
NurtchDocs Documentation
Release 0.0.1

Amit Rathi

Jun 23, 2018

Table of Contents:

1 Nurtch Platform 3
1.1 Install . 3
1.2 Creating New Runbook . 3
1.3 Editing Runbook . 3
1.4 Add Users to Nurtch . 4
1.5 Run SQL queries in Notebook . 4
1.6 Run shell commands in Notebook . 5

2 Rubix Library 7
2.1 Cloudwatch . 7
2.2 Elastic Container Service (ECS) . 9
2.3 Relational Database Service (RDS) . 10
2.4 Kubernetes . 11

i

ii

NurtchDocs Documentation, Release 0.0.1

is an internal documentation platform based on . It’s used by teams to write executable runbooks for quick incident
response. Notebook supports markdown text, images, executable code, and output all within the single document
served in a browser.

Nurtch is self hosted for complete control, security, and access to your infrastructure in VPC. All Notebooks are stored
in S3 bucket you configure. See this for installation.

While Nurtch is great for storing runbooks, it’s also suitable to share any internal documentation within team. You can
write onboarding guides, retrieve metrics, automate walk-up requests and such. This documentation is split into two
sections:

• Nurtch Platform We talk about the actual Jupyter UI that’s used to write, edit and execute Notebooks. We
provide ability to search documents, publish them to S3, store credentials, add team members to Nurtch
etc. We also talk about some useful features that are built into Jupyter Notebooks.

• Rubix Library Rubix ™ is a Python library that simplifies common DevOps actions by leveraging infras-
tructure APIs. Simply put, we abstract the complexity of communicating with AWS/Kubernetes/<Your
favourtute tool> APIs.

Here are some examples of Rubix methods:

– plot_metrics method fetches metrics data from cloudwatch and renders the graph in Notebook.

– rollback_deployment quickly rollbacks an ECS service to any prior version. First it communi-
cates with ECS to retrieve rollback candidates. Performs a rollback deployment to a version that you
select & shows deployment progress.

Table of Contents: 1

NurtchDocs Documentation, Release 0.0.1

2 Table of Contents:

CHAPTER 1

Nurtch Platform

1.1 Install

Here are for setting up Nurtch. Up to 10 Notebooks and unlimited users are free forever. Beyond that, see . To get in
touch, or .

1.2 Creating New Runbook

Once you are set up and logged into Nurtch, you can create Notebooks/plain text files/directories. Click New and
choose the appropriate option.

You can choose programming language while creating Notebooks. Thanks to Jupyter, Nurtch supports execution of .
Python kernel comes installed out-of-the-box. For other language kernels and we’ll help you with the build.

1.3 Editing Runbook

Any Notebook is opened in the viewing mode by default. You can view content, execute code cells, and see output.
Editing is disabled to avoid committing unintentional changes. Click on the EDIT button if you want to edit the

3

NurtchDocs Documentation, Release 0.0.1

Notebook.

Once editing is enabled you can modify the Notebook as you wish. After editing is done you can Preview the Note-
book, if you are satisfied with modifications then Publish the changes to S3. At any time you can Discard your changes
to go back to original version.

1.4 Add Users to Nurtch

It’s easy to invite your teammates to Nurtch. Go to the Admin tab after you login and click on Add Users To Nurtch.
Type in email addresses of users you want to add (separated by comma). Key in a temporary password for them to
login with.

Once added these users can login with their email address and the temporary password. They are forced to change the
password when they login for the first time. Note that, we do not send email invites via Nurtch to avoid you any SMTP
setup. Simply communicate the username (email) and temporary password to newly added users via your regular
means of communication.

1.5 Run SQL queries in Notebook

It’s super easy to connect to any sql database and run queries against it from the Notebook. There’s a that helps you
do it. See example below.

4 Chapter 1. Nurtch Platform

NurtchDocs Documentation, Release 0.0.1

1.6 Run shell commands in Notebook

You can run shell commands in the Notebook with the help of ! operator. You can also use %%bash magic to run
multi-line bash script. Commands are run on the server where Nurtch is hosted. You can also SSH onto a different
machine and run commands there from within the Notebook. See examples below.

