

Welcome to notmuch’s documentation!

Contents:

	notmuch

	notmuch-address

	notmuch-compact

	notmuch-config

	notmuch-count

	notmuch-dump

	notmuch-emacs-mua

	notmuch-hooks

	notmuch-insert

	notmuch-new

	notmuch-properties

	notmuch-reindex

	notmuch-reply

	notmuch-restore

	notmuch-search

	notmuch-search-terms

	notmuch-show

	notmuch-tag

Indices and tables

	Index

	Module Index

	Search Page

notmuch

SYNOPSIS

notmuch [option …] command [arg …]

DESCRIPTION

Notmuch is a command-line based program for indexing, searching,
reading, and tagging large collections of email messages.

This page describes how to get started using notmuch from the command
line, and gives a brief overview of the commands available. For more
information on e.g. notmuch show consult the notmuch-show(1) man
page, also accessible via notmuch help show

The quickest way to get started with Notmuch is to simply invoke the
notmuch command with no arguments, which will interactively guide
you through the process of indexing your mail.

NOTE

While the command-line program notmuch provides powerful
functionality, it does not provide the most convenient interface for
that functionality. More sophisticated interfaces are expected to be
built on top of either the command-line interface, or more likely, on
top of the notmuch library interface. See https://notmuchmail.org for
more about alternate interfaces to notmuch. The emacs-based interface to
notmuch (available under emacs/ in the Notmuch source distribution)
is probably the most widely used at this time.

OPTIONS

Supported global options for notmuch include

	--help [command-name]

	Print a synopsis of available commands and exit. With an optional
command name, show the man page for that subcommand.

	--version

	Print the installed version of notmuch, and exit.

	--config=FILE

	Specify the configuration file to use. This overrides any
configuration file specified by ${NOTMUCH_CONFIG}.

	--uuid=HEX

	Enforce that the database UUID (a unique identifier which persists
until e.g. the database is compacted) is HEX; exit with an error
if it is not. This is useful to detect rollover in modification
counts on messages. You can find this UUID using e.g. notmuch
count --lastmod

All global options except --config can also be specified after the
command. For example, notmuch subcommand --uuid=HEX is equivalent
to notmuch --uuid=HEX subcommand.

COMMANDS

SETUP

The notmuch setup command is used to configure Notmuch for first
use, (or to reconfigure it later).

The setup command will prompt for your full name, your primary email
address, any alternate email addresses you use, and the directory
containing your email archives. Your answers will be written to a
configuration file in ${NOTMUCH_CONFIG} (if set) or
${HOME}/.notmuch-config . This configuration file will be created with
descriptive comments, making it easy to edit by hand later to change the
configuration. Or you can run notmuch setup again to change the
configuration.

The mail directory you specify can contain any number of sub-directories
and should primarily contain only files with individual email messages
(eg. maildir or mh archives are perfect). If there are other, non-email
files (such as indexes maintained by other email programs) then notmuch
will do its best to detect those and ignore them.

Mail storage that uses mbox format, (where one mbox file contains many
messages), will not work with notmuch. If that’s how your mail is
currently stored, it is recommended you first convert it to maildir
format with a utility such as mb2md before running notmuch setup .

Invoking notmuch with no command argument will run setup if the
setup command has not previously been completed.

OTHER COMMANDS

Several of the notmuch commands accept search terms with a common
syntax. See notmuch-search-terms(7) for more details on the
supported syntax.

The search, show, address and count commands are used
to query the email database.

The reply command is useful for preparing a template for an email
reply.

The tag command is the only command available for manipulating
database contents.

The dump and restore commands can be used to create a textual
dump of email tags for backup purposes, and to restore from that dump.

The config command can be used to get or set settings in the notmuch
configuration file.

CUSTOM COMMANDS

If the given command is not known to notmuch, notmuch tries to execute
the external notmuch-<subcommand> in ${PATH} instead. This allows
users to have their own notmuch related tools to be run via the
notmuch command. By design, this does not allow notmuch’s own commands
to be overridden using external commands.

