
Numina Documentation
Release 0.15.dev0

Sergio Pascual, Nicolás Cardiel, Pablo Picazo-Sánchez

April 01, 2016

Contents

1 Numina User Guide 3

2 Numina Pipeline Creation Guide 11

3 Numina Reference 25

4 Glossary 33

Python Module Index 35

i

ii

Numina Documentation, Release 0.15.dev0

Welcome. This is the Documentation for Numina (version 0.15, date April 01, 2016),

Numina user guide: Numina User Guide

Numina pipeline creation guide: Numina Pipeline Creation Guide

Numina reference guide: Numina Reference.

Contents 1

Numina Documentation, Release 0.15.dev0

2 Contents

CHAPTER 1

Numina User Guide

This guide is intended as an introductory overview of Numina and explains how to install and make use of the most
important features. For detailed reference documentation of the functions and classes contained in the package, see
the Numina Reference.

Warning: This “User Guide” is still a work in progress; some of the material is not organized, and several aspects
of Numina are not yet covered sufficient detail.

1.1 Numina Installation

This is Numina, the data reduction package used by the following GTC instruments: EMIR, FRIDA, MEGARA and
MIRADAS.

Numina is distributed under GNU GPL, either version 3 of the License, or (at your option) any later version. See the
file LICENSE.txt for details.

1.1.1 Requirements

Python >= 2.7 is required. Additionally the following packages are required in order to work properly:

• setuptools

• six

• numpy

• scipy

• astropy

• PyYaml

• singledispatch

(only if Python < 3.4)

Additional packages are optionally required:

• sphinx to build the documentation

• pytest for testing

3

http://pythonhosted.org/setuptools/
http://pythonhosted.org/six/
http://numpy.scipy.org/
http://www.scipy.org
http://www.astropy.org
http://http://pyyaml.org/
https://pypi.python.org/pypi/singledispatch
http://sphinx.pocoo.org
http://pytest.org/latest/

Numina Documentation, Release 0.15.dev0

Webpage: https://guaix.fis.ucm.es/projects/numina

Maintainer: sergiopr@fis.ucm.es

1.1.2 Stable version

The latest stable version of Numina can be downloaded from https://pypi.python.org/pypi/numina/

To install Numina, use the standard installation procedure:

$ tar zxvf numina-X.Y.Z.tar.gz
$ cd numina-X.Y.Z
$ python setup.py install

The install command provides options to change the target directory. By default installation requires administrative
privileges. The different installation options can be checked with:

$ python setup.py install --help

1.1.3 Development version

The development version can be checked out with:

$ git clone https://github.com/guaix-ucm/numina.git

And then installed following the standard procedure:

$ cd numina
$ python setup.py install

1.1.4 Building the documentation

The Numina documentation is base on sphinx. With the package installed, the html documentation can be built from
the doc directory:

$ cd doc
$ make html

The documentation will be copied to a directory under build/sphinx.

The documentation can be built in different formats. The complete list will appear if you type make

1.2 Numina Deployment with Virtualenv

Virtualenv is a tool to build isolated Python environments.

It’s a great way to quickly test new libraries without cluttering your global site-packages or run multiple projects on
the same machine which depend on a particular library but not the same version of the library.

4 Chapter 1. Numina User Guide

https://guaix.fis.ucm.es/projects/numina
mailto:sergiopr@fis.ucm.es
https://pypi.python.org/pypi/numina/
http://sphinx.pocoo.org
https://virtualenv.pypa.io/

Numina Documentation, Release 0.15.dev0

1.2.1 Install Virtualenv

To install globally with pip (if you have pip 1.3 or greater installed globally):

$ sudo yum install python-virtualenv

For other ways of installing the package, check virtualenv_install webpage.

1.2.2 Create Virtual Environment

We urge reader to read the virtualenv_usage webpage to use and create new virtual environments.

As an example, a new virtual environment named numina is created where no packages but pip and setuptools are
installed:

$ virtualenv numina

1.2.3 Activate the Environment

Once the environment is created, you need to activate it. Just go to bin/ folder created under numina and load with
your command line interpreter the script bin/activate:

$ cd numina/bin
$ source activate
(numina) $

Notice that the prompt changes once you are activate the environment. To deactivate it just type deactivate:

(numina) $ deactivate
$

1.2.4 Numina Installation

Numina is registered in the Python Package Index. That means (among other things) that can be installed inside the
environment with one command:

(numina) $ pip install numina

The requirements of numina will be downloaded and installed inside the virtual environment automatically.

1.3 Numina Deployment in Solaris 10

Solaris 10 is the Operative System (OS) under a substantial part of the GTC Control System runs. The installation of
the Python stack in this OS is not trivial, so in the following a description of the required steps is provided.

1.3.1 Basic Tools Installation

Firstly a GNU compiler collection should be installed (compilers for C, C++ and Fortran). The opencsw project
provides precompiled binaries of these programs. Refer to the project’s documentation to setup opencsw in the system
and then install with:

1.3. Numina Deployment in Solaris 10 5

https://virtualenv.pypa.io/en/latest/installation.html
https://virtualenv.pypa.io/en/latest/userguide.html
http://www.opencsw.org/
http://www.opencsw.org/manual/for-administrators/getting-started.html#getting-started

Numina Documentation, Release 0.15.dev0

/opt/csw/bin/pkgutil -i CSWgcc4core
/opt/csw/bin/pkgutil -i CSWgcc4g++
/opt/csw/bin/pkgutil -i CSWgcc4gfortran

Additionally, both the Pyhton program and the developer tools can also be installed from opencsw

/opt/csw/bin/pkgutil -i CSWpython27
/opt/csw/bin/pkgutil -i CSWpython27-dev

1.3.2 ATLAS and LAPACK Installation

ATLAS is a linear algebra library. Numpy can be installed without any linear algebra library, but scipy can’t.

