and perform error checking. No STK mesh manipulations must occur in the constructor.

Subclassed by sierra::nalu::ABLFields, sierra::nalu::BdyIOPlanes, sierra::nalu::NDTW2D, sierra::nalu::RotateMesh, sierra::nalu::SamplingPlanes

Public Functions

	
PreProcessingTask(CFDMesh &mesh)

	
	Parameters

	
	mesh: A CFDMesh instance

Public Static Functions

	
PreProcessingTask *create(CFDMesh &mesh, const YAML::Node &node, std::string lookup)

	Runtime creation of concrete task instance.

Protected Attributes

	
CFDMesh &mesh_

	Reference to the CFDMesh instance.

ABLFields

	
class sierra::nalu::ABLFields

	Initialize velocity and temperature fields for ABL simulations.

This task is activated by using the init_abl_fields task in the preprocessing input file. It requires a section init_abl_fields in the nalu_preprocess section with the following parameters:

init_abl_fields:
 fluid_parts: [Unspecified-2-HEX]

 temperature:
 heights: [0, 650.0, 750.0, 10750.0]
 values: [280.0, 280.0, 288.0, 318.0]

 velocity:
 heights: [0.0, 10.0, 30.0, 70.0, 100.0, 650.0, 10000.0]
 values:
 - [0.0, 0.0, 0.0]
 - [4.81947, -4.81947, 0.0]
 - [5.63845, -5.63845, 0.0]
 - [6.36396, -6.36396, 0.0]
 - [6.69663, -6.69663, 0.0]
 - [8.74957, -8.74957, 0.0]
 - [8.74957, -8.74957, 0.0]

The sections temperature and velocity are optional, allowing the user to initialize only the temperature or the velocity as desired. The heights are in meters, the temperature is the potential temperature in Kelvin, and the velocity is the actual vector in m/s. Currently, the code does not include the ability to automatically convert (mangitude, direction) to velocity vectors.

Inherits from sierra::nalu::PreProcessingTask

Public Functions

	
void initialize()

	Declare velocity and temperature fields and register them for output.

	
void run()

	Initialize the velocity and/or temperature fields by linear interpolation.

Private Functions

	
void load(const YAML::Node &abl)

	Parse the YAML file and initialize parameters.

	
void load_velocity_info(const YAML::Node &abl)

	Helper function to parse and initialize velocity inputs.

	
void load_temperature_info(const YAML::Node &abl)

	Helper function to parse and initialize temperature inputs.

	
void init_velocity_field()

	Initialize the velocity field through linear interpolation.

	
void init_temperature_field()

	Intialize the temperature field through linear interpolation.

Private Members

	
stk::mesh::MetaData &meta_

	STK Metadata object.

	
stk::mesh::BulkData &bulk_

	STK Bulkdata object.

	
stk::mesh::PartVector fluid_parts_

	Parts of the fluid mesh where velocity/temperature is initialized.

	
std::vector<double> vHeights_

	List of heights where velocity is defined.

	
Array2D<double> velocity_

	List of velocity (3-d components) at the user-defined heights.

	
std::vector<double> THeights_

	List of heights where temperature is defined.

	
std::vector<double> TValues_

	List of temperatures (K) at user-defined heights (THeights_)

	
int ndim_

	Dimensionality of the mesh.

	
bool doVelocity_

	Flag indicating whether velocity is initialized.

	
bool doTemperature_

	Flag indicating whether temperature is initialized.

BdyIOPlanes

	
class sierra::nalu::BdyIOPlanes

	Extract boundary planes for I/O mesh.

Given an ABL precursor mesh, this utility extracts the specified boundaries and creates a new IO Transfer mesh for use with ABL precursor simulations.

Inherits from sierra::nalu::PreProcessingTask

Public Functions

	
void initialize()

	Register boundary parts and attach coordinates to the parts.

The parts are created as SHELL elements to as needed by the Nalu Transfer class.

	
void run()

	Copy user specified boundaries and save the IO Transfer mesh.

Private Functions

	
void load(const YAML::Node &node)

	Parse user inputs from the YAML file.

	
void create_boundary(const std::string bdyName)

	Copy the boundary from Fluid mesh to the IO Xfer mesh.

Private Members

	
CFDMesh &mesh_

	Original mesh DB information.