OPTION SYNTAX

All options accepting an argument can be used with ‘=’ or ‘:’ as a
separator. Except for boolean options (which would be ambiguous), a
space can also be used as a separator. The following are all
equivalent:

notmuch --config=alt-config config get user.name
notmuch --config:alt-config config get user.name
notmuch --config alt-config config get user.name

ENVIRONMENT

The following environment variables can be used to control the behavior
of notmuch.

	NOTMUCH_CONFIG

	Specifies the location of the notmuch configuration file. Notmuch
will use ${HOME}/.notmuch-config if this variable is not set.

	NOTMUCH_TALLOC_REPORT

	Location to write a talloc memory usage report. See
talloc_enable_leak_report_full in talloc(3) for more
information.

	NOTMUCH_DEBUG_QUERY

	If set to a non-empty value, the notmuch library will print (to
stderr) Xapian queries it constructs.

SEE ALSO

notmuch-address(1),
notmuch-compact(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-properties(7),
notmuch-reindex(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

The notmuch website: https://notmuchmail.org

CONTACT

Feel free to send questions, comments, or kudos to the notmuch mailing
list <notmuch@notmuchmail.org> . Subscription is not required before
posting, but is available from the notmuchmail.org website.

Real-time interaction with the Notmuch community is available via IRC
(server: irc.freenode.net, channel: #notmuch).

notmuch-address

SYNOPSIS

notmuch address [option …] <search-term> …

DESCRIPTION

Search for messages matching the given search terms, and display the
addresses from them. Duplicate addresses are filtered out.

See notmuch-search-terms(7) for details of the supported syntax for
<search-terms>.

Supported options for address include

	--format=(json|sexp|text|text0)

	Presents the results in either JSON, S-Expressions, newline
character separated plain-text (default), or null character
separated plain-text (compatible with xargs(1) -0 option where
available).

	--format-version=N

	Use the specified structured output format version. This is
intended for programs that invoke notmuch(1) internally. If
omitted, the latest supported version will be used.

	--output=(sender|recipients|count|address)

	Controls which information appears in the output. This option can
be given multiple times to combine different outputs. When
neither --output=sender nor --output=recipients is
given, --output=sender is implied.

	sender

	Output all addresses from the From header.

Note: Searching for sender should be much faster than
searching for recipients, because sender addresses are
cached directly in the database whereas other addresses need
to be fetched from message files.

	recipients

	Output all addresses from the To, Cc and Bcc headers.

	count

	Print the count of how many times was the address encountered
during search.

Note: With this option, addresses are printed only after the
whole search is finished. This may take long time.

	address

	Output only the email addresses instead of the full mailboxes
with names and email addresses. This option has no effect on
the JSON or S-Expression output formats.

	--deduplicate=(no|mailbox|address)

	Control the deduplication of results.

	no

	Output all occurrences of addresses in the matching
messages. This is not applicable with --output=count.

	mailbox

	Deduplicate addresses based on the full, case sensitive name
and email address, or mailbox. This is effectively the same as
piping the --deduplicate=no output to sort | uniq, except
for the order of results. This is the default.

	address

	Deduplicate addresses based on the case insensitive address
part of the mailbox. Of all the variants (with different name
or case), print the one occurring most frequently among the
matching messages. If --output=count is specified, include all
variants in the count.

	--sort=(newest-first|oldest-first)

	This option can be used to present results in either chronological
order (oldest-first) or reverse chronological order
(newest-first).

By default, results will be displayed in reverse chronological
order, (that is, the newest results will be displayed first).

However, if either --output=count or --deduplicate=address is
specified, this option is ignored and the order of the results is
unspecified.

	--exclude=(true|false)

	A message is called “excluded” if it matches at least one tag in
search.exclude_tags that does not appear explicitly in the search
terms. This option specifies whether to omit excluded messages in
the search process.

The default value, true, prevents excluded messages from
matching the search terms.

false allows excluded messages to match search terms and
appear in displayed results.

EXIT STATUS

This command supports the following special exit status codes

	20

	The requested format version is too old.

