

NumExpr Documentation Reference

Contents:

	How it works

	Expected performance

	NumExpr 2.0 User Guide
	Building

	Enabling Intel VML support

	Threadpool Configuration

	Usage Notes

	Datatypes supported internally

	Casting rules

	Supported operators

	Supported functions

	Notes

	Supported reduction operations

	General routines

	Intel’s VML specific support routines

	Authors

	License

	Performance of the Virtual Machine in NumExpr2.0
	Some benchmarks for best-case scenarios

	Conclusion

	NumExpr with Intel MKL
	A first benchmark

	More benchmarks (older)

	NumExpr API
	NumExpr()

	detect_number_of_cores()

	detect_number_of_threads()

	disassemble()

	evaluate()

	get_vml_version()

	re_evaluate()

	set_num_threads()

	set_vml_accuracy_mode()

	set_vml_num_threads()

	ncores

	nthreads

	MAX_THREADS

	version

	Tests submodule

	Release Notes
	Release notes for NumExpr 2.8 series

Indices and tables

	Index

	Module Index

	Search Page

How it works

The string passed to evaluate is compiled into an object representing the
expression and types of the arrays used by the function numexpr.

The expression is first compiled using Python’s compile function (this means
that the expressions have to be valid Python expressions). From this, the
variable names can be taken. The expression is then evaluated using instances
of a special object that keep track of what is being done to them, and which
builds up the parse tree of the expression.

This parse tree is then compiled to a bytecode program, which describes how to
perform the operation element-wise. The virtual machine uses “vector registers”:
each register is many elements wide (by default 4096 elements). The key to
NumExpr’s speed is handling chunks of elements at a time.

There are two extremes to evaluating an expression elementwise. You can do each
operation as arrays, returning temporary arrays. This is what you do when you
use NumPy: 2*a+3*b uses three temporary arrays as large as a or
b. This strategy wastes memory (a problem if your arrays are large),
and also is not a good use of cache memory: for large arrays, the results of
2*a and 3*b won’t be in cache when you do the add.

The other extreme is to loop over each element, as in:

for i in xrange(len(a)):
 c[i] = 2*a[i] + 3*b[i]

This doesn’t consume extra memory, and is good for the cache, but, if the
expression is not compiled to machine code, you will have a big case statement
(or a bunch of if’s) inside the loop, which adds a large overhead for each
element, and will hurt the branch-prediction used on the CPU.

numexpr uses a in-between approach. Arrays are handled as chunks (of
4096 elements) at a time, using a register machine. As Python code,
it looks something like this:

for i in xrange(0, len(a), 256):
 r0 = a[i:i+128]
 r1 = b[i:i+128]
 multiply(r0, 2, r2)
 multiply(r1, 3, r3)
 add(r2, r3, r2)
 c[i:i+128] = r2

(remember that the 3-arg form stores the result in the third argument,
instead of allocating a new array). This achieves a good balance between
cache and branch-prediction. And the virtual machine is written entirely in
C, which makes it faster than the Python above. Furthermore the virtual machine
is also multi-threaded, which allows for efficient parallelization of NumPy
operations.

There is some more information and history at:

http://www.bitsofbits.com/2014/09/21/numpy-micro-optimization-and-numexpr/

Expected performance

The range of speed-ups for NumExpr respect to NumPy can vary from 0.95x and 20x,
being 2x, 3x or 4x typical values, depending on the complexity of the
expression and the internal optimization of the operators used. The strided and
unaligned case has been optimized too, so if the expression contains such
arrays, the speed-up can increase significantly. Of course, you will need to
operate with large arrays (typically larger than the cache size of your CPU)
to see these improvements in performance.

Here there are some real timings. For the contiguous case:

In [1]: import numpy as np
In [2]: import numexpr as ne
In [3]: a = np.random.rand(1e6)
In [4]: b = np.random.rand(1e6)
In [5]: timeit 2*a + 3*b
10 loops, best of 3: 18.9 ms per loop
In [6]: timeit ne.evaluate("2*a + 3*b")
100 loops, best of 3: 5.83 ms per loop # 3.2x: medium speed-up (simple expr)
In [7]: timeit 2*a + b**10
10 loops, best of 3: 158 ms per loop
In [8]: timeit ne.evaluate("2*a + b**10")
100 loops, best of 3: 7.59 ms per loop # 20x: large speed-up due to optimised pow()

For unaligned arrays, the speed-ups can be even larger:

In [9]: a = np.empty(1e6, dtype="b1,f8")['f1']
In [10]: b = np.empty(1e6, dtype="b1,f8")['f1']
In [11]: a.flags.aligned, b.flags.aligned
Out[11]: (False, False)
In [12]: a[:] = np.random.rand(len(a))
In [13]: b[:] = np.random.rand(len(b))
In [14]: timeit 2*a + 3*b
10 loops, best of 3: 29.5 ms per loop
In [15]: timeit ne.evaluate("2*a + 3*b")
100 loops, best of 3: 7.46 ms per loop # ~ 4x speed-up

NumExpr 2.0 User Guide

The numexpr package supplies routines for the fast evaluation of
array expressions elementwise by using a vector-based virtual
machine.

Using it is simple:

>>> import numpy as np
>>> import numexpr as ne
>>> a = np.arange(10)
>>> b = np.arange(0, 20, 2)
>>> c = ne.evaluate("2*a+3*b")
>>> c
array([0, 8, 16, 24, 32, 40, 48, 56, 64, 72])

Building

NumExpr requires Python [http://python.org] 2.6 or greater, and NumPy [http://numpy.scipy.org] 1.7 or greater. It is
built in the standard Python way:

$ python setup.py build
$ python setup.py install

You must have a C-compiler (i.e. MSVC on Windows and GCC on Linux) installed.

Then change to a directory that is not the repository directory (e.g. /tmp) and
test numexpr with:

$ python -c "import numexpr; numexpr.test()"

Enabling Intel VML support

Starting from release 1.2 on, numexpr includes support for Intel’s VML
library. This allows for better performance on Intel architectures,
mainly when evaluating transcendental functions (trigonometrical,
exponential, …). It also enables numexpr using several CPU cores.

If you have Intel’s MKL (the library that embeds VML), just copy the
site.cfg.example that comes in the distribution to site.cfg and
edit the latter giving proper directions on how to find your MKL
libraries in your system. After doing this, you can proceed with the
usual building instructions listed above. Pay attention to the
messages during the building process in order to know whether MKL has
been detected or not. Finally, you can check the speed-ups on your
machine by running the bench/vml_timing.py script (you can play with
different parameters to the set_vml_accuracy_mode() and
set_vml_num_threads() functions in the script so as to see how it would
affect performance).

Threadpool Configuration

Threads are spawned at import-time, with the number being set by the environment
variable NUMEXPR_MAX_THREADS. The default maximum thread count is 64.
There is no advantage to spawning more threads than the number of virtual cores
available on the computing node. Practically NumExpr scales at large thread
count (> 8) only on very large matrices (> 2**22). Spawning large numbers
of threads is not free, and can increase import times for NumExpr or packages
that import it such as Pandas or PyTables.

If desired, the number of threads in the pool used can be adjusted via an
environment variable, NUMEXPR_NUM_THREADS (preferred) or OMP_NUM_THREADS.
Typically only setting NUMEXPR_MAX_THREADS is sufficient; the number of
threads used can be adjusted dynamically via numexpr.set_num_threads(int).
The number of threads can never exceed that set by NUMEXPR_MAX_THREADS.