LAPACK provides Fortran routines for solving systems of simultaneous linear equations, least-squares solutions of
linear systems of equations, eigenvalue problems, and singular value problems.

ATLAS needs to be built with LAPACK support, so both libraries can be found at source code of ATLAS and source
code of LAPACK.

Once the source code of ATLAS and LAPACK are downloaded, the instructions to build them can be found at build
documentation which basically requires to setup a different directory to run the configure command in it and then
make install.

As an example, these configure and make lines are used in our development machine:

../configure --cc=/opt/csw/bin/gcc --shared --with-netlib-lapack-tarfile=/path/to/lapack-3.5.0.tar.gz --prefix=/opt/atlas
make
make install

The install step may require root privileges. The libraries and headers will be installed under some prefix (in our case,
/opt/atlas/include and /opt/atlas/lib).

1.3.3 Numpy Installation

Download the latest numpy source code from numpy’s webpage.

Numpy source distribution contains a file called site.cfg which describes the different types of linear algebra li-
braries present in the system. Copy site.cfg.example to site.cfg and edit the section containing the ATLAS
libraries. Everything in the file should be commented except the following

[atlas]
library_dirs = /opt/atlas/lib
include_dirs = /opt/atlas/include

The paths should point to the version of ATLAS installed in the system.

Other packages (such as scipy) will also use a site.cfg file. To avoid editing the same file again, copy site.cfg
to .numpy-site.cfg in the $HOME directory.

cp site.cfg $HOME/.numpy-site.cfg

After this configuration step, numpy should be built.

python setup.py build
python setup.py install --prefix /path/to/my/python/packages

The last step may require root privileges. Notice that you can use --user instead of --prefix for local packages.

6 Chapter 1. Numina User Guide

http://math-atlas.sourceforge.net/
http://www.netlib.org/lapack/
http://sourceforge.net/projects/math-atlas/files/Stable/
http://www.netlib.org/lapack/#_previous_release
http://www.netlib.org/lapack/#_previous_release
http://math-atlas.sourceforge.net/atlas_install/
http://math-atlas.sourceforge.net/atlas_install/
http://www.scipy.org/install.html#individual-binary-and-source-packages

Numina Documentation, Release 0.15.dev0

1.3.4 Scipy Installation

As of this writing, the last released version of scipy is 0.15.1 and it doesn’t work in Solaris 10 due to a bug 1.

This bug may be fixed in next stable release (check the release notes of scipy), but meanwhile a patch can be used.

Download the scipy 0.15.1 source code from scipy’s webpage. Then download the patch: scipy151-solaris10.patch.

Extract the source code and apply the patch with the command:

patch -p1 -u -d scipy-0.15.1 < scipy151-solaris10.patch

After this step, build and install scipy normally.

python setup.py build
python setup.py install --prefix /path/to/my/python/packages

During the build step, local .numpy-site.cfg will be read so the path to the ATLAS libraries will be used.

The prefix used to install scipy must be the same than the used with numpy. In general all python packages must be
installed under the same prefix.

1.3.5 Pip Installation

To install pip, download get-pip.py.

Then run the following:

python get-pip.py

Refer to https://pip.pypa.io/en/latest/installing.html#install-pip to more detailed documentation.

1.3.6 Numina Installation

Finally, numina can be installed directly using pip. Remember to set the same prefix used previously with numpy
and scipy.

pip install numina --prefix /path/to/my/python/packages

1.4 Command Line Interface

The numina script is the interface with the pipelines It is called like this:

$ numina [global-options] comands [comand-options]

The numina script has several options:

-d, --debug
Debug enabled, increases verbosity.

-l filename
A file con configuration options for logging.

1 https://github.com/scipy/scipy/issues/4704

1.4. Command Line Interface 7

https://github.com/scipy/scipy/issues/4704
http://scipy.org/install.html#individual-binary-and-source-packages
https://guaix.fis.ucm.es/~spr/scipy151-solaris10.patch
https://bootstrap.pypa.io/get-pip.py
https://pip.pypa.io/en/latest/installing.html#install-pip
https://github.com/scipy/scipy/issues/4704

Numina Documentation, Release 0.15.dev0

1.4.1 Options for run

The run subcommand processes the observing result with the appropriated reduction recipe.

It is called like this:

$ numina [global-options] run [comand-options] observation-result.yaml

--instrument ’name’
Name of one of the predefined instrument configurations.

--pipeline ’name’
Name of one of the predefined pipelines.

--requirements filename
File with the description of the parameters of the recipe.

--basedir path
File path used to resolve relative paths in the following options.

--datadir path
File path to the folder containing the pristine data to be processed.

--resultsdir path
File path to the directory where results are stored.

--workdir path
File path to the a directory where the recipe can write. Files in datadir are copied here.

--cleanup
Remove intermediate and temporal files created by the recipe.

observing_result filename
Filename contaning the description of the observation result.

1.4.2 Options for show-instruments

The show-instruments subcommand outputs information about the instruments with available pipelines.

It is called like this:

$ numina [global-options] show-instruments [options]

-o, --observing-modes
Show names and keys of Observing Modes in addition of instrument information.

name
Name of the instruments to show. If empty show all instruments.

1.4.3 Options for show-modes

The show-modes subcommand outputs information about the observing modes of the available instruments.

It is called like this:

$ numina [global-options] show-modes [options]

-i, --instrument name
Filter modes by instrument name.