	
CFDMesh iomesh_

	IO Mesh db STK meta and bulk data.

	
std::vector<std::string> bdyNames_

	User specified list of boundaries to be extracted.

	
std::string output_db_ = {""}

	Name of the I/O db where the boundaries are written out.

SamplingPlanes

	
class sierra::nalu::SamplingPlanes

	Generate 2-D grids/planes for data sampling.

Currently only generates horizontal planes at user-defined heights.

Requires a section generate_planes in the input file within the nalu_preprocess section:

generate_planes:
 fluid_part: Unspecified-2-hex

 heights: [70.0]
 part_name_format: "zplane_%06.1f"

 dx: 12.0
 dy: 12.0

With the above input definition, it will use the bounding box of the fluid_part to determine the bounding box of the plane to be generated. This will provide coordinate axis aligned sapling planes in x and y directions. Alternately, the user can specify boundary_type to be quad_vertices and provide the vertices of the quadrilateral that is used to generate the sampling plane as shown below:

generate_planes:
 boundary_type: quad_vertices
 fluid_part: Unspecified-2-hex

 heights: [50.0, 70.0, 90.0]
 part_name_format: "zplane_%06.1f"

 nx: 25 # Number of divisions along (1-2) and (4-3) vertices
 ny: 25 # Number of divisions along (1-4) and (2-3) vertices
 vertices:
 - [250.0, 0.0]
 - [500.0, -250.0]
 - [750.0, 0.0]
 - [500.0, 250.0]

part_name_format is a printf-like format specification that takes one argument - the height as a floating point number. The user can use this to tailor how the nodesets or the shell parts are named in the output Exodus file.

Inherits from sierra::nalu::PreProcessingTask

Public Types

	
enum PlaneBoundaryType

	Sampling Plane boundary type.

Values:

	
BOUND_BOX = 0

	Use bounding box of the fluid mesh defined.

	
QUAD_VERTICES

	Use user-defined vertex list for plane boundary.

Private Functions

	
void calc_bounding_box()

	Use fluid Realm mesh to estimate the x-y bounding box for the sampling planes.

	
void generate_zplane(const double zh)

	Generate entities and update coordinates for a given sampling plane.

Private Members

	
stk::mesh::MetaData &meta_

	STK Metadata object.

	
stk::mesh::BulkData &bulk_

	STK Bulkdata object.

	
std::vector<double> heights_

	Heights where the averaging planes are generated.

	
std::array<std::array<double, 3>, 2> bBox_

	Bounding box of the original mesh.

	
std::string name_format_

	Format specification for the part name.

	
std::vector<std::string> fluidPartNames_

	Fluid realm parts (to determine mesh bounding box)

	
stk::mesh::PartVector fluidParts_

	Parts of the fluid mesh (to determine mesh bounding box)

	
double dx_

	Spatial resolution in x and y directions.

	
double dy_

	Spatial resolution in x and y directions.

	
size_t nx_

	Number of nodes in x and y directions.

	
size_t mx_

	Number of elements in x and y directions.

	
int ndim_

	Dimensionality of the mesh.

	
PlaneBoundaryType bdyType_ = {BOUND_BOX}

	User defined selection of plane boundary type.

RotateMesh

	
class sierra::nalu::RotateMesh

	Rotate a mesh.

rotate_mesh:
 mesh_parts:
 - unspecified-2-hex

 angle: 45.0
 origin: [500.0, 0.0, 0.0]
 axis: [0.0, 0.0, 1.0]

Inherits from sierra::nalu::PreProcessingTask

Private Members

	
stk::mesh::MetaData &meta_

	STK Metadata object.

	
stk::mesh::BulkData &bulk_

	STK Bulkdata object.

	
std::vector<std::string> meshPartNames_

	Part names of the mesh that needs to be rotated.

	
stk::mesh::PartVector meshParts_

	Parts of the mesh that need to be rotated.

	
double angle_

	Angle of rotation.

	
std::vector<double> origin_

	Point about which rotation is performed.

	
std::vector<double> axis_

	Axis around which the rotation is performed.

	
int ndim_

	Dimensionality of the mesh.

NDTW2D

	
class sierra::nalu::NDTW2D

	2-D Nearest distance to wall calculator

Calculates a new field NDTW containing the wall distance for 2-D airfoil-like applications used in RANS wall models.

Inherits from sierra::nalu::PreProcessingTask

Public Functions

	
void initialize()

	Initialize the NDTW field and register for output.

	
void run()

	Calculate wall distance and update NDTW field.