If the user has not configured the environment prior to importing NumExpr, info
logs will be generated, and the initial number of threads _that are used_ will
be set to the number of cores detected in the system or 8, whichever is less.

Usage:

import os
os.environ['NUMEXPR_MAX_THREADS'] = '16'
os.environ['NUMEXPR_NUM_THREADS'] = '8'
import numexpr as ne

Usage Notes

NumExpr’s principal routine is:

evaluate(ex, local_dict=None, global_dict=None, optimization='aggressive', truediv='auto')

where ex is a string forming an expression, like "2*a+3*b". The
values for a and b will by default be taken from the calling
function’s frame (through the use of sys._getframe()).
Alternatively, they can be specified using the local_dict or
global_dict arguments, or passed as keyword arguments.

The optimization parameter can take the values 'moderate'
or 'aggressive'. 'moderate' means that no optimization is made
that can affect precision at all. 'aggressive' (the default) means that
the expression can be rewritten in a way that precision could be affected, but
normally very little. For example, in 'aggressive' mode, the
transformation x~**3 -> x*x*x is made, but not in
'moderate' mode.

The truediv parameter specifies whether the division is a ‘floor division’
(False) or a ‘true division’ (True). The default is the value of
__future__.division in the interpreter. See PEP 238 for details.

Expressions are cached, so reuse is fast. Arrays or scalars are
allowed for the variables, which must be of type 8-bit boolean (bool),
32-bit signed integer (int), 64-bit signed integer (long),
double-precision floating point number (float), 2x64-bit,
double-precision complex number (complex) or raw string of bytes
(str). If they are not in the previous set of types, they will be
properly upcasted for internal use (the result will be affected as
well). The arrays must all be the same size.

Datatypes supported internally

NumExpr operates internally only with the following types:

	8-bit boolean (bool)

	32-bit signed integer (int or int32)

	64-bit signed integer (long or int64)

	32-bit single-precision floating point number (float or float32)

	64-bit, double-precision floating point number (double or float64)

	2x64-bit, double-precision complex number (complex or complex128)

	Raw string of bytes (str in Python 2.7, bytes in Python 3+, numpy.str in both cases)

If the arrays in the expression does not match any of these types,
they will be upcasted to one of the above types (following the usual
type inference rules, see below). Have this in mind when doing
estimations about the memory consumption during the computation of
your expressions.

Also, the types in NumExpr conditions are somewhat stricter than those
of Python. For instance, the only valid constants for booleans are
True and False, and they are never automatically cast to integers.

Casting rules

Casting rules in NumExpr follow closely those of NumPy. However, for
implementation reasons, there are some known exceptions to this rule,
namely:

	When an array with type int8, uint8, int16 or
uint16 is used inside NumExpr, it is internally upcasted to an
int (or int32 in NumPy notation).

	When an array with type uint32 is used inside NumExpr, it is
internally upcasted to a long (or int64 in NumPy notation).

	A floating point function (e.g. sin) acting on int8 or
int16 types returns a float64 type, instead of the
float32 that is returned by NumPy functions. This is mainly due
to the absence of native int8 or int16 types in NumExpr.

	In operations implying a scalar and an array, the normal rules of casting
are used in NumExpr, in contrast with NumPy, where array types takes
priority. For example, if a is an array of type float32
and b is an scalar of type float64 (or Python float
type, which is equivalent), then a*b returns a float64 in
NumExpr, but a float32 in NumPy (i.e. array operands take priority
in determining the result type). If you need to keep the result a
float32, be sure you use a float32 scalar too.

Supported operators

NumExpr supports the set of operators listed below:

	Bitwise operators (and, or, not, xor): &, |, ~, ^

	Comparison operators: <, <=, ==, !=, >=, >

	Unary arithmetic operators: -

	Binary arithmetic operators: +, -, *, /, **, %, <<, >>

Supported functions

The next are the current supported set:

	where(bool, number1, number2): number – number1 if the bool condition
is true, number2 otherwise.

	{sin,cos,tan}(float|complex): float|complex – trigonometric sine,
cosine or tangent.

	{arcsin,arccos,arctan}(float|complex): float|complex – trigonometric
inverse sine, cosine or tangent.

	arctan2(float1, float2): float – trigonometric inverse tangent of
float1/float2.

	{sinh,cosh,tanh}(float|complex): float|complex – hyperbolic sine,
cosine or tangent.

	{arcsinh,arccosh,arctanh}(float|complex): float|complex – hyperbolic
inverse sine, cosine or tangent.

	{log,log10,log1p}(float|complex): float|complex – natural, base-10 and
log(1+x) logarithms.

	{exp,expm1}(float|complex): float|complex – exponential and exponential
minus one.

	sqrt(float|complex): float|complex – square root.

	abs(float|complex): float|complex – absolute value.

	conj(complex): complex – conjugate value.

	{real,imag}(complex): float – real or imaginary part of complex.

	complex(float, float): complex – complex from real and imaginary
parts.

	contains(np.str, np.str): bool – returns True for every string in op1 that
contains op2.

Notes

	abs() for complex inputs returns a complex output too. This is a
departure from NumPy where a float is returned instead. However,
NumExpr is not flexible enough yet so as to allow this to happen.
Meanwhile, if you want to mimic NumPy behaviour, you may want to select the
real part via the real function (e.g. real(abs(cplx))) or via the
real selector (e.g. abs(cplx).real).

More functions can be added if you need them. Note however that NumExpr 2.6 is
in maintenance mode and a new major revision is under development.

Supported reduction operations

The next are the current supported set:

	sum(number, axis=None): Sum of array elements over a given axis.
Negative axis are not supported.

	prod(number, axis=None): Product of array elements over a given axis.
Negative axis are not supported.

Note: because of internal limitations, reduction operations must appear the
last in the stack. If not, it will be issued an error like:

>>> ne.evaluate('sum(1)*(-1)')
RuntimeError: invalid program: reduction operations must occur last

General routines

	evaluate(expression, local_dict=None, global_dict=None,
optimization='aggressive', truediv='auto'): Evaluate a simple array
expression element-wise. See examples above.

	re_evaluate(local_dict=None): Re-evaluate the last array expression
without any check. This is meant for accelerating loops that are re-evaluating
the same expression repeatedly without changing anything else than the operands.
If unsure, use evaluate() which is safer.

	test(): Run all the tests in the test suite.

	print_versions(): Print the versions of software that numexpr relies on.

	set_num_threads(nthreads): Sets a number of threads to be used in operations.
Returns the previous setting for the number of threads. See note below to see
how the number of threads is set via environment variables.

If you are using VML, you may want to use set_vml_num_threads(nthreads) to
perform the parallel job with VML instead. However, you should get very
similar performance with VML-optimized functions, and VML’s parallelizer
cannot deal with common expressions like (x+1)*(x-2), while NumExpr’s
one can.

	detect_number_of_cores(): Detects the number of cores on a system.

Intel’s VML specific support routines

When compiled with Intel’s VML (Vector Math Library), you will be able
to use some additional functions for controlling its use. These are:

	set_vml_accuracy_mode(mode): Set the accuracy for VML operations.

The mode parameter can take the values:

	'low': Equivalent to VML_LA - low accuracy VML functions are called

	'high': Equivalent to VML_HA - high accuracy VML functions are called

	'fast': Equivalent to VML_EP - enhanced performance VML functions are called

It returns the previous mode.