	21

	The requested format version is too new.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1),
notmuch-search(1)

notmuch-compact

SYNOPSIS

notmuch compact [–quiet] [–backup=<directory>]

DESCRIPTION

The compact command can be used to compact the notmuch database.
This can both reduce the space required by the database and improve
lookup performance.

The compacted database is built in a temporary directory and is later
moved into the place of the origin database. The original uncompacted
database is discarded, unless the --backup=<directory> option is
used.

Note that the database write lock will be held during the compaction
process (which may be quite long) to protect data integrity.

Supported options for compact include

	--backup=<directory>

	Save the current database to the given directory before replacing
it with the compacted database. The backup directory must not
exist and it must reside on the same mounted filesystem as the
current database.

	--quiet

	Do not report database compaction progress to stdout.

ENVIRONMENT

The following environment variables can be used to control the behavior
of notmuch.

	NOTMUCH_CONFIG

	Specifies the location of the notmuch configuration file. Notmuch
will use ${HOME}/.notmuch-config if this variable is not set.

SEE ALSO

notmuch(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-config

SYNOPSIS

notmuch config get <section>.<item>

notmuch config set <section>.<item> [value …]

notmuch config list

DESCRIPTION

The config command can be used to get or set settings in the notmuch
configuration file and corresponding database.

Items marked [STORED IN DATABASE] are only in the database. They
should not be placed in the configuration file, and should be accessed
programmatically as described in the SYNOPSIS above.

	get

	The value of the specified configuration item is printed to
stdout. If the item has multiple values (it is a list), each value
is separated by a newline character.

	set

	The specified configuration item is set to the given value. To
specify a multiple-value item (a list), provide each value as a
separate command-line argument.

If no values are provided, the specified configuration item will
be removed from the configuration file.

	list

	Every configuration item is printed to stdout, each on a separate
line of the form:

section.item=value

No additional whitespace surrounds the dot or equals sign
characters. In a multiple-value item (a list), the values are
separated by semicolon characters.

The available configuration items are described below.

	database.path

	The top-level directory where your mail currently exists and to
where mail will be delivered in the future. Files should be
individual email messages. Notmuch will store its database within
a sub-directory of the path configured here named .notmuch.

Default: $MAILDIR variable if set, otherwise $HOME/mail.

	user.name

	Your full name.

Default: $NAME variable if set, otherwise read from
/etc/passwd.

	user.primary_email

	Your primary email address.

Default: $EMAIL variable if set, otherwise constructed from
the username and hostname of the current machine.

	user.other_email

	A list of other email addresses at which you receive email.

Default: not set.

	new.tags

	A list of tags that will be added to all messages incorporated by
notmuch new.

Default: unread;inbox.

	new.ignore

	A list to specify files and directories that will not be searched
for messages by notmuch new. Each entry in the list is either:

A file or a directory name, without path, that will be ignored,
regardless of the location in the mail store directory hierarchy.

Or:

A regular expression delimited with // that will be matched
against the path of the file or directory relative to the database
path. Matching files and directories will be ignored. The
beginning and end of string must be explicitly anchored. For
example, /.*/foo$/ would match “bar/foo” and “bar/baz/foo”, but
not “foo” or “bar/foobar”.

Default: empty list.

	search.exclude_tags

	A list of tags that will be excluded from search results by
default. Using an excluded tag in a query will override that
exclusion.

Default: empty list. Note that notmuch-setup(1) puts
deleted;spam here when creating new configuration file.

	maildir.synchronize_flags

	If true, then the following maildir flags (in message filenames)
will be synchronized with the corresponding notmuch tags:

	Flag

	Tag

	D

	draft

	F

	flagged

	P

	passed

	R

	replied

	S

	unread (added when ‘S’ flag is not present)

The notmuch new command will notice flag changes in filenames
and update tags, while the notmuch tag and notmuch restore
commands will notice tag changes and update flags in filenames.

If there have been any changes in the maildir (new messages added,
old ones removed or renamed, maildir flags changed, etc.), it is
advisable to run notmuch new before notmuch tag or
notmuch restore commands to ensure the tag changes are
properly synchronized to the maildir flags, as the commands expect
the database and maildir to be in sync.