8 Chapter 1. Numina User Guide

Numina Documentation, Release 0.15.dev0

name
Name of the observing mode to show. If empty show all observing modes.

1.4.4 Options for show-recipes

The show-recipes subcommand outputs information about the recipes of the available instruments.

It is called like this:

$ numina [global-options] show-recipes [options]

-i, --instrument name
Filter recipes by instrument name.

-t, --template
Generate a template file to be used a requirement file by numina run.

name
Name of the recipe to show. If empty show all recipes.

1.4. Command Line Interface 9

Numina Documentation, Release 0.15.dev0

10 Chapter 1. Numina User Guide

CHAPTER 2

Numina Pipeline Creation Guide

This guide is intended as an introductory overview of pipeline creation with Numina. For detailed reference documen-
tation of the functions and classes contained in the package, see the Numina Reference.

Warning: This “Pipeline Creation Guide” is still a work in progress; some of the material is not organized, and
several aspects of Numina are not covered in sufficient detail yet.

2.1 Numina Pipeline Concepts

2.1.1 Instrument

2.1.2 Observing Modes

Each Instrument has a list of predefined types of observations that can be carried out with it. Each Observing Mode is
defined by:

• The configuration of the Telescope

• The configuration of the Instrument

• The type of processing required by the images obtained durinf the observation

Some of the observing modes of a Instrument are Scientific, that is, modes devoted to obtain data to perform scientific
analysis. Other modes are devoted to Calibration; these modes produce data required to correct the scientific images
from the effects of the Instrument, the Telescope and the atmosphere.

2.1.3 Recipes

A recipe is a method to process the images obtained in a particular observing mode. Recipes in general require (as
inputs) the list of raw images obtained during the observation. Recipes can require other inputs (calibrations), and
those inputs can be the outputs of other recipes.

Images obtained in a particular mode are processed by one recipe.

11

Numina Documentation, Release 0.15.dev0

Mode 1 Mode 2

Recipe 1

...

Recipe 2

Mode N

... Recipe N

2.1.4 Pipelines

A pipeline represents a particular mapping between the observing modes and the reduction algorithms that process
each mode. Each instrument has at least one pipeline called default. It may have other pipelines for specific purposes.

12 Chapter 2. Numina Pipeline Creation Guide

Numina Documentation, Release 0.15.dev0

Observing
Modes

pipeline: "default" pipeline: "test"

Mode 1

Mode 2Recipe 1 Recipe 11

...Recipe 2 Recipe 12

Mode N... ...

Recipe N Recipe M

2.1.5 Products, Requirements and Data Types

A recipe announces its required inputs as Requirement and its outputs as Product.

Both Products and Requirements have a name and a type. Types can be plain Python types or defined by the developer.

2.1.6 Format of the input files

The default format of the input and output files is YAML, a data serialization language.

2.1. Numina Pipeline Concepts 13

http://www.yaml.org

Numina Documentation, Release 0.15.dev0

Format of the Observation Result file

This file contains the result of an observation. It represents an ObservationResult object.

The contents of the object are serialized as a dictionary with the following keys:

id: not required, integer, defaults to 1 Unique identifier of the observing block

instrument: required, string Name of the instrument, as it appears in the instrument file (see below)

mode: required, string Name of the observing mode

children: not required, list of integers, defaults to empty list Identifications of nested observing blocks

frames: required, list of file names List of raw images

id: 21
instrument: EMIR
mode: nb_image
children: []
frames:
- r0121.fits
- r0122.fits
- r0123.fits
- r0124.fits
- r0125.fits
- r0126.fits
- r0127.fits
- r0128.fits
- r0129.fits
- r0130.fits
- r0131.fits
- r0132.fits

Format of the requirement file (version 1)

version: 1
products:

EMIR:
- {id: 1, content: 'file1.fits', type: 'MasterFlat', tags: {'filter': 'J'}, ob: 200}
- {id: 4, content: 'file4.fits', type: 'MasterBias', tags: {'readmode': 'cds'}, ob: 400}
MEGARA:
- {id: 1, content: 'file1.fits', type: 'MasterFlat', tags: {'vph': 'LR1'}, ob: 1200}
- {id: 2, content: 'file2.yml', type: 'TraceMap', tags: {'vph': 'LR2', 'readmode': 'fast'}, ob: 1203}

requirements:
EMIR:
default:

TEST6:
pinhole_nominal_positions: [[0, 1], [0 , 1]]
box_half_size: 5

TEST9:
median_filter_size: 5

MEGARA:
default:

mos_image: {}

14 Chapter 2. Numina Pipeline Creation Guide

Numina Documentation, Release 0.15.dev0

Format of the requirement file

Warning: This section documents a deprecated format

Deprecated since version 0.14.0.

This file contains configuration parameters for the recipes that are not related to the particular instrument used.

The contents of the file are serialized as a dictionary with the following keys:

requirements: required, dictionary A dictionary of parameter names and values.

logger: optional, dictionary A dictionary used to configure the custom file logger

requirements:
master_bias: master_bias-1.fits
master_bpm: bpm.fits
master_dark: master_dark-1.fits
master_intensity_ff: master_flat.fits
nonlinearity: [1.0, 0.0]
subpixelization: 4
window:
- [800, 1500]
- [800, 1500]

logger:
logfile: processing.log
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
enabled: true

2.1.7 Generating template requirement files

Template requirement files can be generated by numina show-recipes The flag generates templates for the
named recipe or for all the available recipes if no name is passed.