This call is equivalent to the vmlSetMode() in the VML library. See:

http://www.intel.com/software/products/mkl/docs/webhelp/vml/vml_DataTypesAccuracyModes.html

for more info on the accuracy modes.

	set_vml_num_threads(nthreads): Suggests a maximum number of
threads to be used in VML operations.

This function is equivalent to the call
mkl_domain_set_num_threads(nthreads, MKL_VML) in the MKL library.
See:

http://www.intel.com/software/products/mkl/docs/webhelp/support/functn_mkl_domain_set_num_threads.html

for more info about it.

	get_vml_version(): Get the VML/MKL library version.

Authors

Numexpr was initially written by David Cooke, and extended to more
types by Tim Hochberg.

Francesc Alted contributed support for booleans and simple-precision
floating point types, efficient strided and unaligned array operations
and multi-threading code.

Ivan Vilata contributed support for strings.

Gregor Thalhammer implemented the support for Intel VML (Vector Math
Library).

Mark Wiebe added support for the new iterator in NumPy, which allows
for better performance in more scenarios (like broadcasting,
fortran-ordered or non-native byte orderings).

Gaëtan de Menten contributed important bug fixes and speed
enhancements.

Antonio Valentino contributed the port to Python 3.

Google Inc. contributed bug fixes.

David Cox improved readability of the Readme.

Robert A. McLeod contributed bug fixes and ported the documentation to
numexpr.readthedocs.io. He is the maintainer of the package since 2016.

License

NumExpr is distributed under the MIT [http://www.opensource.org/licenses/mit-license.php] license.

Performance of the Virtual Machine in NumExpr2.0

Numexpr 2.0 leverages a new virtual machine completely based on the new ndarray
iterator introduced in NumPy 1.6. This represents a nice combination of the
advantages of using the new iterator, while retaining the ability to avoid
copies in memory as well as the multi-threading capabilities of the previous
virtual machine (1.x series).

The increased performance of the new virtual machine can be seen in several
scenarios, like:

	Broadcasting. Expressions containing arrays that needs to be broadcasted,
will not need additional memory (i.e. they will be broadcasted on-the-fly).

	Non-native dtypes. These will be translated to native dtypes on-the-fly,
so there is not need to convert the whole arrays first.

	Fortran-ordered arrays. The new iterator will find the best path to
optimize operations on such arrays, without the need to transpose them first.

There is a drawback though: performance with small arrays suffers a bit because
of higher set-up times for the new virtual machine. See below for detailed
benchmarks.

Some benchmarks for best-case scenarios

Here you have some benchmarks of some scenarios where the new virtual machine
actually represents an advantage in terms of speed (also memory, but this is
not shown here). As you will see, the improvement is notable in many areas,
ranging from 3x to 6x faster operations.

Broadcasting

>>> a = np.arange(1e3)
>>> b = np.arange(1e6).reshape(1e3, 1e3)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 16.4 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.2 ms per loop

Non-native types

>>> a = np.arange(1e6, dtype=">f8")
>>> b = np.arange(1e6, dtype=">f8")

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 17.2 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 6.32 ms per loop

Fortran-ordered arrays

>>> a = np.arange(1e6).reshape(1e3, 1e3).copy('F')
>>> b = np.arange(1e6).reshape(1e3, 1e3).copy('F')

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10 loops, best of 3: 32.8 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.62 ms per loop

Mix of ‘non-native’ arrays, Fortran-ordered, and using broadcasting

>>> a = np.arange(1e3, dtype='>f8').copy('F')
>>> b = np.arange(1e6, dtype='>f8').reshape(1e3, 1e3).copy('F')

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10 loops, best of 3: 21.2 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.22 ms per loop

Longer setup-time

The only drawback of the new virtual machine is during the computation of
small arrays:

>>> a = np.arange(10)
>>> b = np.arange(10)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
10000 loops, best of 3: 22.1 µs per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
10000 loops, best of 3: 30.6 µs per loop

i.e. the new virtual machine takes a bit more time to set-up (around 8 µs in
this machine). However, this should be not too important because for such a
small arrays NumPy is always a better option:

>>> timeit c = a*(b+1)
100000 loops, best of 3: 4.16 µs per loop

And for arrays large enough the difference is negligible:

>>> a = np.arange(1e6)
>>> b = np.arange(1e6)

>>> timeit ne.evaluate("a*(b+1)") # 1.4.2
100 loops, best of 3: 5.77 ms per loop

>>> timeit ne.evaluate("a*(b+1)") # 2.0
100 loops, best of 3: 5.77 ms per loop

Conclusion

The new virtual machine introduced in numexpr 2.0 brings more performance in
many different scenarios (broadcast, non-native dtypes, Fortran-orderd arrays),
while it shows slightly worse performance for small arrays. However, as
numexpr is more geared to compute large arrays, the new virtual machine should
be good news for numexpr users in general.

NumExpr with Intel MKL

Numexpr has support for Intel’s VML (included in Intel’s MKL) in order to
accelerate the evaluation of transcendental functions on Intel CPUs. Here it
is a small example on the kind of improvement you may get by using it.

A first benchmark

Firstly, we are going to exercise how MKL performs when computing a couple of
simple expressions. One is a pure algebraic one: 2*y + 4*x and the other
contains transcendental functions: sin(x)**2 + cos(y)**2.

For this, we are going to use this worksheet [https://github.com/pydata/numexpr/blob/master/bench/vml_timing2.py]. I (Francesc Alted) ran this
benchmark on a Intel Xeon E3-1245 v5 @ 3.50GHz. Here are the results when
not using MKL:

NumPy version: 1.11.1
Time for an algebraic expression: 0.168 s / 6.641 GB/s
Time for a transcendental expression: 1.945 s / 0.575 GB/s
Numexpr version: 2.6.1. Using MKL: False
Time for an algebraic expression: 0.058 s / 19.116 GB/s
Time for a transcendental expression: 0.283 s / 3.950 GB/s

And now, using MKL:

NumPy version: 1.11.1
Time for an algebraic expression: 0.169 s / 6.606 GB/s
Time for a transcendental expression: 1.943 s / 0.575 GB/s
Numexpr version: 2.6.1. Using MKL: True
Time for an algebraic expression: 0.058 s / 19.153 GB/s
Time for a transcendental expression: 0.075 s / 14.975 GB/s

As you can see, numexpr using MKL can be up to 3.8x faster for the case of the
transcendental expression. Also, you can notice that the pure algebraic
expression is not accelerated at all. This is completely expected, as the
MKL is offering accelerations for CPU bounded functions (sin, cos, tan, exp,
log, sinh…) and not pure multiplications or adds.

Finally, note how numexpr+MKL can be up to 26x faster than using a pure NumPy
solution. And this was using a processor with just four physical cores; you
should expect more speedup as you throw more cores at that.

More benchmarks (older)

Numexpr & VML can both use several threads for doing computations. Let’s see
how performance improves by using 1 or 2 threads on a 2-core Intel CPU (Core2
E8400 @ 3.00GHz).