Default: true.

	index.decrypt [STORED IN DATABASE]

	Policy for decrypting encrypted messages during indexing. Must be
one of: false, auto, nostash, or true.

When indexing an encrypted e-mail message, if this variable is set
to true, notmuch will try to decrypt the message and index the
cleartext, stashing a copy of any discovered session keys for the
message. If auto, it will try to index the cleartext if a
stashed session key is already known for the message (e.g. from a
previous copy), but will not try to access your secret keys. Use
false to avoid decrypting even when a stashed session key is
already present.

nostash is the same as true except that it will not stash
newly-discovered session keys in the database.

From the command line (i.e. during notmuch-new(1),
notmuch-insert(1), or notmuch-reindex(1)), the user can
override the database’s stored decryption policy with the
--decrypt= option.

Here is a table that summarizes the functionality of each of these
policies:

	
	false

	auto

	nostash

	true

	Index cleartext using
stashed session keys

	
	X

	X

	X

	Index cleartext
using secret keys

	
	
	X

	X

	Stash session keys

	
	
	
	X

	Delete stashed session
keys on reindex

	X

	
	
	

Stashed session keys are kept in the database as properties
associated with the message. See session-key in
notmuch-properties(7) for more details about how they can be
useful.

Be aware that the notmuch index is likely sufficient (and a
stashed session key is certainly sufficient) to reconstruct the
cleartext of the message itself, so please ensure that the notmuch
message index is adequately protected. DO NOT USE
index.decrypt=true or index.decrypt=nostash without
considering the security of your index.

Default: auto.

	index.header.<prefix> [STORED IN DATABASE]

	Define the query prefix <prefix>, based on a mail header. For
example index.header.List=List-Id will add a probabilistic
prefix List: that searches the List-Id field. User
defined prefixes must not start with ‘a’…’z’; in particular
adding a prefix with same name as a predefined prefix is not
supported. See notmuch-search-terms(7) for a list of existing
prefixes, and an explanation of probabilistic prefixes.

	built_with.<name>

	Compile time feature <name>. Current possibilities include
“retry_lock” (configure option, included by default).
(since notmuch 0.30, “compact” and “field_processor” are
always included.)

	query.<name> [STORED IN DATABASE]

	Expansion for named query called <name>. See
notmuch-search-terms(7) for more information about named
queries.

ENVIRONMENT

The following environment variables can be used to control the behavior
of notmuch.

	NOTMUCH_CONFIG

	Specifies the location of the notmuch configuration file. Notmuch
will use ${HOME}/.notmuch-config if this variable is not set.

SEE ALSO

notmuch(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-properties(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-count

SYNOPSIS

notmuch count [option …] <search-term> …

DESCRIPTION

Count messages matching the search terms.

The number of matching messages (or threads) is output to stdout.

With no search terms, a count of all messages (or threads) in the
database will be displayed.

See notmuch-search-terms(7) for details of the supported syntax for
<search-terms>.

Supported options for count include

	--output=(messages|threads|files)

	
	messages

	Output the number of matching messages. This is the default.

	threads

	Output the number of matching threads.

	files

	Output the number of files associated with matching
messages. This may be bigger than the number of matching
messages due to duplicates (i.e. multiple files having the
same message-id).

	--exclude=(true|false)

	Specify whether to omit messages matching search.exclude_tags from
the count (the default) or not.

	--batch

	Read queries from a file (stdin by default), one per line, and
output the number of matching messages (or threads) to stdout, one
per line. On an empty input line the count of all messages (or
threads) in the database will be output. This option is not
compatible with specifying search terms on the command line.

	--lastmod

	Append lastmod (counter for number of database updates) and UUID
to the output. lastmod values are only comparable between
databases with the same UUID.

	--input=<filename>

	Read input from given file, instead of from stdin. Implies
--batch.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-dump

SYNOPSIS

notmuch dump [–gzip] [–format=(batch-tag|sup)] [–output=<file>] [–] [<search-term> …]

DESCRIPTION

Dump tags for messages matching the given search terms.