For example:

$ numina show-recipes -t emir.recipes.DitheredImageRecipe
This is a numina 0.9.0 template file
for recipe 'emir.recipes.DitheredImageRecipe'
#
The following requirements are optional:
sources: None
master_bias: master_bias.fits
offsets: None
end of optional requirements
requirements:

check_photometry_actions: [warn, warn, default]
check_photometry_levels: [0.5, 0.8]
extinction: 0.0
iterations: 4
master_bpm: master_bpm.fits
master_dark: master_dark.fits
master_intensity_ff: master_intensity_ff.fits
nonlinearity: [1.0, 0.0]
sky_images: 5
sky_images_sep_time: 10

#products:
catalog: None

2.1. Numina Pipeline Concepts 15

Numina Documentation, Release 0.15.dev0

frame: frame.fits
#logger:
logfile: processing.log
format: "%(asctime)s - %(name)s - %(levelname)s - %(message)s"
enabled: true

The # character is a comment, so every line starting with it can safely removed. The names of FITS files in requirements
must be edited to point to existing files.

2.2 Numina Pipeline Example

This guide is intended as an introductory overview of the creation of instrument reduction pipelines with Numina. For
detailed reference documentation of the functions and classes contained in the package, see the Numina Reference.

Warning: This “Pipeline Creation Guide” is still a work in progress; some of the material is not organized, and
several aspects of Numina are not yet covered sufficient detail.

2.2.1 Execution environment of the Recipes

Recipes have different execution environments. Some recipes are designed to process observing modes required for
the observation. These modes are related to visualization, acquisition and focusing. The Recipes are integrated in the
GTC environment. We call these recipes the Data Factory Pipeline, (DFP).

Other group of recipes are devoted to scientific observing modes: imaging, spectroscopy and auxiliary calibrations.
These Recipes constitute the Data Reduction Pipeline, (DRP). The software is meant to be standalone, users shall
download the software and run it in their own computers, with reduction parameters and calibrations provided by the
instrument team.

Users of the DRP will use the simple Numina CLI. Users of the DFP shall interact with the software through the GTC
Inspector.

2.2.2 Instrument Reduction Pipeline Example

In the following sections we create an Instrument Reduction Pipeline for an instrument name CLODIA.

In order to make a new Instrument Reduction Pipeline visible to Numina and the GTC Control System you have to
create a full Python package that will contain the reduction recipes, data types and other processing code.

The creation of Python packages is described in detail (for example) in the Python Packaging User Guide.

Then, we create a Python package called clodiadrp with the following structure (we ignore files such as README or
LICENSE as they are not relevant here):

clodiadrp
|-- clodiadrp
| |-- __init__.py
|-- setup.py

From here the steps are:

1. Create a configuration yaml file.

2. Create a loader file.

16 Chapter 2. Numina Pipeline Creation Guide

http://python-packaging-user-guide.readthedocs.org

Numina Documentation, Release 0.15.dev0

3. Link the entry_point option in the setup.py with the loader file.

4. Create the Pipeline’s Recipes.

In the following we will continue with the same example as previously.

Configuration File

The configuration file contains basic information such as:

• the list of modes of the instrument

• the list of recipes of the instrument

• the mapping between recipes and modes.

In this example, we assume that CLODIA has three modes: Bias, Flat and Image. The first two modes are used for
pedestal and flat-field illumination correction. The third is the main scientific mode of the instrument.

Create a new yaml file in the root folder named drp.yaml.

name: CLODIA
configurations:

default: {}
modes:
-key: bias
name: Bias
summary: Bias mode
description: >
Full description of the Bias mode

-key: flat
name: Flat
summary: Flat mode
description: >
Full description of the Flat mode

-key: image
name: Image
summary: Image mode
description: >
Full description of the Image mode

pipelines:
default:
version: 1
recipes:

bias: clodiadrp.recipes.recipe
flat: clodiadrp.recipes.recipe
image: clodiadrp.recipes.recipe

The entry modes contains a list of the observing modes of the instrument. There are three: Bias, Flat and Image. Each
entry contains information about the mode. A name, a short summary and a multi-line description. The field key is
used to map the observing modes and the recipes, so key has to be unique and equal to only one value in each recipes
block under pipelines.

The entry pipelines contains only one pipeline, called default by convention. The pipeline contains recipes, each
related to one observing mode by means of the filed key. For the moment we haven’t developed any recipe, so the
value of each key (clodiadrp.recipes.recipe) doesn’t exist yet.

Note: This file has to be included in package_data inside setup.py to be distributed with the package, see Installing
Package Data for details.

2.2. Numina Pipeline Example 17

https://docs.python.org/3/distutils/setupscript.html#installing-package-data
https://docs.python.org/3/distutils/setupscript.html#installing-package-data

Numina Documentation, Release 0.15.dev0

Loader File

Create a new loader file in the root folder named loader.py with the following information:

import numina.core

def drp_load():
"""Entry point to load CLODIA DRP."""
return numina.core.drp_load('clodiadrp', 'drp.yaml')

Create entry point

Once we have created the loader.py file, the only thing we have to do is to make CLODIA visible to Numina/GCS. To
do so, just modify the setup.py file to add an entry point.

from setuptools import setup

setup(name='clodiadrp',
entry_points = {

'numina.pipeline.1': ['CLODIA = clodiadrp.loader:drp_load'],
},

)

Both the Numina CLI tool and GCS check this particular entry point. They call the function provided by the entry
point. The function drp_load() reads and parses the YAML file and creates an object of class InstrumentDRP
for each recipes it founds. These objects are used by Numina CLI and GCS to discover the available Instrument
Reduction Pipelines.