Using 1 thread

Here we have some benchmarks on the improvement of speed that Intel’s VML can
achieve. First, look at times by some easy expression containing sine and
cosine operations without using VML:

In [17]: ne.use_vml
Out[17]: False

In [18]: x = np.linspace(-1, 1, 1e6)

In [19]: timeit np.sin(x)**2+np.cos(x)**2
10 loops, best of 3: 43.1 ms per loop

In [20]: ne.set_num_threads(1)
Out[20]: 2

In [21]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
10 loops, best of 3: 29.5 ms per loop

and now using VML:

In [37]: ne.use_vml
Out[37]: True

In [38]: x = np.linspace(-1, 1, 1e6)

In [39]: timeit np.sin(x)**2+np.cos(x)**2
10 loops, best of 3: 42.8 ms per loop

In [40]: ne.set_num_threads(1)
Out[40]: 2

In [41]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 19.8 ms per loop

Hey, VML can accelerate computations by a 50% using a single CPU. That’s great!

Using 2 threads

First, look at the time of the non-VML numexpr when using 2 threads:

In [22]: ne.set_num_threads(2)
Out[22]: 1

In [23]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 15.3 ms per loop

OK. We’ve got an almost perfect 2x improvement in speed with regard to the 1
thread case. Let’s see about the VML-powered numexpr version:

In [43]: ne.set_num_threads(2)
Out[43]: 1

In [44]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 12.2 ms per loop

Ok, that’s about 1.6x improvement over the 1 thread VML computation, and
still a 25% of improvement over the non-VML version. Good, native numexpr
multithreading code really looks very efficient!

Numexpr native threading code vs VML’s one

You may already know that both numexpr and Intel’s VML do have support for
multithreaded computations, but you might be curious about which one is more
efficient, so here it goes a hint. First, using the VML multithreaded
implementation:

In [49]: ne.set_vml_num_threads(2)

In [50]: ne.set_num_threads(1)
Out[50]: 1

In [51]: ne.set_vml_num_threads(2)

In [52]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 16.8 ms per loop

and now, using the native numexpr threading code:

In [53]: ne.set_num_threads(2)
Out[53]: 1

In [54]: ne.set_vml_num_threads(1)

In [55]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 12 ms per loop

This means that numexpr’s native multithreaded code is about 40% faster than
VML’s for this case. So, in general, you should use the former with numexpr
(and this is the default actually).

Mixing numexpr’s and VML multithreading capabilities

Finally, you might be tempted to use both multithreading codes at the same
time, but you will be deceived about the improvement in performance:

In [57]: ne.set_vml_num_threads(2)

In [58]: timeit ne.evaluate('sin(x)**2+cos(x)**2')
100 loops, best of 3: 17.7 ms per loop

Your code actually performs much worse. That’s normal too because you are
trying to run 4 threads on a 2-core CPU. For CPUs with many cores, you may
want to try with different threading configurations, but as a rule of thumb,
numexpr’s one will generally win.

NumExpr API

Numexpr is a fast numerical expression evaluator for NumPy. With it,
expressions that operate on arrays (like “3*a+4*b”) are accelerated
and use less memory than doing the same calculation in Python.

See:

https://github.com/pydata/numexpr

for more info about it.

	
numexpr.NumExpr(ex, signature=(), **kwargs)

	Compile an expression built using E.<variable> variables to a function.

ex can also be specified as a string “2*a+3*b”.

The order of the input variables and their types can be specified using the
signature parameter, which is a list of (name, type) pairs.

Returns a NumExpr object containing the compiled function.

	
numexpr.detect_number_of_cores()

	Detects the number of cores on a system. Cribbed from pp.

	
numexpr.detect_number_of_threads()

	DEPRECATED: use _init_num_threads instead.
If this is modified, please update the note in: https://github.com/pydata/numexpr/wiki/Numexpr-Users-Guide

	
numexpr.disassemble(nex)

	Given a NumExpr object, return a list which is the program disassembled.

	
numexpr.evaluate(ex, local_dict=None, global_dict=None, out=None, order='K', casting='safe', **kwargs)

	Evaluate a simple array expression element-wise, using the new iterator.

ex is a string forming an expression, like “2*a+3*b”. The values for “a”
and “b” will by default be taken from the calling function’s frame
(through use of sys._getframe()). Alternatively, they can be specifed
using the ‘local_dict’ or ‘global_dict’ arguments.

	Parameters

	
	local_dictdictionary, optional
	A dictionary that replaces the local operands in current frame.

	global_dictdictionary, optional
	A dictionary that replaces the global operands in current frame.

	outNumPy array, optional
	An existing array where the outcome is going to be stored. Care is
required so that this array has the same shape and type than the
actual outcome of the computation. Useful for avoiding unnecessary
new array allocations.

	order{‘C’, ‘F’, ‘A’, or ‘K’}, optional
	Controls the iteration order for operands. ‘C’ means C order, ‘F’
means Fortran order, ‘A’ means ‘F’ order if all the arrays are
Fortran contiguous, ‘C’ order otherwise, and ‘K’ means as close to
the order the array elements appear in memory as possible. For
efficient computations, typically ‘K’eep order (the default) is
desired.

	casting{‘no’, ‘equiv’, ‘safe’, ‘same_kind’, ‘unsafe’}, optional
	Controls what kind of data casting may occur when making a copy or
buffering. Setting this to ‘unsafe’ is not recommended, as it can
adversely affect accumulations.

	‘no’ means the data types should not be cast at all.

	‘equiv’ means only byte-order changes are allowed.

	‘safe’ means only casts which can preserve values are allowed.

	‘same_kind’ means only safe casts or casts within a kind,
like float64 to float32, are allowed.

	‘unsafe’ means any data conversions may be done.

	
numexpr.get_vml_version()

	Get the VML/MKL library version.

	
numexpr.re_evaluate(local_dict=None)

	Re-evaluate the previous executed array expression without any check.

This is meant for accelerating loops that are re-evaluating the same
expression repeatedly without changing anything else than the operands.
If unsure, use evaluate() which is safer.

	Parameters

	
	local_dictdictionary, optional
	A dictionary that replaces the local operands in current frame.

	
numexpr.set_num_threads(nthreads)

	Sets a number of threads to be used in operations.

DEPRECATED: returns the previous setting for the number of threads.

During initialization time NumExpr sets this number to the number
of detected cores in the system (see detect_number_of_cores()).

	
numexpr.set_vml_accuracy_mode(mode)

	Set the accuracy mode for VML operations.

The mode parameter can take the values:
- ‘high’: high accuracy mode (HA), <1 least significant bit
- ‘low’: low accuracy mode (LA), typically 1-2 least significant bits
- ‘fast’: enhanced performance mode (EP)
- None: mode settings are ignored

This call is equivalent to the vmlSetMode() in the VML library.
See:

http://www.intel.com/software/products/mkl/docs/webhelp/vml/vml_DataTypesAccuracyModes.html

for more info on the accuracy modes.

Returns old accuracy settings.

	
numexpr.set_vml_num_threads(nthreads)

	Suggests a maximum number of threads to be used in VML operations.

This function is equivalent to the call
mkl_domain_set_num_threads(nthreads, MKL_DOMAIN_VML) in the MKL
library. See:

http://www.intel.com/software/products/mkl/docs/webhelp/support/functn_mkl_domain_set_num_threads.html

for more info about it.

	
numexpr.ncores

	The number of (virtual) cores detected.

	
numexpr.nthreads

	The number of threads currently in-use.

	
numexpr.MAX_THREADS

	The maximum number of threads, as set by the environment variable NUMEXPR_MAX_THREADS

	
numexpr.version

	The version of NumExpr.