Output is to the given filename, if any, or to stdout.

These tags are the only data in the notmuch database that can’t be
recreated from the messages themselves. The output of notmuch dump is
therefore the only critical thing to backup (and much more friendly to
incremental backup than the native database files.)

See notmuch-search-terms(7) for details of the supported syntax
for <search-terms>. With no search terms, a dump of all messages in
the database will be generated. A -- argument instructs notmuch that
the remaining arguments are search terms.

Supported options for dump include

	--gzip

	Compress the output in a format compatible with gzip(1).

	--format=(sup|batch-tag)

	Notmuch restore supports two plain text dump formats, both with
one message-id per line, followed by a list of tags.

	batch-tag

	The default batch-tag dump format is intended to more
robust against malformed message-ids and tags containing
whitespace or non-ascii(7) characters. Each line has the
form:

+<*encoded-tag*\ > +<*encoded-tag*\ > ... -- id:<*quoted-message-id*\ >

Tags are hex-encoded by replacing every byte not matching the
regex [A-Za-z0-9@=.,_+-] with %nn where nn is the two
digit hex encoding. The message ID is a valid Xapian query,
quoted using Xapian boolean term quoting rules: if the ID
contains whitespace or a close paren or starts with a double
quote, it must be enclosed in double quotes and double quotes
inside the ID must be doubled. The astute reader will notice
this is a special case of the batch input format for
notmuch-tag(1); note that the single message-id query is
mandatory for notmuch-restore(1).

	sup

	The sup dump file format is specifically chosen to be
compatible with the format of files produced by sup-dump. So
if you’ve previously been using sup for mail, then the
notmuch restore command provides you a way to import all
of your tags (or labels as sup calls them). Each line has the
following form:

<*message-id*\ > **(** <*tag*\ > ... **)**

with zero or more tags are separated by spaces. Note that
(malformed) message-ids may contain arbitrary non-null
characters. Note also that tags with spaces will not be
correctly restored with this format.

	--include=(config|properties|tags)

	Control what kind of metadata is included in the output.

	config

	Output configuration data stored in the database. Each line
starts with “#@ “, followed by a space separated key-value
pair. Both key and value are hex encoded if needed.

	properties

	Output per-message (key,value) metadata. Each line starts
with “#= “, followed by a message id, and a space separated
list of key=value pairs. Ids, keys and values are hex encoded
if needed. See notmuch-properties(7) for more details.

	tags

	Output per-message boolean metadata, namely tags. See format above
for description of the output.

The default is to include all available types of data. The option
can be specified multiple times to select some subset. As of
version 3 of the dump format, there is a header line of the
following form:

#notmuch-dump <*format*>:<*version*> <*included*>

where <included> is a comma separated list of the above options.

	--output=<filename>

	Write output to given file instead of stdout.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-properties(7),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-emacs-mua

SYNOPSIS

notmuch emacs-mua [options …] [<to-address> … | <mailto-url>]

DESCRIPTION

Start composing an email in the Notmuch Emacs UI with the specified
subject, recipients, and message body, or mailto: URL.

Supported options for emacs-mua include

	-h, --help

	Display help.

	-s, --subject=<subject>

	Specify the subject of the message.

	--to=<to-address>

	Specify a recipient (To).

	-c, --cc=<cc-address>

	Specify a carbon-copy (Cc) recipient.

	-b, --bcc=<bcc-address>

	Specify a blind-carbon-copy (Bcc) recipient.

	-i, --body=<file>

	Specify a file to include into the body of the message.

	--hello

	Go to the Notmuch hello screen instead of the message composition
window if no message composition parameters are given.

	--no-window-system

	Even if a window system is available, use the current terminal.

	--client

	Use emacsclient, rather than emacs. For emacsclient to
work, you need an already running Emacs with a server, or use
--auto-daemon.

	--auto-daemon

	Automatically start Emacs in daemon mode, if the Emacs server is
not running. Applicable with --client. Implies
--create-frame.

	--create-frame

	Create a new frame instead of trying to use the current Emacs
frame. Applicable with --client. This will be required when
Emacs is running (or automatically started with --auto-daemon)
in daemon mode.

