

Welcome to NWB Storage

Table of Contents

	1. NWB:N Storage
	1.1. What is the role of data storage?

	1.2. How are NWB:N files stored?

	1.3. Are backends other than HDF5 supported?

	2. HDF5
	2.1. Format Mapping

	2.2. Key Mapping
	2.2.1. Groups

	2.2.2. Datasets

	2.2.3. Attributes

	2.2.4. Links

	2.2.5. dtype mappings

	2.3. Caching format specifications

	3. Release Notes
	3.1. NWB:N - v2.1.0

	3.2. NWB:N - v2.0.1

	3.3. NWB:N - v2.0.0

	3.4. NWB:N - v1.0.x and earlier

	4. Credits
	4.1. Authors
	4.1.1. NWB:N: Version 2.0.0 and later

	4.2. Acknowledgments

	5. Legal
	5.1. Copyright

	5.2. Licence

Indices and tables

	Index

	Module Index

	Search Page

1. NWB:N Storage

1.1. What is the role of data storage?

The NWB:N format specification [http://nwb-schema.readthedocs.io/en/latest/index.html]
defined using the NWB:N specification language [http://schema-language.readthedocs.io/en/latest/index.html]
describes how to organize large collections of neuroscience data using
basic primitives, e.g., Files, Groups, Datasets, Attributes, and Links to describe and hierarchically group data.
The role of the data storage then is to store large collections of neuroscience data. In other words,
the role of the storage is to map NWB:N primitives (and types, i.e., neurodata_types) to persistent storage.
For an overview of the various components of the NWB:N project
see here [https://neurodatawithoutborders.github.io/overview] .

1.2. How are NWB:N files stored?

The NWB:N format currently uses HDF5 as primary storage mechanism. The mapping of
the NWB:N format to HDF5 files is described in more detail in Section 2.

1.3. Are backends other than HDF5 supported?

NWB:N currently only officially supports HDF5 as main storage backend. However, the PyNWB API has been
designed to enable the design of custom read/write backends for the API, enabling other storage backends
to be mapped to NWB:N.

2. HDF5

The NWB:N format currently uses the Hierarchical Data Format (HDF5) [https://www.hdfgroup.org/HDF5/]
as the primary mechanism for data storage. HDF5 was selected for the
NWB format because it met several of the project’s
requirements. First, it is a mature data format standard with libraries
available in multiple programming languages. Second, the format’s
hierarchical structure allows data to be grouped into logical
self-documenting sections. Its structure is analogous to a file system
in which its “groups” and “datasets” correspond to directories and
files. Groups and datasets can have attributes that provide additional
details, such as authorities’ identifiers. Third, its linking feature
enables data stored in one location to be transparently accessed from
multiple locations in the hierarchy. The linked data can be external to
the file. Fourth, HDF5 is widely supported across programming languages
(e.g., C, C++, Python, MATLAB, R among others) and tools, such as,
HDFView [https://www.hdfgroup.org/products/java/hdfview/], a free,
cross-platform application, can be used to open a file and browse data.
Finally, ensuring the ongoing accessibility of HDF-stored data is the
mission of The HDF Group, the nonprofit that is the steward of the
technology.

2.1. Format Mapping

Here we describe the mapping of NWB primitives (e.g., Groups, Datasets, Attributes, Links, etc.) used by
the NWB format and specification to HDF5 storage primitives. As the NWB:N format was designed with HDF5
in mind, the high-level mapping between the format specification and HDF5 is quite simple:

Table 2.1 Mapping of groups

	NWB Primitive

	HDF5 Primitive

	Group

	Group

	Dataset

	Dataset

	Attribute

	Attribute

	Link

	Soft Link or External Link

Note

Using HDF5, NWB links are stored as HDF5 Soft Links or External Links. Hard Links are not used in NWB because
the primary location and, hence, primary ownership and link path for secondary locations, cannot be determined
for Hard Links.