Tests submodule

	
numexpr.tests.print_versions()

	Print the versions of software that numexpr relies on.

	
numexpr.tests.test(verbosity=1)

	Run all the tests in the test suite.

Release Notes

Release notes for NumExpr 2.8 series

Changes from 2.8.3 to 2.8.4

	Support for Python 3.11 has been added.

	Thanks to Tobias Hangleiter for an improved accuracy complex expm1 function.
While it is 25 % slower, it is significantly more accurate for the real component
over a range of values and matches NumPy outputs much more closely.

	Thanks to Kirill Kouzoubov for a range of fixes to constants parsing that was
resulting in duplicated constants of the same value.

	Thanks to Mark Harfouche for noticing that we no longer need numpy version
checks. packaging is no longer a requirement as a result.

Changes from 2.8.1 to 2.8.3

	2.8.2 was skipped due to an error in uploading to PyPi.

	Support for Python 3.6 has been dropped due to the need to substitute the flag
NPY_ARRAY_WRITEBACKIFCOPY for NPY_ARRAY_UPDATEIFCOPY. This flag change was
initiated in NumPy 1.14 and finalized in 1.23. The only changes were made to
cases where an unaligned constant was passed in with a pre-allocated output
variable:


	```
	x = np.empty(5, dtype=np.uint8)[1:].view(np.int32)
ne.evaluate(‘3’, out=x)





```


We think the risk of issues is very low, but if you are using NumExpr as a
expression evaluation tool you may want to write a test for this edge case.

	Thanks to Matt Einhorn (@matham) for improvements to the GitHub Actions build process to
add support for Apple Silicon and aarch64.

	Thanks to Biswapriyo Nath (@biswa96) for a fix to allow mingw builds on Windows.

	There have been some changes made to not import platform.machine() on sparc
but it is highly advised to upgrade to Python 3.9+ to avoid this issue with
the Python core package platform.

Changes from 2.8.0 to 2.8.1

	Fixed dependency list.

	Added pyproject.toml and modernize the setup.py script. Thanks to

Antonio Valentino for the PR.

Changes from 2.7.3 to 2.8.0

	Wheels for Python 3.10 are now provided.

	Support for Python 2.7 and 3.5 has been discontinued.

	All residual support for Python 2.X syntax has been removed, and therefore
the setup build no longer makes calls to the 2to3 script. The setup.py
has been refactored to be more modern.

	The examples on how to link into Intel VML/MKL/oneAPI now use the dynamic
library.

Changes from 2.7.2 to 2.7.3

	Pinned Numpy versions to minimum supported version in an effort to alleviate
issues seen in Windows machines not having the same MSVC runtime installed as
was used to build the wheels.

	ARMv8 wheels are now available, thanks to odidev for the pull request.

Changes from 2.7.1 to 2.7.2

	Support for Python 2.7 and 3.5 is deprecated and will be discontinued when
cibuildwheels and/or GitHub Actions no longer support these versions.

	Wheels are now provided for Python 3.7, 3.5, 3.6, 3.7, 3.8, and 3.9 via
GitHub Actions.

	The block size is now exported into the namespace as numexpr.__BLOCK_SIZE1__
as a read-only value.

	If using MKL, the number of threads for VML is no longer forced to 1 on loading
the module. Testing has shown that VML never runs in multi-threaded mode for
the default BLOCKSIZE1 of 1024 elements, and forcing to 1 can have deleterious
effects on NumPy functions when built with MKL. See issue #355 for details.

	Use of ndarray.tostring() in tests has been switch to ndarray.tobytes()
for future-proofing deprecation of .tostring(), if the version of NumPy is
greater than 1.9.

	Added a utility method get_num_threads that returns the (maximum) number of
threads currently in use by the virtual machine. The functionality of
set_num_threads whereby it returns the previous value has been deprecated
and will be removed in 2.8.X.

Changes from 2.7.0 to 2.7.1

	Python 3.8 support has been added.

	Python 3.4 support is discontinued.

	The tests are now compatible with NumPy 1.18.

	site.cfg.example was updated to use the libraries tag instead of mkl_libs,
which is recommended for newer version of NumPy.

Changes from 2.6.9 to 2.7.0

	The default number of ‘safe’ threads has been restored to the historical limit
of 8, if the environment variable “NUMEXPR_MAX_THREADS” has not been set.

	Thanks to @eltoder who fixed a small memory leak.

	Support for Python 2.6 has been dropped, as it is no longer available via
TravisCI.

	A typo in the test suite that had a less than rather than greater than symbol
in the NumPy version check has been corrected thanks to dhomeier.

	The file site.cfg was being accidently included in the sdists on PyPi.
It has now been excluded.

Changes from 2.6.8 to 2.6.9

	Thanks to Mike Toews for more robust handling of the thread-setting
environment variables.

	With Appveyor updating to Python 3.7.1, wheels for Python 3.7 are now
available in addition to those for other OSes.

Changes from 2.6.7 to 2.6.8

	Add check to make sure that f_locals is not actually f_globals when we
do the f_locals clear to avoid the #310 memory leak issue.

	Compare NumPy versions using distutils.version.LooseVersion to avoid issue
#312 when working with NumPy development versions.

	As part of multibuild, wheels for Python 3.7 for Linux and MacOSX are now
available on PyPI.

Changes from 2.6.6 to 2.6.7

	Thanks to Lehman Garrison for finding and fixing a bug that exhibited memory
leak-like behavior. The use in numexpr.evaluate of sys._getframe combined
with .f_locals from that frame object results an extra refcount on objects
in the frame that calls numexpr.evaluate, and not evaluate’s frame. So if
the calling frame remains in scope for a long time (such as a procedural
script where numexpr is called from the base frame) garbage collection would
never occur.

	Imports for the numexpr.test submodule were made lazy in the numexpr module.

Changes from 2.6.5 to 2.6.6

	Thanks to Mark Dickinson for a fix to the thread barrier that occassionally
suffered from spurious wakeups on MacOSX.

Changes from 2.6.4 to 2.6.5

	The maximum thread count can now be set at import-time by setting the
environment variable ‘NUMEXPR_MAX_THREADS’. The default number of
max threads was lowered from 4096 (which was deemed excessive) to 64.

	A number of imports were removed (pkg_resources) or made lazy (cpuinfo) in
order to speed load-times for downstream packages (such as pandas, sympy,
and tables). Import time has dropped from about 330 ms to 90 ms. Thanks to
Jason Sachs for pointing out the source of the slow-down.

	Thanks to Alvaro Lopez Ortega for updates to benchmarks to be compatible with
Python 3.

	Travis and AppVeyor now fail if the test module fails or errors.

	Thanks to Mahdi Ben Jelloul for a patch that removed a bug where constants
in where calls would raise a ValueError.

	Fixed a bug whereby all-constant power operations would lead to infinite
recursion.

Changes from 2.6.3 to 2.6.4

	Christoph Gohlke noticed a lack of coverage for the 2.6.3
floor and ceil functions for MKL that caused seg-faults in
test, so thanks to him for that.

Changes from 2.6.2 to 2.6.3

	Documentation now available at readthedocs.io [http://numexpr.readthedocs.io].

	Support for floor() and ceil() functions added by Caleb P. Burns.

	NumPy requirement increased from 1.6 to 1.7 due to changes in iterator
flags (#245).

	Sphinx autodocs support added for documentation on readthedocs.org.