At this stage, the file layout is as follows:

clodiadrp
|-- clodiadrp
| |-- __init__.py
| |-- loader.py
| |-- drp.yaml
|-- setup.py

Note: In fact, it is not necessary to use a YAML file to contain the Instrument information. The only strict requirement
is that the function in the entry point ‘numina.pipeline.1’ must return a valid InstrumentDRP object. The use of a
YAML file and the drp_load() function is only a matter of convenience.

Recipes Creation

We haven’t created any reduction recipe yet. As a matter of organization, we suggest to create a dedicated subpackage
for recipes clodiadrp.recipes and a module for each recipe. The file layout is:

clodiadrp
|-- clodiadrp
| |-- __init__.py
| |-- loader.py
| |-- drp.yaml
| |-- recipes
| | |-- __init__.py
| | |-- bias.py

18 Chapter 2. Numina Pipeline Creation Guide

Numina Documentation, Release 0.15.dev0

| | |-- flat.py
| | |-- image.py
|-- setup.py

Recipes must provide three things: 1) a description of the inputs of the recipe; 2) a description of the products of the
recipe and 3) a run method which is in charge of executing the proccessing. Additionally, all Recipes must inherit
from BaseRecipe.

We start with a simple Bias recipe. Its purpose is to process images previously taken in Bias mode, that is, a series of
pedestal images. The recipe will receive the result of the observation and return a master bias image.

from numina.core import Product, Requirement
from numina.core import DataFrameType
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe

class Bias(BaseRecipe): (1)

obresult = Requirement(ObservationResultType) (2)
master_bias = Product(DataFrameType) (3)

def run(self, rinput): (4)

Here the raw images are processed
and a final image myframe is created

result = self.create_result(master_bias=myframe) (5)
return result

1. Each recipe must be a class derived from BaseRecipe

2. This recipe only requires the result of the observation. Each requirement is an object of the Requirement
class or any subclass of it. The type of the requirement is ObservationResultType, representing the result
of the observation.

3. This recipe only produces one result. Each product is an object of Product class. The type of the product is
given by DataFrameType, representing an image.

4. Each recipe must provide a run method. The method has only one argument that collects the values of all
inputs declared by the recipe. In this case, rinput has a member named obresult and can be accessed through
rinput.obresult which belongs to ObservationResult class.

5. The recipe must return an object that collects all the declared products of the recipe, of RecipeResult class.
This is accomplished internally by the create_result method. It will raise a run time exception if any of the
declared products are not provided.

We can now create the Flat recipe (inside flat.py). This recipe has two requirements, the observation result and a
master bias image (flat-field images require bias subtraction).

from numina.core import Product, Requirement
from numina.core import DataFrameType
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe

class Flat(BaseRecipe):

obresult = Requirement(ObservationResultType) (1)
master_bias = Requirement(DataFrameType) (2)
master_flat = Product(DataFrameType)

2.2. Numina Pipeline Example 19

Numina Documentation, Release 0.15.dev0

def run(self, rinput): (3)

Here the raw images are processed
and a final image myframe is created

result = self.create_result(master_flat=myframe) (4)
return result

1. This recipe only requires the result of the observation. Each requirement is an object of the Requirement
class or any subclass of it. The type of the requirement is ObservationResultType, representing the result
of the observation.

2. It also requires a master bias image which belongs to DataFrameType class (represents an image).

3. In this case, rinput has two members: 1) rinput.obresult of ObservationResult class and 2) a rin-
put.master_bias of DataFrame class

4. The arguments of create_result must be the same names used in the product definition.

Finally, the recipe for Image mode reduction (inside image.py) has three requirements, the observation result, a master
bias and a master flat images

from numina.core import Product, Requirement
from numina.core import DataFrameType
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe

class Image(BaseRecipe):

obresult = Requirement(ObservationResultType)
master_bias = Requirement(DataFrameType)
master_flat = Requirement(DataFrameType)
final = Product(DataFrameType)

def run(self, rinput): (1)

Here the raw images are processed
and a final image myframe is created

result = self.create_result(final=myframe)
return result

1. In this case, rinput will have three members rinput.obresult of ObservationResult class, rin-
put.master_bias of DataFrame class and rinput.master_flat of DataFrame class.

Note: It is not strictly required that the requirements and products names are consistent between recipes, although it
is highly recommended.

Now we must update drp.yaml to insert the full name of the recipes (package and class), as follows

name: CLODIA
configurations:

default: {}
modes:
-key: bias
name: Bias
summary: Bias mode
description: >

20 Chapter 2. Numina Pipeline Creation Guide

Numina Documentation, Release 0.15.dev0

Full description of the Bias mode
-key: flat
name: Flat
summary: Flat mode
description: >
Full description of the Flat mode

-key: image
name: Image
summary: Image mode
description: >
Full description of the Image mode

pipelines:
default:
version: 1
recipes:

bias: clodiadrp.recipes.bias.Bias
flat: clodiadrp.recipes.flat.Flat
image: clodiadrp.recipes.image.Image

Specialized data products

There is some information that is missing of our current setup. The products of some recipes are the inputs of others.
The master bias created by Bias is the input that Flat and Image require. To represent this situation we use specialized
data products. We start by adding a new module products:

clodiadrp
|-- clodiadrp
| |-- __init__.py
| |-- loader.py
| |-- products.py
| |-- drp.yaml
| |-- recipes
| | |-- __init__.py
| | |-- bias.py
| | |-- flat.py
| | |-- image.py
|-- setup.py

We have two types of images that are products of recipes that can be required by other recipes: master bias and
master flat. We represent this by creating two new types derived from DataFrameType (becasue the new types are
images) and DataProductTag (because the new types are products that must be handled by both Numina CLI and
GTC Control system) classes.

from numina.core.products import DataFrameType, DataProductTag

class MasterBias(DataFrameType, DataProductTag):
pass

class MasterFlat(DataFrameType, DataProductTag):
pass

Now we must modify our recipes as follows. First Bias

from numina.core import Product, Requirement
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe

2.2. Numina Pipeline Example 21

Numina Documentation, Release 0.15.dev0

from clodiadrp.products import MasterBias (1)

class Bias(BaseRecipe):

obresult = Requirement(ObservationResultType)
master_bias = Product(MasterBias) (2)

... (3)

1. Import the new type MasterBias.

2. Declare that our recipe produces MasterBias images.

3. run method remains unchanged.