Meshing Utilities

HexBlockMesh

	
class sierra::nalu::HexBlockMesh

	Create a structured block mesh with HEX-8 elements.

Public Types

	
enum DomainExtentsType

	Computational domain definition type.

Values:

	
BOUND_BOX = 0

	Use bounding box to define mesh extents.

	
VERTICES

	Provide vertices for the cuboidal domain.

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | M
 | N
 | O
 | P
 | S
 | T
 | V
 | W
 | Y

Symbols

 	
 	
 -coord_offset lat lon

 	wrftonalu command line option

 	
 -i, --input-file

 	abl_mesh command line option

 	nalu_preprocess command line option

 	
 -ic

 	wrftonalu command line option

 	
 	
 -offset

 	wrftonalu command line option

 	
 -qwall

 	wrftonalu command line option

 	
 -startdate

 	wrftonalu command line option

A

 	
 	
 abl_mesh command line option

 	-i, --input-file

 	
 angle

 	input file parameter

 	
 	
 automatic_decomposition_type

 	input file parameter

 	
 axis

 	input file parameter

B

 	
 	
 boundary_parts

 	input file parameter

 	
 	
 boundary_type

 	input file parameter

C

 	
 	
 CMake configuration

 	CMAKE_BUILD_TYPE

 	CMAKE_CXX_COMPILER

 	CMAKE_CXX_FLAGS

 	CMAKE_C_COMPILER

 	CMAKE_C_FLAGS

 	CMAKE_Fortran_COMPILER

 	CMAKE_Fortran_FLAGS

 	CMAKE_INSTALL_PREFIX

 	CMAKE_VERBOSE_MAKEFILE

 	ENABLE_DOXYGEN_DOCS

 	ENABLE_SPHINX_DOCS

 	ENABLE_WRFTONALU

 	NETCDF_F77_ROOT

 	Trilinos_DIR

 	YAML_ROOT

 	
 CMAKE_BUILD_TYPE

 	CMake configuration

 	
 	
 CMAKE_C_COMPILER

 	CMake configuration

 	
 CMAKE_C_FLAGS

 	CMake configuration

 	
 CMAKE_CXX_COMPILER

 	CMake configuration

 	
 CMAKE_CXX_FLAGS

 	CMake configuration

 	
 CMAKE_Fortran_COMPILER

 	CMake configuration

 	
 CMAKE_Fortran_FLAGS

 	CMake configuration

 	
 CMAKE_INSTALL_PREFIX

 	CMake configuration

 	
 CMAKE_VERBOSE_MAKEFILE

 	CMake configuration

D

 	
 	
 dx,dy

 	input file parameter

E

 	
 	
 ENABLE_DOXYGEN_DOCS

 	CMake configuration

 	
 ENABLE_SPHINX_DOCS

 	CMake configuration

 	
 	
 ENABLE_WRFTONALU

 	CMake configuration

 	
 environment variable

 	PATH

F

 	
 	
 fluid_part

 	input file parameter

 	
 fluid_part_name

 	input file parameter

 	
 	
 fluid_parts

 	input file parameter

H

 	
 	
 heights

 	input file parameter

I

 	
 	
 input file parameter

 	angle

 	automatic_decomposition_type

 	axis

 	boundary_parts

 	boundary_type

 	dx,dy

 	fluid_part

 	fluid_part_name

 	fluid_parts

 	heights

 	input_db

 	ioss_8bit_ints

 	mesh_dimensions

 	mesh_parts

 	nx,ny

 	origin

 	output_db, [1], [2]

 	part_name_format

 	spec_type

 	tasks

 	temperature

 	transfer_fields

 	velocity

 	vertices, [1]

 	
 	
 input_db

 	input file parameter

 	
 ioss_8bit_ints

 	input file parameter

M

 	
 	
 mesh_dimensions

 	input file parameter

 	
 	
 mesh_parts

 	input file parameter

N

 	
 	
 nalu_preprocess command line option

 	-i, --input-file

 	
 NETCDF_F77_ROOT

 	CMake configuration

 	
 	
 nx,ny

 	input file parameter

O

 	
 	
 origin

 	input file parameter

 	
 	
 output_db

 	input file parameter, [1], [2]