2.2. Key Mapping

Here we describe the mapping of keys from the specification language to HDF5 storage objects:

2.2.1. Groups

Table 2.2 Mapping of groups

	NWB Key

	HDF5

	name

	Name of the Group in HDF5

	doc

	HDF5 attribute doc on the HDF5 group

	groups

	HDF5 groups within the HDF5 group

	datasets

	HDF5 datasets within the HDF5 group

	attributes

	HDF5 attributes on the HDF5 group

	links

	HDF5 SoftLinks within the HDF5 group

	linkable

	Not mapped; Stored in schema only

	quantity

	Not mapped; Number of appearances of the dataset.

	neurodata_type

	Attribute neurodata_type

	namespace ID

	Attribute namespace

	object ID

	Attribute object_id

2.2.2. Datasets

Table 2.3 Mapping of datasets

	NWB Key

	HDF5

	name

	Name of the dataset in HDF5

	doc

	HDF5 attribute doc on the HDF5 dataset

	dtype

	Data type of the HDF5 dataset (see dtype mappings table)

	shape

	Shape of the HDF5 dataset if the shape is fixed, otherwise shape defines the maxshape

	dims

	Not mapped

	attributes

	HDF5 attributes on the HDF5 group

	linkable

	Not mapped; Stored in schema only

	quantity

	Not mapped; Number of appearances of the dataset.

	neurodata_type

	Attribute neurodata_type

	namespace ID

	Attribute namespace

	object ID

	Attribute object_id

Note

	TODO Update mapping of dims

2.2.3. Attributes

Table 2.4 Mapping of attributes

	NWB Key

	HDF5

	name

	Name of the attribute in HDF5

	doc

	Not mapped; Stored in schema only

	dtype

	Data type of the HDF5 attribute

	shape

	Shape of the HDF5 dataset if the shape is fixed, otherwise shape defines the maxshape

	dims

	Not mapped; Reflected by the shape of the attribute data

	required

	Not mapped; Stored in schema only

	value

	Data value of the attribute

2.2.4. Links

Table 2.5 Mapping of links

	NWB Key

	HDF5

	name

	Name of the HDF5 Soft Link

	doc

	Not mapped; Stored in schema only

	target_type

	Not mapped. The target type is determined by the type of the target of the HDF5 link

2.2.5. dtype mappings

The mappings of data types is as follows

	dtype spec value

	storage type

	size

	
	“float”

	“float32”

	single precision floating point

	32 bit

	
	“double”

	“float64”

	double precision floating point

	64 bit

	
	“long”

	“int64”

	signed 64 bit integer

	64 bit

	
	“int”

	“int32”

	signed 32 bit integer

	32 bit

	
	“int16”

	signed 16 bit integer

	16 bit

	
	“int8”

	signed 8 bit integer

	8 bit

	
	“uint32”

	unsigned 32 bit integer

	32 bit

	
	“uint16”

	unsigned 16 bit integer

	16 bit

	
	“uint8”

	unsigned 8 bit integer

	8 bit

	
	“bool”

	boolean

	8 bit

	
	“text”

	“utf”

	“utf8”

	“utf-8”

	unicode

	variable

	
	“ascii”

	“str”

	ascii

	variable

	
	“ref”

	“reference”

	“object”

	Reference to another group or
dataset

	

	
	region

	Reference to a region
of another dataset

	

	
	compound dtype

	HDF5 compound data type

	

	
	“isodatetime”

	ASCII ISO8061 datetime string.
For example
2018-09-28T14:43:54.123+02:00

	variable

2.3. Caching format specifications

In practice it is useful to cache the specification a file was created with (including extensions)
directly in the HDF5 file. Caching the specification in the file ensures that users can access
the specification directly if necessary without requiring external resources. However, the mechanisms for
caching format specifications is likely different for different storage backends and is not
part of the NWB:N format specification itself. For the HDF5 backend, caching of the schema is implemented as follows.