	Fixed a bug where complex constants would return an error, fixing
problems with sympy when using NumExpr as a backend.

	Fix for #277 whereby arrays of shape (1,…) would be reduced as
if they were full reduction. Behavoir now matches that of NumPy.

	String literals are automatically encoded into ‘ascii’ bytes for
convience (see #281).

Changes from 2.6.1 to 2.6.2

	Updates to keep with API changes in newer NumPy versions (#228).
Thanks to Oleksandr Pavlyk.

	Removed several warnings (#226 and #227). Thanks to Oleksander Pavlyk.

	Fix bugs in function stringcontains() (#230). Thanks to Alexander Shadchin.

	Detection of the POWER processor (#232). Thanks to Breno Leitao.

	Fix pow result casting (#235). Thanks to Fernando Seiti Furusato.

	Fix integers to negative integer powers (#240). Thanks to Antonio Valentino.

	Detect numpy exceptions in expression evaluation (#240). Thanks to Antonio Valentino.

	Better handling of RC versions (#243). Thanks to Antonio Valentino.

Changes from 2.6.0 to 2.6.1

	Fixed a performance regression in some situations as consequence of
increasing too much the BLOCK_SIZE1 constant. After more careful
benchmarks (both in VML and non-VML modes), the value has been set
again to 1024 (down from 8192). The benchmarks have been made with
a relatively new processor (Intel Xeon E3-1245 v5 @ 3.50GHz), so
they should work well for a good range of processors again.

	Added NetBSD support to CPU detection. Thanks to Thomas Klausner.

Changes from 2.5.2 to 2.6.0

	Introduced a new re_evaluate() function for re-evaluating the
previous executed array expression without any check. This is meant
for accelerating loops that are re-evaluating the same expression
repeatedly without changing anything else than the operands. If
unsure, use evaluate() which is safer.

	The BLOCK_SIZE1 and BLOCK_SIZE2 constants have been re-checked in
order to find a value maximizing most of the benchmarks in bench/
directory. The new values (8192 and 16 respectively) give somewhat
better results (~5%) overall. The CPU used for fine tuning is a
relatively new Haswell processor (E3-1240 v3).

	The ‘–name’ flag for setup.py returning the name of the package
is honored now (issue #215).

Changes from 2.5.1 to 2.5.2

	conj() and abs() actually added as VML-powered functions, preventing
the same problems than log10() before (PR #212). Thanks to Tom Kooij
for the fix!

Changes from 2.5 to 2.5.1

	Fix for log10() and conj() functions. These produced wrong results
when numexpr was compiled with Intel’s MKL (which is a popular build
since Anaconda ships it by default) and non-contiguous data (issue
#210). Thanks to Arne de Laat and Tom Kooij for reporting and
providing a nice test unit.

	Fix that allows numexpr-powered apps to be profiled with pympler.
Thanks to @nbecker.

Changes from 2.4.6 to 2.5

	Added locking for allowing the use of numexpr in multi-threaded
callers (this does not prevent numexpr to use multiple cores
simultaneously). (PR #199, Antoine Pitrou, PR #200, Jenn Olsen).

	Added new min() and max() functions (PR #195, CJ Carey).

Changes from 2.4.5 to 2.4.6

	Fixed some UserWarnings in Solaris (PR #189, Graham Jones).

	Better handling of MSVC defines. (#168, Francesc Alted).

Changes from 2.4.4 to 2.4.5

	Undone a ‘fix’ for a harmless data race. (#185 Benedikt Reinartz,
Francesc Alted).

	Ignore NumPy warnings (overflow/underflow, divide by zero and
others) that only show up in Python3. Masking these warnings in
tests is fine because all the results are checked to be
valid. (#183, Francesc Alted).

Changes from 2.4.3 to 2.4.4

	Fix bad #ifdef for including stdint on Windows (PR #186, Mike Sarahan).

Changes from 2.4.3 to 2.4.4

	Honor OMP_NUM_THREADS as a fallback in case NUMEXPR_NUM_THREADS is not
set. Fixes #161. (PR #175, Stefan Erb).

	Added support for AppVeyor (PR #178 Andrea Bedini)

	Fix to allow numexpr to be imported after eventlet.monkey_patch(),
as suggested in #118 (PR #180 Ben Moran).

	Fix harmless data race that triggers false positives in ThreadSanitizer.
(PR #179, Clement Courbet).

	Fixed some string tests on Python 3 (PR #182, Antonio Valentino).

Changes from 2.4.2 to 2.4.3

	Comparisons with empty strings work correctly now. Fixes #121 and
PyTables #184.

Changes from 2.4.1 to 2.4.2

	Improved setup.py so that pip can query the name and version without
actually doing the installation. Thanks to Joris Borgdorff.

Changes from 2.4 to 2.4.1

	Added more configuration examples for compiling with MKL/VML
support. Thanks to Davide Del Vento.

	Symbol MKL_VML changed into MKL_DOMAIN_VML because the former is
deprecated in newer MKL. Thanks to Nick Papior Andersen.

	Better determination of methods in cpuinfo module. Thanks to Marc
Jofre.

	Improved NumPy version determination (handy for 1.10.0). Thanks
to Åsmund Hjulstad.

	Benchmarks run now with both Python 2 and Python 3. Thanks to Zoran
Plesivčak.

Changes from 2.3.1 to 2.4

	A new contains() function has been added for detecting substrings
in strings. Only plain strings (bytes) are supported for now. See
PR #135 and ticket #142. Thanks to Marcin Krol.

	New version of setup.py that allows better management of NumPy
dependency. See PR #133. Thanks to Aleks Bunin.

Changes from 2.3 to 2.3.1

	Added support for shift-left (<<) and shift-right (>>) binary operators.
See PR #131. Thanks to fish2000!

	Removed the rpath flag for the GCC linker, because it is probably
not necessary and it chokes to clang.

Changes from 2.2.2 to 2.3

	Site has been migrated to https://github.com/pydata/numexpr. All
new tickets and PR should be directed there.

	[ENH] A conj() function for computing the conjugate of complex
arrays has been added. Thanks to David Menéndez. See PR #125.

	[FIX] Fixed a DeprecationWarning derived of using oa_ndim – 0 and
op_axes – NULL when using NpyIter_AdvancedNew() and NumPy 1.8.
Thanks to Mark Wiebe for advise on how to fix this properly.

Changes from 2.2.1 to 2.2.2

	The copy_args argument of NumExpr function has been brought
lack. This has been mainly necessary for compatibility with
PyTables < 3.0, which I decided to continue to support. Fixed
#115.

	The __nonzero__ method in ExpressionNode class has been
commented out. This is also for compatibility with PyTables < 3.0.
See #24 for details.

	Fixed the type of some parameters in the C extension so that s390
architecture compiles. Fixes #116. Thank to Antonio Valentino for
reporting and the patch.

Changes from 2.2 to 2.2.1

	Fixes a secondary effect of “from numpy.testing import *”, where
division is imported now too, so only then necessary functions from
there are imported now. Thanks to Christoph Gohlke for the patch.

Changes from 2.1 to 2.2

	[LICENSE] Fixed a problem with the license of the
numexpr/win32/pthread.{c,h} files emulating pthreads on Windows
platforms. After persmission from the original authors is granted,
these files adopt the MIT license and can be redistributed without
problems. See issue #109 for details
(https://code.google.com/p/numexpr/issues/detail?id-110).

