

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Installation

	Using the Installer

	Composer

	Create Project

	Just Core

	Cloning the Repository

[bookmark: using-installer]

Using the Installer

composer global require "nukacode/installer=~1.0"

nukacode new <directory>

You can use the --slim option at the end to get a minimal version.

The full version comes with nukacode core, menu and users. The slim variant comes with only core and menu.

[bookmark: composer]

Composer

[bookmark: create-project]

Create Project

composer create-project nukacode/nukacode <path>

Using NukaCode it will pull in Core and Menu automatically.

[bookmark: just-core]

Just Core

composer require nukacode/core:~2.0

[bookmark: cloning-repository]

Cloning the Repository

git clone git@github.com:NukaCode/NukaCode.git ./

Configuration

Service Providers

Add the following service providers to configs/app.php.

 'NukaCode\Core\CoreServiceProvider',
 'NukaCode\Core\View\ViewServiceProvider',

Configs/Migrations/Seeds

Once that is done, you can publish the configs and migrations.

php artisan vendor:publish

This will create a nukacode-core.php in your config folder and add all the migrations and seeds inside your database/
folders.

BaseController

Introduction

The NukCode BaseController class adds a lot of extra functionality to help with common tasks. To use it you should have
your Controller class (the one all of your other controllers extend) extend NukaCode\Core\Http\Controllers\BaseController.

Make sure to always call parent::__construct() if you overload the __construct() method.

Blade Syntax

The base controller allows you to reset blade syntax back to the Laravel 4 version. You can do this by called
$this->resetBladeSyntax() in any controller method.

If called, {{ }} is escaped text and {{{ }}} is non-escaped.

Auto View Resolution

By default, your controller should always call return $this->view() at the end. This tells the controller to find your
view. This is done one of three ways.

Manually

You can specify your view (and your layout) in the method itself. $this->view('view.path', 'layout.path'). If you set
either it will use that and ignore any next steps pertaining to it. So if you set the view, it will not try to find a view
in the config or automatically. If you set the layout, it will not look to the layoutOptions[] array.

Through configuration

When you called vendor:publish, a config/view-routing.php file was created. This file allows you to specify a specific
view for a controller->method. For example, if you wanted the AuthController's register method to point to a view at
register.index, you could add the following.

return [
 'App\Http\Controllers\AuthController' => [
 'register' => 'register.index',
],
];

Now, when you call $this->view() on that method, it will see this config and load the register.index view.

Using the auto resolver

If none of the above have been done, this package will find the view for you. This will look at your route to figure out
where the view likely is by using any prefixes, the controller name and the method name.

For example, if you were calling the create() method on the PostController, NukaCode will presume that your view will
be in views/post/create.blade.php.

This feature does take into account prefixes used in your routes. If you have prefixes set, it will grab all of them that
lead to this route and check if folders exist for them.

setViewData

This method allows you to pass data to the view. It accepts either a key/value pair of parameters or it will accept PHP's
compact() function.

$this->setViewData('user', User::find($userId);
$this->setViewData(compact('user'));

All of these will send a variable named $user to the view.

setJavascriptData

This method allows you to pass data directly to javascript. It accepts either a key/value pair of parameters or it will accept PHP's
compact() function. You can access this in your javascript by using your set namespace followed by the variable name.

You can set your namespace in app/config/javascript.php or in you .env file using the key JS_NAMESPACE.

In your controller:

<?php

$this->setJavascriptData('user', User::find($userId);
$this->setJavascriptData(compact('user'));

All of these will send a variable named js_namespace.user to javascript.

In your javascript:

let user = js_namespace.user

BaseModel

Introduction

The NukCode BaseModel class adds a lot of extra functionality to help with common tasks. To use it you should have
your Model class (the one all of your other models extend) extend NukaCode\Core\Models\BaseModel.

The Collection

All NukaCode models use NukaCode\Database\Collection for their default collection. You can read more about them
here.

If you want to opt out of this, set $nukaCollections to false on your models.