1.6. Run shell commands in Notebook 5

NurtchDocs Documentation, Release 0.0.1

6 Chapter 1. Nurtch Platform

CHAPTER 2

Rubix Library

Rubix ™ is a Python library that simplifies common DevOps actions by leveraging infrastructure APIs.
Simply put, we abstract the complexity of communicating with AWS/Kubernetes/<Your favourtute tool>
APIs and presenting the result in Notebook. Explore the integrations below to know more.

There are lots of services/tools we would like to integrate with Rubix. We are adding new integrations ev-
eryday and deepening the existing ones. We are prioritizing integrations based on customer requirements.
if you are looking for specific integration and we’ll be happy to build it for you.

2.1 Cloudwatch

plot_metric(namespace, metric_name, **kwargs)
Fetch metric data from Cloudwatch and render it as a graph inside Notebook.

Parameters

• namespace (str) – The namespace of the metric e.g. AWS/EC2. All .

• metric_name (str) – Name of the metric e.g. Latency. Here’s a to list all possible
metrics for your namespace.

• **kwargs – These are optional. See below.

Keyword Arguments (Optional)

• start_time (datetime.datetime) Time from which to fetch metrics data. Defaults to
(end_time - 12 hours)

• end_time (datetime.datetime) Time until which to fetch metrics data. Defaults to
current time.

• statistics (str) Metric statistics for your graph e.g. Minimum, Maximum, Sum,
Average. All . Deaults to Average

• markers ([datetime.datetime]) Markers to indicate timestamp of significant events
e.g. you can fetch deployment times with this method and plot them as markers to

7

NurtchDocs Documentation, Release 0.0.1

see metrics’s corelation with deployment. Any marker not between start_time and
end_time is simply ignored. Defaults to [].

• dimensions (dict) A name/value pair that uniquely identifies a metric. See and examples
below. When not specified all metrics matching the namespace and metric_name
are graphed.

• aws_access_key_id (str) AWS access key of an IAM user to call cloudwatch API. De-
faults to environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method
by supplying this keyword argument.

• aws_secret_access_key (str) AWS secret access key of an IAM user to call cloudwatch
API. Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwrit-
ten per method by supplying this keyword argument.

• aws_region (str) AWS region for the resource whose metrics you are plotting. Defaults
to environment variable AWS_REGION. Can be overwritten per method by supplying this
keyword argument.

Examples

from rubix.aws.cloudwatch import plot_metric

Load balancer P90 latency with deployment time markers
plot_metric(namespace='AWS/ELB',

metric_name='Latency',
dimensions={'LoadBalancerName': 'prod-xyz-lb'},
markers=deployment_times,
statistics='p90')

Maximum CPU Utilization across EC2 for a specific time period
plot_metric(namespace='AWS/EC2',

metric_name='CPUUtilization',
start_time=datetime.datetime(2018, 04, 25),
end_time=datetime.datetime(2018, 04, 26)
statistics='Maximum')

Sample Usage and Output

8 Chapter 2. Rubix Library

NurtchDocs Documentation, Release 0.0.1

2.2 Elastic Container Service (ECS)

rollback_deployment(service, **kwargs)
Quickly rollback an ECS service to any prior version. This method first communicates with ECS to retrieve
rollback candidates (prior task definitions that you can rollback to). Performs a rollback deployment to a version
that you select. Shows deployment progress.

Parameters

• service (str) – The name of your ECS service.

• **kwargs – These are optional. See below.

Keyword Arguments (Optional)

• cluster (str) Name of the ECS cluster to which the service belongs. If the cluster name is
not given, ECS uses default cluster. We highly recommend putting your services inside
clusters and not using default cluster unless you are just experimenting.

• aws_access_key_id (str) AWS access key of an IAM user to call ECS APIs. Defaults to
environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method by sup-
plying this keyword argument.

• aws_secret_access_key (str) AWS secret access key of an IAM user to call ECS APIs.
Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwritten per
method by supplying this keyword argument.

• aws_region (str) AWS region where the service resides. Defaults to environment variable
AWS_REGION. Can be overwritten per method by supplying this keyword argument.

Examples

from rubix.aws.ecs import rollback_deployment

rollback_deployment(service='xyz-api', cluster='prod-cluster')

Sample Usage and Output

get_latest_deployment_status(service, **kwargs)
Retrieve metadata of last deployment on your ECS service. Metadata includes deployment time, de-
sired/pending/running counts, task definition etc.

Parameters

• service (str) – The name of your ECS service.

• **kwargs – These are optional. See below.