	[ENH] Improved the algorithm to decide the initial number of threads
to be used. This was necessary because by default, numexpr was
using a number of threads equal to the detected number of cores, and
this can be just too much for moder systems where this number can be
too high (and counterporductive for performance in many cases).
Now, the ‘NUMEXPR_NUM_THREADS’ environment variable is honored, and
in case this is not present, a maximum number of 8 threads are
setup initially. The new algorithm is fully described in the Users
Guide now in the note of ‘General routines’ section:
https://code.google.com/p/numexpr/wiki/UsersGuide#General_routines.
Closes #110.

	[ENH] numexpr.test() returns TestResult instead of None now.
Closes #111.

	[FIX] Modulus with zero with integers no longer crashes the
interpreter. It nows puts a zero in the result. Fixes #107.

	[API CLEAN] Removed copy_args argument of evaluate. This should
only be used by old versions of PyTables (< 3.0).

	[DOC] Documented the optimization and truediv flags of
evaluate in Users Guide
(https://code.google.com/p/numexpr/wiki/UsersGuide).

Changes from 2.0.1 to 2.1

	Dropped compatibility with Python < 2.6.

	Improve compatibiity with Python 3:

	switch from PyString to PyBytes API (requires Python >- 2.6).

	fixed incompatibilities regarding the int/long API

	use the Py_TYPE macro

	use the PyVarObject_HEAD_INIT macro instead of PyObject_HEAD_INIT

	Fixed several issues with different platforms not supporting
multithreading or subprocess properly (see tickets #75 and #77).

	Now, when trying to use pure Python boolean operators, ‘and’,
‘or’ and ‘not’, an error is issued suggesting that ‘&’, ‘|’ and
‘~’ should be used instead (fixes #24).

Changes from 2.0 to 2.0.1

	Added compatibility with Python 2.5 (2.4 is definitely not supported
anymore).

	numexpr.evaluate is fully documented now, in particular the new
out, order and casting parameters.

	Reduction operations are fully documented now.

	Negative axis in reductions are not supported (they have never been
actually), and a ValueError will be raised if they are used.

Changes from 1.x series to 2.0

	Added support for the new iterator object in NumPy 1.6 and later.

This allows for better performance with operations that implies
broadcast operations, fortran-ordered or non-native byte orderings.
Performance for other scenarios is preserved (except for very small
arrays).

	Division in numexpr is consistent now with Python/NumPy. Fixes #22
and #58.

	Constants like “2.” or “2.0” must be evaluated as float, not
integer. Fixes #59.

	evaluate() function has received a new parameter out for storing
the result in already allocated arrays. This is very useful when
dealing with large arrays, and a allocating new space for keeping
the result is not acceptable. Closes #56.

	Maximum number of threads raised from 256 to 4096. Machines with a
higher number of cores will still be able to import numexpr, but
limited to 4096 (which is an absurdly high number already).

Changes from 1.4.1 to 1.4.2

	Multithreaded operation is disabled for small arrays (< 32 KB).
This allows to remove the overhead of multithreading for such a
small arrays. Closes #36.

	Dividing int arrays by zero gives a 0 as result now (and not a
floating point exception anymore. This behaviour mimics NumPy.
Thanks to Gaëtan de Menten for the fix. Closes #37.

	When compiled with VML support, the number of threads is set to 1
for VML core, and to the number of cores for the native pthreads
implementation. This leads to much better performance. Closes #39.

	Fixed different issues with reduction operations (sum, prod).
The problem is that the threaded code does not work well for
broadcasting or reduction operations. Now, the serial code is used
in those cases. Closes #41.

	Optimization of “compilation phase” through a better hash. This can
lead up to a 25% of improvement when operating with variable
expressions over small arrays. Thanks to Gaëtan de Menten for the
patch. Closes #43.

	The set_num_threads now returns the number of previous thread
setting, as stated in the docstrings.

Changes from 1.4 to 1.4.1

	Mingw32 can also work with pthreads compatibility code for win32.
Fixes #31.

	Fixed a problem that used to happen when running Numexpr with
threads in subprocesses. It seems that threads needs to be
initialized whenever a subprocess is created. Fixes #33.

	The GIL (Global Interpreter Lock) is released during computations.
This should allow for better resource usage for multithreaded apps.
Fixes #35.

Changes from 1.3.1 to 1.4

	Added support for multi-threading in pure C. This is to avoid the
GIL and allows to squeeze the best performance in both multi-core
machines.

	David Cooke contributed a thorough refactorization of the opcode
machinery for the virtual machine. With this, it is really easy to
add more opcodes. See:

http://code.google.com/p/numexpr/issues/detail?id-28

as an example.

	Added a couple of opcodes to VM: where_bbbb and cast_ib. The first
allow to get boolean arrays out of the where function. The second
allows to cast a boolean array into an integer one. Thanks to
gdementen for his contribution.

	Fix negation of int64 numbers. Closes #25.

	Using a npy_intp datatype (instead of plain int) so as to be
able to manage arrays larger than 2 GB.

Changes from 1.3 to 1.3.1

	Due to an oversight, uint32 types were not properly supported.
That has been solved. Fixes #19.

	Function abs for computing the absolute value added. However, it
does not strictly follow NumPy conventions. See README.txt or
website docs for more info on this. Thanks to Pauli Virtanen for
the patch. Fixes #20.

Changes from 1.2 to 1.3

	A new type called internally float has been implemented so as to
be able to work natively with single-precision floating points.
This prevents the silent upcast to double types that was taking
place in previous versions, so allowing both an improved performance
and an optimal usage of memory for the single-precision
computations. However, the casting rules for floating point types
slightly differs from those of NumPy. See:

http://code.google.com/p/numexpr/wiki/Overview

or the README.txt file for more info on this issue.

	Support for Python 2.6 added.

	When linking with the MKL, added a ‘-rpath’ option to the link step
so that the paths to MKL libraries are automatically included into
the runtime library search path of the final package (i.e. the user
won’t need to update its LD_LIBRARY_PATH or LD_RUN_PATH environment
variables anymore). Fixes #16.

Changes from 1.1.1 to 1.2

	Support for Intel’s VML (Vector Math Library) added, normally
included in Intel’s MKL (Math Kernel Library). In addition, when
the VML support is on, several processors can be used in parallel
(see the new set_vml_num_threads() function). With that, the
computations of transcendental functions can be accelerated quite a
few. For example, typical speed-ups when using one single core for
contiguous arrays are 3x with peaks of 7.5x (for the pow() function).
When using 2 cores the speed-ups are around 4x and 14x respectively.
Closes #9.

	Some new VML-related functions have been added:

	set_vml_accuracy_mode(mode): Set the accuracy for VML operations.

	set_vml_num_threads(nthreads): Suggests a maximum number of
threads to be used in VML operations.

	get_vml_version(): Get the VML/MKL library version.

See the README.txt for more info about them.

	In order to easily allow the detection of the MKL, the setup.py has
been updated to use the numpy.distutils. So, if you are already
used to link NumPy/SciPy with MKL, then you will find that giving
VML support to numexpr works almost the same.

	A new print_versions() function has been made available. This
allows to quickly print the versions on which numexpr is based on.
Very handy for issue reporting purposes.

	The numexpr.numexpr compiler function has been renamed to
numexpr.NumExpr in order to avoid name collisions with the name of
the package (!). This function is mainly for internal use, so you
should not need to upgrade your existing numexpr scripts.