Then Flat:

from numina.core import Product, Requirement
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe
from clodiadrp.products import MasterBias, MasterFlat

class Flat(BaseRecipe):

obresult = Requirement(ObservationResultType)
master_bias = Requirement(MasterBias) (1)
master_flat = Product(MasterFlat) (2)

... (3)

1. MasterBias is used as a requirement. This guaranties that the images provided here are those created by Bias
and no other.

2. Declare that our recipe produces MasterFlat images.

3. run method remains unchanged.

And finally Image:

from numina.core import Product, Requirement
from numina.core import DataFrameType
from numina.core.products import ObservationResultType
from numina.core.recipes import BaseRecipe
from clodiadrp.products import MasterBias, MasterFlat

class Image(BaseRecipe):

obresult = Requirement(ObservationResultType)
master_bias = Requirement(MasterBias) (1)
master_flat = Requirement(MasterFlat) (2)
final = Product(DataFrameType) (3)

... (4)

1. MasterBias is used as a requirement. This guaranties that the images provided here are those created by Bias
and no other.

2. MasterFlat is used as a requirement. This guaranties that the images provided here are those created by Flat
and no other.

3. Declare that our recipe produces Image images.

22 Chapter 2. Numina Pipeline Creation Guide

Numina Documentation, Release 0.15.dev0

4. run method remains unchanged.

2.3 DRP Data Types

Custom data types can be used as Requirements and Products by Recipes. New data types can be derived as follows.

2.3.1 Create a new DataType

New Data Types must derive from numina.core.DataType or one of its subclasses. In the constructor, we must declare
the base type of the objects ot this Data Product.

For example, a MasterBias Data Product is an image, so its base type is a DataFrame. A table of 2D coordinates will
have a numpy.ndarray base type.

In general, we are interested in defining new DataTypes for objects that will contain information that will be used as
inputs in different recipes. In this case, we must derive from numina.core.DataProductType.

As an example, we create a DataType that will store information about the trace of a spectrum. The information will
be stored in Python dict.

class TraceMap(DataProductType):
def __init__(self, default=None):

super(TraceMap, self).__init__(dict, default)

2.3.2 Construction of objects

The input of a recipe is created by inspecting the Recipe Requirements. The Recipe Loader is in charge of find-
ing an appropriated value for each requirement. The value is passed to Requirement.convert, that in turn calls
DataType.convert. The default implementation just returns in input object unchanged.

2.3.3 Loading and Storage with the command line Recipe Loader

Each Recipe Loader can implement its own mechanism to store and load Data Products. The Command Line Recipe
Loader uses text files in YAML format.

To define how a particular DataProduct is stored under the default Recipe Loader, two functions must be defined, a store
function and a load function. Then thse two functions must be registered with the global functions numina.store.dump
and numina.store.load.

from numina.store import dump, load

from .products import TraceMap

@dump.register(TraceMap)
def dump_tracemap(tag, obj, where):

filename = where.destination + '.yaml'

with open(filename, 'w') as fd:
yaml.dump(obj, fd)

return filename

2.3. DRP Data Types 23

Numina Documentation, Release 0.15.dev0

@load.register(TraceMap)
def load_tracemap(tag, obj):

with open(obj, 'r') as fd:
traces = yaml.load(fd)

return traces

In this example, tag is an argument of type TraceMap and obj is of type dict.

24 Chapter 2. Numina Pipeline Creation Guide

CHAPTER 3

Numina Reference

Release 0.15

Date April 01, 2016

Warning: This “Reference” is still a work in progress; some of the material is not organized, and several aspects
of Numina are not yet covered sufficient detail.

3.1 Numina modules

3.1.1 numina.array — Array manipulation

process_ramp(inp[, out=None, axis=2, ron=0.0, gain=1.0, nsig=4.0, dt=1.0, saturation=65631])
New in version 0.8.2.

Compute the result 2d array computing slopes in a 3d array or ramp.

Parameters

• inp – input array

• out – output array

• axis – unused

• ron – readout noise of the detector

• gain – gain of the detector

• nsig – rejection level to detect glitched and cosmic rays

• dt – time interval between exposures

• saturation – saturation level

Returns a 2d array

25

Numina Documentation, Release 0.15.dev0

3.1.2 numina.array.background — Background estimation

3.1.3 numina.array.blocks — Generation of blocks

3.1.4 numina.array.combine — Array combination

3.1.5 Combination methods in numina.array.combine

All these functions return a PyCapsule, that can be passed to generic_combine()

mean_method()
Mean method

median_method()
Median method

sigmaclip_method([low=0.0[, high=0.0]])
Sigmaclip method

Parameters

• low – Number of sigmas to reject under the mean

• high – Number of sigmas to reject over the mean

Raises ValueError if low or high are negative

quantileclip_method([fclip=0.0])
Quantile clip method

Parameters fclip – Fraction of points to reject on both ends

Raises ValueError if fclip is negative or greater than 0.4

minmax_method([nmin=0[, nmax=0]])
Min-max method

Parameters

• nmin – Number of minimum points to reject

• nmax – Number of maximum points to reject

Raises ValueError if nmin or nmax are negative

3.1.6 Extending generic_combine()

New combination methods can be implemented and used by generic_combine() The combine function expects
a PyCapsule object containing a pointer to a C function implementing the combination method.

int combine(double *data, double *weights, size_t size, double *out[3], void *func_data)
Operate on two arrays, containing data and weights. The result, its variance and the number of points used in
the calculation (useful when there is some kind of rejection) are stored in out[0], out[1] and out[2].