Presenters

Core uses laracasts\presenter to handle the Presenter set up for a model. To use it, set your model's
$presenter property to the full class name (Including namespace) of the presenter.

protected $presenter = \App\Presenters\ModelPresenter::class;

Observers

To set up Observers, set the $observer property on your model. Like presenters, this should be the full
class name including namespace.

This observer will be called in the models boot method. If you need to do anything inside the boot method make sure
to call the parent.

protected static $observer = \App\Models\Observers\ModelObserver::class;

Unique ID / Unique String

If you want to add a unique id to your model, Core will help with this. It can work one of two ways.

	If it detects that your primaryKey contains the word unique in the column name, it will automatically set it to a
unique string when a model is created.

	If you set a column name in the $uniqueStringColumns array on your model, anything in that array will have a unique
string injected into it when a model is created.

You can set the string size by changing the $uniqueStringLimit property on your model. It defaults to 10.

Scopes

BaseModel adds a few common scopes to make things easier.

orderByCreatedAt

This will order the models by the created_at column in ascending order.

orderByNameAsc

This will order the models by the name column in ascending order.

active

This will limit the results of a query to only those with active_flag set to 1.

inactive

This will limit the results of a query to only those with active_flag set to 0.

View Auto Resolution

Core comes with a helper to auto resolve views for you. It does this automatically, but each part can be overridden
(See BaseController for info on how).

How it works

When the controller loads, it calls ViewBuilder and begins the process of figuring out what layout and view to use.

Anything in here is able to be overloaded. You can also completely stop this in it's tracks by overloading BaseController's
__construct() in your controllers and not calling parent::__construct().

Layouts

The layout is determined very simply by whether or not the call is ajax. If it is, it grabs the $layoutOptions['ajax']
layout, otherwise it looks for $layoutOptions['default'].

See setViewLayout() for information on how you can overload the auto resolved layout.

Views

The view is determined by a number of factors. The controller, the action and the prefix. Assuming that no prefixes are
used, the view will be controller.action. (ex: HomeController@index would become home.index).

The methods strip Controller from the controller name and any HTTP verb from the beginning of the action name (get, post,
put, etc.).

If you are using prefixes, the methods will concat all the prefixes into a single dot notation string. It will then remove
the controller name from the prefix if it finds it. (ie: If you have a prefix as admin.user and the controller is
UserController, it will remove user from the prefix).

The controller name is only removed if it was the last prefix.

If no view is found using the prefix, it will drop off one part of the dot notation at a time trying to find a valid view.So if your prefix was admin.user.dashboard and your view was in views/admin/user it would still find it since it would
drop dashboard after it didn't find an existing view.

Route::group(['prefix' => 'admin'], function () {
 Route::group(['prefix' => 'home'], function () {
 Route::group(['prefix' => 'dashboard'], function () {
 Route::get('/', [
 'as' => 'admin.home.index',
 'uses' => 'HomeController@index'
]);
 });
 });
});

In the above example, core would look for a view at views/admin/home/dashboard/index.blade.php. When it doesn't find
one there, it will look at views/admin/home/index.blade.php. Since the controller name matched the last prefix, it skipped
looking in views/admin/home/home/index.blade.php.

If no view was found there, it would have looked for one last view in views/home/index.blade.php. If none is found
there, it will throw a ViewNotFound exception.

You can call viewBuilder()->debug() at any time to get a display of what was checked. You will get an output similar
to the following.

ViewModel {#231 ▼
 +prefix: null
 +controller: "home"
 +action: "index"
 +view: "home.index"
 +prefixes: Collection {#228 ▼
 #items: array:3 [▼
 0 => "admin"
 1 => "home"
 2 => "dashboard"
]
 }
 +attemptedViews: Collection {#227 ▼
 #items: array:3 [▼
 0 => "admin.home.dashboard.home.index"
 1 => "admin.home.index"
 2 => "home.index"
]
 }
}

If no view was found, $view will be null. Likewise, if the view was found without a prefix, the prefix will be null.

See setViewPath() for information on how you can overload the auto resolved view.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