The HDF5 backend adds the reserved top-level group /specifications in which all format specifications (including
extensions) are cached. The /specifications group contains for each specification namespace a subgroup
/specifications/<namespace-name>/<version> in which the specification for a particular version of a namespace
are stored (e.g., /specifications/core/2.0.1 in the case of the NWB:N core namespace at version 2.0.1).
The actual specification data is then stored as a JSON string in scalar datasets with a binary, variable-length string
data type (e.g., dtype=special_dtype(vlen=binary_type) in Python). The specification of the namespace is stored in
/specifications/<namespace-name>/<version>/namespace while additional source files are stored in
/specifications/<namespace-name>/<version>/<source-filename>. Here <source-filename> refers to the main name
of the source-file without file extension (e.g., the core namespace defines nwb.ephys.yaml as source which would
be stored in /specifications/core/2.0.1/nwb.ecephys).

3. Release Notes

3.1. NWB:N - v2.1.0

Added documentation for new NWB key ‘object_id’ (see also format release notes for NWB 2.1.0: https://nwb-schema.readthedocs.io/en/latest/format_release_notes.html#september-2019).

3.2. NWB:N - v2.0.1

Added missing documentation on how format specification are cached in HDF5.

3.3. NWB:N - v2.0.0

Created separate reStructuredText documentation (i.e., this document) discuss and govern
storage-related concerns. In particular this documents describes how primitives and keys
described via the specification language are mapped to storage, in particular HDF5.

3.4. NWB:N - v1.0.x and earlier

For version 1.0.x and earlier, there was no official separate document governing NWB:N storage concerns as
HDF5 was the only supported storage backend with implicit mapping between HDF5 types and NWB:N
language primitives.

4. Credits

4.1. Authors

4.1.1. NWB:N: Version 2.0.0 and later

Documentation for storage of Version 2 of the NWB:N format and later have been created by
Oliver Ruebel and Andrew Tritt et al. in collaboration with the NWB:N community.

4.2. Acknowledgments

For details on the partners, funders, and supporters of NWB:N please the http://www.nwb.org/ project website.
For specific contributions to the format specification and this document see the change logs of
the Git repository at https://github.com/NeurodataWithoutBorders/nwb-schema .

5. Legal

Contents

	Credits

	Authors

	NWB:N: Version 2.0.0 and later

	Acknowledgments

	Legal

	Copyright

	Licence

5.1. Copyright

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software, please contact Berkeley Lab’s Innovation & Partnerships Office at IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department of Energy and the U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform publicly and display publicly, and to permit other to do so.

5.2. Licence

“nwb-schema” Copyright (c) 2017-2020, The Regents of the University of California, through Lawrence Berkeley National Laboratory (subject to receipt of any required approvals from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.

	Neither the name of the University of California, Lawrence Berkeley National Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or upgrades to the features, functionality or performance of the source code (“Enhancements”) to anyone; however, if you choose to make your Enhancements available either publicly, or directly to Lawrence Berkeley National Laboratory, without imposing a separate written license agreement for such Enhancements, then you hereby grant the following license: a non-exclusive, royalty-free perpetual license to install, use, modify, prepare derivative works, incorporate into other computer software, distribute, and sublicense such enhancements or derivative works thereof, in binary and source code form.

Index

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to NWB Storage

 		
 NWB:N Storage

 		
 What is the role of data storage?

 		
 How are NWB:N files stored?

 		
 Are backends other than HDF5 supported?

 		
 HDF5

 		
 Format Mapping

 		
 Key Mapping

 		
 Groups

 		
 Datasets

 		
 Attributes

 		
 Links

 		
 dtype mappings

 		
 Caching format specifications

 		
 Release Notes

 		
 NWB:N - v2.1.0

 		
 NWB:N - v2.0.1

 		
 NWB:N - v2.0.0

 		
 NWB:N - v1.0.x and earlier

 		
 Credits

 		
 Authors

 		
 NWB:N: Version 2.0.0 and later

 		
 Acknowledgments

 		
 Legal

 		
 Copyright

 		
 Licence

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