Parameters

• data – a pointer to an array containing the data

• weights – a pointer to an array containing weights

• size – the size of data and weights

• out – an array of pointers to the pixels in the result arrays

26 Chapter 3. Numina Reference

Numina Documentation, Release 0.15.dev0

• func_data – additional parameters of the function encoded as a void pointer

Returns 1 if operation succeeded, 0 in case of error.

If the function uses dynamically allocated data stored in func_data, we must also implement a function that deallocates
the data once it is used.

void destructor_function(PyObject* cobject)

Parameters

• cobject – the object owning dynamically allocated data

Simple combine method

As an example, I’m going to implement a combination method that returns the minimum of the input arrays. Let’s call
the method min_method

First, we implement the C function. I’m going to use some C++ here (it makes the code very simple).

int min_combine(double *data, double *weights, size_t size, double *out[3],
void *func_data) {

double* res = std::min_element(data, data + size);

*out[0] = *res;
// I'm not going to compute the variance for the minimum
// but it should go here

*out[1] = 0.0;

*out[2] = size;

return 1;
}

A destructor function is not needed in this case as we are not using func_data.

The next step is to build a Python extension. First we need to create a function returning the PyCapsule in C code
like this:

static PyObject *
py_method_min(PyObject *obj, PyObject *args) {

if (not PyArg_ParseTuple(args, "")) {
PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
return NULL;

}
return PyCapsule_New((void*)min_function, "numina.cmethod", NULL);

}

The string "numina.cmethod" is the name of the PyCapsule. It cannot be loadded unless it is the name expected
by the C code.

The code to load it in a module is like this:

static PyMethodDef mymod_methods[] = {
{"min_combine", (PyCFunction) py_method_min, METH_VARARGS, "Minimum method."},
...,
{ NULL, NULL, 0, NULL } /* sentinel */

};

PyMODINIT_FUNC
init_mymodule(void)

3.1. Numina modules 27

http://docs.python.org/c-api/structures.html#c.PyObject

Numina Documentation, Release 0.15.dev0

{
PyObject *m;
m = Py_InitModule("_mymodule", mymod_methods);

}

When compiled, this code created a file _mymodule.so that can be loaded by the Python interpreter. This module will
contain, among others, a min_combine function.

>>> from _mymodule import min_combine
>>> method = min_combine()
...
>>> o = generic_combine(method, arrays)

A combine method with parameters

A combine method with parameters follow a similar approach. Let’s say we want to implement a sigma-clipping
method. We need to pass the function a low and a high rejection limits. Both numbers are real numbers greater than
zero.

First, the Python function. I’m skipping error checking code hre.

static PyObject *
py_method_sigmaclip(PyObject *obj, PyObject *args) {

double low = 0.0;
double high = 0.0;
PyObject *cap = NULL;

if (!PyArg_ParseTuple(args, "dd", &low, &high)) {
PyErr_SetString(PyExc_RuntimeError, "invalid parameters");
return NULL;

}

cap = PyCapsule_New((void*) my_sigmaclip_function, "numina.cmethod", my_destructor);

/* Allocating space for the two parameters */
/* We use Python memory allocator */
double *funcdata = (double*)PyMem_Malloc(2 * sizeof(double));

funcdata[0] = low;
funcdata[1] = high;
PyCapsule_SetContext(cap, funcdata);
return cap;

}

Notice that in this case we construct the PyCObject using the same function than in the previouis case. The aditional
data is stored as Context.

The deallocator is simply:

void my_destructor_function(PyObject* cap) {
void* cdata = PyCapsule_GetContext(cap);
PyMem_Free(cdata);

}

and the combine function is:

int my_sigmaclip_function(double *data, double *weights, size_t size, double *out[3],
void *func_data) {

28 Chapter 3. Numina Reference

Numina Documentation, Release 0.15.dev0

double* fdata = (double*) func_data;
double slow = *fdata;
double shigh = *(fdata + 1);

/* Operations go here */

return 1;
}

Once the module is created and loaded, a sample session would be:

>>> from _mymodule import min_combine
>>> method = sigmaclip_combine(3.0, 3.0)
...
>>> o = generic_combine(method, arrays)

3.1.7 numina.array.cosmetics — Array cosmetics

3.1.8 numina.array.imsurfit — Image surface fitting

3.1.9 numina.array.nirproc — nIR preprocessing

3.1.10 numina.core — Core classes for Pipelines

3.1.11 numina.core.dataframe —

3.1.12 numina.core.oresult — Observation Result

3.1.13 numina.core.pipeline —

3.1.14 numina.core.pipelineload —

3.1.15 numina.core.products —

3.1.16 numina.core.recipeinout —

3.1.17 numina.core.recipes —

3.1.18 numina.core.dataholders —

3.1.19 numina.core.requirements —

3.1.20 numina.flow —

exception numina.flow.FlowError
Error base class for flows.

class numina.flow.ParallelFlow(nodeseq)
A flow where Nodes are executed in parallel.

class numina.flow.SerialFlow(nodeseq)
A flow where Nodes are executed sequentially.