	--print

	Output the resulting elisp to stdout instead of evaluating it.

The supported positional parameters and short options are a compatible
subset of the mutt MUA command-line options. The options and
positional parameters modifying the message can’t be combined with the
mailto: URL.

Options may be specified multiple times.

ENVIRONMENT VARIABLES

	EMACS

	Name of emacs command to invoke. Defaults to “emacs”.

	EMACSCLIENT

	Name of emacsclient command to invoke. Defaults to “emacsclient”.

SEE ALSO

notmuch(1), emacsclient(1), mutt(1)

notmuch-hooks

SYNOPSIS

$DATABASEDIR/.notmuch/hooks/*

DESCRIPTION

Hooks are scripts (or arbitrary executables or symlinks to such) that
notmuch invokes before and after certain actions. These scripts reside
in the .notmuch/hooks directory within the database directory and must
have executable permissions.

The currently available hooks are described below.

	pre-new

	This hook is invoked by the new command before scanning or
importing new messages into the database. If this hook exits with
a non-zero status, notmuch will abort further processing of the
new command.

Typically this hook is used for fetching or delivering new mail to
be imported into the database.

	post-new

	This hook is invoked by the new command after new messages
have been imported into the database and initial tags have been
applied. The hook will not be run if there have been any errors
during the scan or import.

Typically this hook is used to perform additional query-based
tagging on the imported messages.

	post-insert

	This hook is invoked by the insert command after the message
has been delivered, added to the database, and initial tags have
been applied. The hook will not be run if there have been any
errors during the message delivery; what is regarded as successful
delivery depends on the --keep option.

Typically this hook is used to perform additional query-based
tagging on the delivered messages.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-insert

SYNOPSIS

notmuch insert [option …] [+<tag>|-<tag> …]

DESCRIPTION

notmuch insert reads a message from standard input and delivers it
into the maildir directory given by configuration option
database.path, then incorporates the message into the notmuch
database. It is an alternative to using a separate tool to deliver the
message then running notmuch new afterwards.

The new message will be tagged with the tags specified by the
new.tags configuration option, then by operations specified on the
command-line: tags prefixed by ‘+’ are added while those prefixed by ‘-‘
are removed.

If the new message is a duplicate of an existing message in the database
(it has same Message-ID), it will be added to the maildir folder and
notmuch database, but the tags will not be changed.

The insert command supports hooks. See notmuch-hooks(5) for
more details on hooks.

Option arguments must appear before any tag operation arguments.
Supported options for insert include

	--folder=<folder>

	Deliver the message to the specified folder, relative to the
top-level directory given by the value of database.path. The
default is the empty string, which means delivering to the
top-level directory.

	--create-folder

	Try to create the folder named by the --folder option, if it
does not exist. Otherwise the folder must already exist for mail
delivery to succeed.

	--keep

	Keep the message file if indexing fails, and keep the message
indexed if applying tags or maildir flag synchronization
fails. Ignore these errors and return exit status 0 to indicate
successful mail delivery.

	--no-hooks

	Prevent hooks from being run.

	--world-readable

	When writing mail to the mailbox, allow it to be read by users
other than the current user. Note that this does not override
umask. By default, delivered mail is only readable by the current
user.

	--decrypt=(true|nostash|auto|false)

	If true and the message is encrypted, try to decrypt the
message while indexing, stashing any session keys discovered. If
auto, and notmuch already knows about a session key for the
message, it will try decrypting using that session key but will
not try to access the user’s secret keys. If decryption is
successful, index the cleartext itself. Either way, the message
is always stored to disk in its original form (ciphertext).

nostash is the same as true except that it will not stash
newly-discovered session keys in the database.

Be aware that the index is likely sufficient (and a stashed
session key is certainly sufficient) to reconstruct the cleartext
of the message itself, so please ensure that the notmuch message
index is adequately protected. DO NOT USE --decrypt=true or
--decrypt=nostash without considering the security of your
index.

See also index.decrypt in notmuch-config(1).