Changes from 1.1 to 1.1.1

	The case for multidimensional array operands is properly accelerated
now. Added a new benchmark (based on a script provided by Andrew
Collette, thanks!) for easily testing this case in the future.
Closes #12.

	Added a fix to avoid the caches in numexpr to grow too much. The
dictionary caches are kept now always with less than 256 entries.
Closes #11.

	The VERSION file is correctly copied now (it was not present for the
1.1 tar file, I don’t know exactly why). Closes #8.

Changes from 1.0 to 1.1

	Numexpr can work now in threaded environments. Fixes #2.

	The test suite can be run programmatically by using
numexpr.test().

	Support a more complete set of functions for expressions (including
those that are not supported by MSVC 7.1 compiler, like the inverse
hyperbolic or log1p and expm1 functions. The complete list now is:

	
	where(bool, number1, number2): number
	Number1 if the bool condition is true, number2 otherwise.

	
	{sin,cos,tan}(float|complex): float|complex
	Trigonometric sinus, cosinus or tangent.

	
	{arcsin,arccos,arctan}(float|complex): float|complex
	Trigonometric inverse sinus, cosinus or tangent.

	
	arctan2(float1, float2): float
	Trigonometric inverse tangent of float1/float2.

	
	{sinh,cosh,tanh}(float|complex): float|complex
	Hyperbolic sinus, cosinus or tangent.

	
	{arcsinh,arccosh,arctanh}(float|complex): float|complex
	Hyperbolic inverse sinus, cosinus or tangent.

	
	{log,log10,log1p}(float|complex): float|complex
	Natural, base-10 and log(1+x) logarithms.

	
	{exp,expm1}(float|complex): float|complex
	Exponential and exponential minus one.

	
	sqrt(float|complex): float|complex
	Square root.

	
	{real,imag}(complex): float
	Real or imaginary part of complex.

	
	complex(float, float): complex
	Complex from real and imaginary parts.

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 numexpr	

 	
 	
 numexpr.tests	

Index

 D
 | E
 | G
 | M
 | N
 | P
 | R
 | S
 | T
 | V

D

 	
 	detect_number_of_cores() (in module numexpr)

 	
 	detect_number_of_threads() (in module numexpr)

 	disassemble() (in module numexpr)

E

 	
 	evaluate() (in module numexpr)

G

 	
 	get_vml_version() (in module numexpr)

M

 	
 	MAX_THREADS (in module numexpr)

 	
 module

 	numexpr

 	numexpr.tests

N

 	
 	ncores (in module numexpr)

 	nthreads (in module numexpr)

 	
 numexpr

 	module

 	
 	NumExpr() (in module numexpr)

 	
 numexpr.tests

 	module

P

 	
 	print_versions() (in module numexpr.tests)

R

 	
 	re_evaluate() (in module numexpr)

S

 	
 	set_num_threads() (in module numexpr)

 	
 	set_vml_accuracy_mode() (in module numexpr)

 	set_vml_num_threads() (in module numexpr)

T

 	
 	test() (in module numexpr.tests)

V

 	
 	version (in module numexpr)

 nav.xhtml

 Table of Contents

 		
 NumExpr Documentation Reference

 		
 How it works

 		
 Expected performance

 		
 NumExpr 2.0 User Guide

 		
 Building

 		
 Enabling Intel VML support

 		
 Threadpool Configuration

 		
 Usage Notes

 		
 Datatypes supported internally

 		
 Casting rules

 		
 Supported operators

 		
 Supported functions

 		
 Notes

 		
 Supported reduction operations

 		
 General routines

 		
 Intel’s VML specific support routines

 		
 Authors

 		
 License

 		
 Performance of the Virtual Machine in NumExpr2.0

 		
 Some benchmarks for best-case scenarios

 		
 Broadcasting

 		
 Non-native types

 		
 Fortran-ordered arrays

 		
 Mix of ‘non-native’ arrays, Fortran-ordered, and using broadcasting

 		
 Longer setup-time

 		
 Conclusion

 		
 NumExpr with Intel MKL

 		
 A first benchmark

 		
 More benchmarks (older)

 		
 Using 1 thread

 		
 Using 2 threads

 		
 Numexpr native threading code vs VML’s one

 		
 Mixing numexpr’s and VML multithreading capabilities

 		
 NumExpr API

 		
 NumExpr()

 		
 detect_number_of_cores()

 		
 detect_number_of_threads()

 		
 disassemble()

 		
 evaluate()

 		
 get_vml_version()

 		
 re_evaluate()

 		
 set_num_threads()

 		
 set_vml_accuracy_mode()

 		
 set_vml_num_threads()

 		
 ncores

 		
 nthreads

 		
 MAX_THREADS

 		
 version

 		
 Tests submodule

 		
 print_versions()

 		
 test()

 		
 Release Notes

 		
 Release notes for NumExpr 2.8 series

 		
 Changes from 2.8.3 to 2.8.4

 		
 Changes from 2.8.1 to 2.8.3

 		
 Changes from 2.8.0 to 2.8.1

 		
 Changes from 2.7.3 to 2.8.0

 		
 Changes from 2.7.2 to 2.7.3

 		
 Changes from 2.7.1 to 2.7.2

 		
 Changes from 2.7.0 to 2.7.1

 		
 Changes from 2.6.9 to 2.7.0

 		
 Changes from 2.6.8 to 2.6.9

 		
 Changes from 2.6.7 to 2.6.8

 		
 Changes from 2.6.6 to 2.6.7

 		
 Changes from 2.6.5 to 2.6.6

 		
 Changes from 2.6.4 to 2.6.5

 		
 Changes from 2.6.3 to 2.6.4

 		
 Changes from 2.6.2 to 2.6.3

 		
 Changes from 2.6.1 to 2.6.2

 		
 Changes from 2.6.0 to 2.6.1

 		
 Changes from 2.5.2 to 2.6.0

 		
 Changes from 2.5.1 to 2.5.2

 		
 Changes from 2.5 to 2.5.1

 		
 Changes from 2.4.6 to 2.5

 		
 Changes from 2.4.5 to 2.4.6

 		
 Changes from 2.4.4 to 2.4.5

 		
 Changes from 2.4.3 to 2.4.4

 		
 Changes from 2.4.3 to 2.4.4

 		
 Changes from 2.4.2 to 2.4.3

 		
 Changes from 2.4.1 to 2.4.2

 		
 Changes from 2.4 to 2.4.1

 		
 Changes from 2.3.1 to 2.4

 		
 Changes from 2.3 to 2.3.1

 		
 Changes from 2.2.2 to 2.3

 		
 Changes from 2.2.1 to 2.2.2

 		
 Changes from 2.2 to 2.2.1

 		
 Changes from 2.1 to 2.2

 		
 Changes from 2.0.1 to 2.1

 		
 Changes from 2.0 to 2.0.1

 		
 Changes from 1.x series to 2.0

 		
 Changes from 1.4.1 to 1.4.2

 		
 Changes from 1.4 to 1.4.1

 		
 Changes from 1.3.1 to 1.4

 		
 Changes from 1.3 to 1.3.1

 		
 Changes from 1.2 to 1.3

 		
 Changes from 1.1.1 to 1.2

 		
 Changes from 1.1 to 1.1.1

 		
 Changes from 1.0 to 1.1

_static/minus.png

_static/plus.png

_static/file.png