2.2. Elastic Container Service (ECS) 9

NurtchDocs Documentation, Release 0.0.1

Returns dict – See response section below.

Keyword Arguments (Optional)

• cluster (str) Name of the ECS cluster to which the service belongs. If the cluster name is
not given, ECS uses default cluster.

• aws_access_key_id (str) AWS access key of an IAM user to call ECS APIs. Defaults to
environment variable AWS_ACCESS_KEY_ID. Can be overwritten per method by sup-
plying this keyword argument.

• aws_secret_access_key (str) AWS secret access key of an IAM user to call ECS APIs.
Defaults to environment variable AWS_SECRET_ACCESS_KEY. Can be overwritten per
method by supplying this keyword argument.

• aws_region (str) AWS region where the service resides. Defaults to environment variable
AWS_REGION. Can be overwritten per method by supplying this keyword argument.

Response

• id (str) The ID of the deployment.

• taskDefinition (str) The most recent task definition that was specified for the service to
use.

• desiredCount (int) The most recent desired count of tasks that was specified for the ser-
vice to deploy or maintain.

• pendingCount (int) The number of tasks in the deployment that are in the PENDING
status.

• runningCount (int) The number of tasks in the deployment that are in the RUNNING
status.

• createdAt (datetime.datetime) The Unix time stamp for when the deployment was
created.

• updatedAt (datetime.datetime) The Unix time stamp for when the service was last
updated.

Examples

from rubix.aws.ecs import get_latest_deployment_status

get_latest_deployment_status(service='hello-world-service', cluster='prod-cluster
→˓')

Sample Usage and Output

2.3 Relational Database Service (RDS)

Work in progress. Stay tuned.

If you are simply looking for a way to run SQL queries, see Run SQL queries in Notebook.

10 Chapter 2. Rubix Library

NurtchDocs Documentation, Release 0.0.1

2.4 Kubernetes

Now you can operate Kubernetes cluster from Nurtch notebooks. You can either use the familiar kubectl commands
or use higher level APIs provided by Rubix library.

2.4.1 Setup

Once you login, go to the admin tab and upload Kubernetes config file. The file is typically located at ~/.kube/config.
Tip: You might need to press (CMD + Shift + .) on mac to show hidden files in the finder.

Once uploaded, wait for a minute for the config to propagate to all the nodes in your cluster. You can verify if the
config is propagated as shown below.

That’s it! Now you can use kubectl commands and rubix.kubernetes.* methods to operate your cluster (examples
below).

2.4.2 Command Line Usage

You can upload and use your existing scripts in the notebook or use one-off commands as shown in the examples
below.

• List all running services.

• See when deployments occurred in your cluster by checking replica sets.

• See the rollout history with kubectl rollout history <resource_name> and rollback to the version you wish.

2.4. Kubernetes 11

NurtchDocs Documentation, Release 0.0.1

• Check the status of your deployment rollout.

2.4.3 API Usage

get_latest_deployment_status(service_name, namespace=’default’, context=None)
Retrieve metadata of last deployment on your Kubernetes service. Metadata includes deployment time, de-
sired/available/current counts, container image etc.

Parameters

• service (str) – Name of your Kubernetes service.

• namespace (str) – Namespace under which your service is running, if using namespaces.

• context – Context under which your service is running, if using context. Since context
specifies the trio of (cluster, user, namespace) you don’t need to specify namespace sepa-
rately while using context.

Returns dict – See response section below.

Response

• desiredCount (int) The desired number of replicas of the application.

• availableCount (int) The number of replicas that are available to your users.

• currentCount (int) The number of replicas that are currently running.

• createdAt (datetime.datetime) The Unix time stamp for when the deployment was
created.

• containerImage (str) The name of container image + tag that got deployed.

Examples

from rubix.kubernetes import get_latest_deployment_status

get_latest_deployment_status(service_name='nurtch-1')

Sample Usage and Output

12 Chapter 2. Rubix Library

Index

G
get_latest_deployment_status() (built-in function), 9, 12

P
plot_metric() (built-in function), 7

R
rollback_deployment() (built-in function), 9

13

	Nurtch Platform
	Install
	Creating New Runbook
	Editing Runbook
	Add Users to Nurtch
	Run SQL queries in Notebook
	Run shell commands in Notebook

	Rubix Library
	Cloudwatch
	Elastic Container Service (ECS)
	Relational Database Service (RDS)
	Kubernetes