3.1. Numina modules 29

Numina Documentation, Release 0.15.dev0

class numina.flow.node.AdaptorNode(work, ninputs=1, noutputs=1)
A Node that runs a function.

class numina.flow.node.IdNode
A Node that returns its inputs.

class numina.flow.node.Node(ninputs=1, noutputs=1)
An elemental operation in a Flow.

class numina.flow.node.OutputSelector(ninputs, indexes)
A Node that returns part of the results.

3.1.21 numina.exceptions — Numina exceptions

Exceptions for the numina package.

exception numina.exceptions.DetectorElapseError
Error in the clocking of a Detector.

exception numina.exceptions.DetectorReadoutError
Error in the readout of a Detector.

exception numina.exceptions.Error
Base class for exceptions in the numina package.

exception numina.exceptions.NoResultFound
No result found in a DAL query.

exception numina.exceptions.RecipeError
A non recoverable problem during recipe execution.

exception numina.exceptions.ValidationError
Error during validation of Recipe inputs and outputs.

3.1.22 numina.frame — Frame manipulation

3.1.23 numina.logger —

3.1.24 numina.core.qc — Quality Control for Numina

This moudle defines functions and classes which implement quality asses for Numina-based applications.

QA Levels

The numeric values of the QC levels are given in this table.

Level Numeric value
GOOD 100
FAIR 90
BAD 70

3.1.25 numina.treedict —

An implementation of hierarchical dictionary.

30 Chapter 3. Numina Reference

Numina Documentation, Release 0.15.dev0

3.1.26 numina.user — CLI interface

User command line interface of Numina.

3.1.27 numina.util —

3.1.28 numina.user.xdgdirs —

Implementation of some of freedesktop.org Base Directories.

The directories are defined here:

http://standards.freedesktop.org/basedir-spec/

We only require xdg_data_dirs and xdg_config_home

3.2 Indices and tables

• genindex

• modindex

• search

• Glossary

3.2. Indices and tables 31

http://standards.freedesktop.org/basedir-spec/

Numina Documentation, Release 0.15.dev0

32 Chapter 3. Numina Reference

CHAPTER 4

Glossary

DFP Data Factory Pipeline

DRP Data Reduction Pipeline

observing mode One of the prescribed ways of observing with an instrument

recipe A software object that processes the data obtained with a given observing mode of the instrument

33

Numina Documentation, Release 0.15.dev0

34 Chapter 4. Glossary

Python Module Index

e
numina.exceptions, 30

f
numina.flow, 29
numina.flow.node, 29

n
numina, 25

t
numina.treedict, 30

u
numina.user, 31
numina.user.xdgdirs, 31
numina.util, 31

35

Numina Documentation, Release 0.15.dev0

36 Python Module Index

Index

Symbols
–basedir path

numina-run command line option, 8
–cleanup

numina-run command line option, 8
–datadir path

numina-run command line option, 8
–instrument ’name’

numina-run command line option, 8
–pipeline ’name’

numina-run command line option, 8
–requirements filename

numina-run command line option, 8
–resultsdir path

numina-run command line option, 8
–workdir path

numina-run command line option, 8
-d, –debug

numina command line option, 7
-i, –instrument name

numina-show-modes command line option, 8
numina-show-recipes command line option, 9

-l filename
numina command line option, 7

-o, –observing-modes
numina-show-instruments command line option, 8

-t, –template
numina-show-recipes command line option, 9

A
AdaptorNode (class in numina.flow.node), 29

C
combine (C function), 26

D
destructor_function (C function), 27
DetectorElapseError, 30
DetectorReadoutError, 30
DFP, 33

DRP, 33

E
Error, 30

F
FlowError, 29

I
IdNode (class in numina.flow.node), 30

M
mean_method() (built-in function), 26
median_method() (built-in function), 26
minmax_method() (built-in function), 26

N
name

numina-show-instruments command line option, 8
numina-show-modes command line option, 8
numina-show-recipes command line option, 9

Node (class in numina.flow.node), 30
NoResultFound, 30
numina (module), 25
numina command line option

-d, –debug, 7
-l filename, 7

numina-run command line option
–basedir path, 8
–cleanup, 8
–datadir path, 8
–instrument ’name’, 8
–pipeline ’name’, 8
–requirements filename, 8
–resultsdir path, 8
–workdir path, 8
observing_result filename, 8

numina-show-instruments command line option
-o, –observing-modes, 8
name, 8

37

Numina Documentation, Release 0.15.dev0

numina-show-modes command line option
-i, –instrument name, 8
name, 8

numina-show-recipes command line option
-i, –instrument name, 9
-t, –template, 9
name, 9

numina.exceptions (module), 30
numina.flow (module), 29
numina.flow.node (module), 29
numina.treedict (module), 30
numina.user (module), 31
numina.user.xdgdirs (module), 31
numina.util (module), 31

O
observing mode, 33
observing_result filename

numina-run command line option, 8
OutputSelector (class in numina.flow.node), 30

P
ParallelFlow (class in numina.flow), 29
process_ramp() (built-in function), 25

Q
quantileclip_method() (built-in function), 26

R
recipe, 33
RecipeError, 30

S
SerialFlow (class in numina.flow), 29
sigmaclip_method() (built-in function), 26

V
ValidationError, 30

38 Index

	Numina User Guide
	Numina Pipeline Creation Guide
	Numina Reference
	Glossary
	Python Module Index