P

 	
 	
 part_name_format

 	input file parameter

 	
 	PATH

S

 	
 	sierra::nalu::ABLFields (C++ class)

 	sierra::nalu::ABLFields::bulk_ (C++ member)

 	sierra::nalu::ABLFields::doTemperature_ (C++ member)

 	sierra::nalu::ABLFields::doVelocity_ (C++ member)

 	sierra::nalu::ABLFields::fluid_parts_ (C++ member)

 	sierra::nalu::ABLFields::init_temperature_field (C++ function)

 	sierra::nalu::ABLFields::init_velocity_field (C++ function)

 	sierra::nalu::ABLFields::initialize (C++ function)

 	sierra::nalu::ABLFields::load (C++ function)

 	sierra::nalu::ABLFields::load_temperature_info (C++ function)

 	sierra::nalu::ABLFields::load_velocity_info (C++ function)

 	sierra::nalu::ABLFields::meta_ (C++ member)

 	sierra::nalu::ABLFields::ndim_ (C++ member)

 	sierra::nalu::ABLFields::run (C++ function)

 	sierra::nalu::ABLFields::THeights_ (C++ member)

 	sierra::nalu::ABLFields::TValues_ (C++ member)

 	sierra::nalu::ABLFields::velocity_ (C++ member)

 	sierra::nalu::ABLFields::vHeights_ (C++ member)

 	sierra::nalu::BdyIOPlanes (C++ class)

 	sierra::nalu::BdyIOPlanes::bdyNames_ (C++ member)

 	sierra::nalu::BdyIOPlanes::create_boundary (C++ function)

 	sierra::nalu::BdyIOPlanes::initialize (C++ function)

 	sierra::nalu::BdyIOPlanes::iomesh_ (C++ member)

 	sierra::nalu::BdyIOPlanes::load (C++ function)

 	sierra::nalu::BdyIOPlanes::mesh_ (C++ member)

 	sierra::nalu::BdyIOPlanes::output_db_ (C++ member)

 	sierra::nalu::BdyIOPlanes::run (C++ function)

 	sierra::nalu::CFDMesh (C++ class)

 	sierra::nalu::CFDMesh::add_output_field (C++ function)

 	sierra::nalu::CFDMesh::bulk (C++ function)

 	sierra::nalu::CFDMesh::calc_bounding_box (C++ function)

 	sierra::nalu::CFDMesh::CFDMesh (C++ function), [1]

 	sierra::nalu::CFDMesh::comm (C++ function)

 	sierra::nalu::CFDMesh::db_modified (C++ function)

 	sierra::nalu::CFDMesh::init (C++ function)

 	sierra::nalu::CFDMesh::meta (C++ function)

 	sierra::nalu::CFDMesh::set_64bit_flags (C++ function)

 	sierra::nalu::CFDMesh::set_decomposition_type (C++ function)

 	sierra::nalu::CFDMesh::set_write_flag (C++ function)

 	sierra::nalu::CFDMesh::stkio (C++ function)

 	sierra::nalu::CFDMesh::write_database (C++ function)

 	sierra::nalu::CFDMesh::write_database_with_fields (C++ function)

 	sierra::nalu::CFDMesh::~CFDMesh (C++ function)

 	sierra::nalu::HexBlockMesh (C++ class)

 	sierra::nalu::HexBlockMesh::BOUND_BOX (C++ class)

 	sierra::nalu::HexBlockMesh::DomainExtentsType (C++ type)

 	sierra::nalu::HexBlockMesh::VERTICES (C++ class)

 	sierra::nalu::NDTW2D (C++ class)

 	sierra::nalu::NDTW2D::initialize (C++ function)

 	sierra::nalu::NDTW2D::run (C++ function)

 	sierra::nalu::PreProcessDriver (C++ class)

 	sierra::nalu::PreProcessDriver::PreProcessDriver (C++ function)

 	
 	sierra::nalu::PreProcessDriver::run (C++ function)

 	sierra::nalu::PreProcessingTask (C++ class)

 	sierra::nalu::PreProcessingTask::create (C++ function)

 	sierra::nalu::PreProcessingTask::mesh_ (C++ member)

 	sierra::nalu::PreProcessingTask::PreProcessingTask (C++ function)

 	sierra::nalu::RotateMesh (C++ class)

 	sierra::nalu::RotateMesh::angle_ (C++ member)

 	sierra::nalu::RotateMesh::axis_ (C++ member)

 	sierra::nalu::RotateMesh::bulk_ (C++ member)

 	sierra::nalu::RotateMesh::meshPartNames_ (C++ member)

 	sierra::nalu::RotateMesh::meshParts_ (C++ member)

 	sierra::nalu::RotateMesh::meta_ (C++ member)

 	sierra::nalu::RotateMesh::ndim_ (C++ member)

 	sierra::nalu::RotateMesh::origin_ (C++ member)

 	sierra::nalu::SamplingPlanes (C++ class)

 	sierra::nalu::SamplingPlanes::bBox_ (C++ member)

 	sierra::nalu::SamplingPlanes::bdyType_ (C++ member)

 	sierra::nalu::SamplingPlanes::BOUND_BOX (C++ class)

 	sierra::nalu::SamplingPlanes::bulk_ (C++ member)

 	sierra::nalu::SamplingPlanes::calc_bounding_box (C++ function)

 	sierra::nalu::SamplingPlanes::dx_ (C++ member)

 	sierra::nalu::SamplingPlanes::dy_ (C++ member)

 	sierra::nalu::SamplingPlanes::fluidPartNames_ (C++ member)

 	sierra::nalu::SamplingPlanes::fluidParts_ (C++ member)

 	sierra::nalu::SamplingPlanes::generate_zplane (C++ function)

 	sierra::nalu::SamplingPlanes::heights_ (C++ member)

 	sierra::nalu::SamplingPlanes::meta_ (C++ member)

 	sierra::nalu::SamplingPlanes::mx_ (C++ member)

 	sierra::nalu::SamplingPlanes::name_format_ (C++ member)

 	sierra::nalu::SamplingPlanes::ndim_ (C++ member)

 	sierra::nalu::SamplingPlanes::nx_ (C++ member)

 	sierra::nalu::SamplingPlanes::PlaneBoundaryType (C++ type)

 	sierra::nalu::SamplingPlanes::QUAD_VERTICES (C++ class)

 	sierra::nalu::sierra (C++ type)

 	sierra::nalu::sierra::nalu (C++ type)

 	sierra::nalu::sierra::nalu::wind_utils (C++ type)

 	sierra::nalu::sierra::nalu::wind_utils::get_optional (C++ function), [1]

 	sierra::nalu::utils::sierra::nalu::utils::check_bounds (C++ function)

 	sierra::nalu::utils::sierra::nalu::utils::find_index (C++ function)

 	sierra::nalu::utils::sierra::nalu::utils::linear_interp (C++ function)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::boundLimits (C++ type)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::CLAMP (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::ERROR (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::EXTRAPOLATE (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::LOWLIM (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::OobAction (C++ type)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::UPLIM (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::VALID (C++ class)

 	sierra::nalu::utils::sierra::nalu::utils::OutOfBounds::WARN (C++ class)

 	
 spec_type

 	input file parameter

T

 	
 	
 tasks

 	input file parameter

 	
 temperature

 	input file parameter

 	
 	
 transfer_fields

 	input file parameter

 	
 Trilinos_DIR

 	CMake configuration

V

 	
 	
 velocity

 	input file parameter

 	
 	
 vertices

 	input file parameter, [1]

W

 	
 	
 wrftonalu command line option

 	-coord_offset lat lon

 	-ic

 	-offset

 	-qwall

 	-startdate

Y

 	
 	
 YAML_ROOT

 	CMake configuration

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Nalu Wind Utilities User Manual

 		User Manual

 		Introduction

 		Installing NaluWindUtils

 		General Usage

 		nalu_preprocess – Nalu Preprocessing Utilities

 		Command line invocation

 		Common input file options

 		init_abl_fields

 		generate_planes

 		create_bdy_io_mesh

 		rotate_mesh

 		calc_ndtw2d

 		wrftonalu – WRF to Nalu Convertor

 		Command line invocation

 		abl_mesh – Block HEX Mesh Generation

 		Command line invocation

 		Input File Parameters

 		Limitations

 		Developer Manual

 		Introduction

 		Version Control System

 		Building API Documentation

 		Contributing

 		Nalu Pre-processing Utilities

 		Task Construction Phase

 		Task Initialization Phase

 		Task Execution Phase

 		Task Destruction Phase

 		Registering New Utility

 		NaluWindUtils API Documentation

 		Core Utilities

 		Pre-processing Utilities

 		Meshing Utilities

_static/comment-bright.png