EXIT STATUS

This command returns exit status 0 on successful mail delivery,
non-zero otherwise. The default is to indicate failed mail delivery on
any errors, including message file delivery to the filesystem, message
indexing to Notmuch database, changing tags, and synchronizing tags to
maildir flags. The --keep option may be used to settle for
successful message file delivery.

This command supports the following special exit status code for
errors most likely to be temporary in nature, e.g. failure to get a
database write lock.

	75 (EX_TEMPFAIL)

	A temporary failure occurred; the user is invited to retry.

The exit status of the post-insert hook does not affect the exit
status of the insert command.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-new

SYNOPSIS

notmuch new [options]

DESCRIPTION

Find and import any new messages to the database.

The new command scans all sub-directories of the database,
performing full-text indexing on new messages that are found. Each new
message will automatically be tagged with both the inbox and
unread tags.

You should run notmuch new once after first running notmuch
setup to create the initial database. The first run may take a long
time if you have a significant amount of mail (several hundred thousand
messages or more). Subsequently, you should run notmuch new whenever
new mail is delivered and you wish to incorporate it into the database.
These subsequent runs will be much quicker than the initial run.

Invoking notmuch with no command argument will run new if
notmuch setup has previously been completed, but notmuch new has
not previously been run.

notmuch new updates tags according to maildir flag changes if the
maildir.synchronize_flags configuration option is enabled. See
notmuch-config(1) for details.

The new command supports hooks. See notmuch-hooks(5) for more
details on hooks.

Supported options for new include

	--no-hooks

	Prevents hooks from being run.

	--quiet

	Do not print progress or results.

	--verbose

	Print file names being processed. Ignored when combined with
--quiet.

	--decrypt=(true|nostash|auto|false)

	If true, when encountering an encrypted message, try to
decrypt it while indexing, and stash any discovered session keys.
If auto, try to use any session key already known to belong to
this message, but do not attempt to use the user’s secret keys.
If decryption is successful, index the cleartext of the message.

Be aware that the index is likely sufficient (and the session key
is certainly sufficient) to reconstruct the cleartext of the
message itself, so please ensure that the notmuch message index is
adequately protected. DO NOT USE --decrypt=true or
--decrypt=nostash without considering the security of your
index.

See also index.decrypt in notmuch-config(1).

	--full-scan

	By default notmuch-new uses directory modification times (mtimes)
to optimize the scanning of directories for new mail. This option turns
that optimization off.

EXIT STATUS

This command supports the following special exit status code

	75 (EX_TEMPFAIL)

	A temporary failure occurred; the user is invited to retry.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-properties

SYNOPSIS

notmuch count property:<key>=<value>

notmuch search property:<key>=<value>

notmuch show property:<key>=<value>

notmuch reindex property:<key>=<value>

notmuch tag +<tag> property:<key>=<value>

notmuch dump –include=properties

notmuch restore –include=properties

DESCRIPTION

Several notmuch commands can search for, modify, add or remove
properties associated with specific messages. Properties are
key/value pairs, and a message can have more than one key/value pair
for the same key.

While users can select based on a specific property in their search
terms with the prefix property:, the notmuch command-line
interface does not provide mechanisms for modifying properties
directly to the user.

Instead, message properties are expected to be set and used
programmatically, according to logic in notmuch itself, or in
extensions to it.

Extensions to notmuch which make use of properties are encouraged to
report the specific properties used to the upstream notmuch project,
as a way of avoiding collisions in the property namespace.

CONVENTIONS

Any property with a key that starts with “index.” will be removed (and
possibly re-set) upon reindexing (see notmuch-reindex(1)).

MESSAGE PROPERTIES

The following properties are set by notmuch internally in the course
of its normal activity.

	index.decryption

	If a message contains encrypted content, and notmuch tries to
decrypt that content during indexing, it will add the property
index.decryption=success when the cleartext was successfully
indexed. If notmuch attempts to decrypt any part of a message
during indexing and that decryption attempt fails, it will add the
property index.decryption=failure to the message.

Note that it’s possible for a single message to have both
index.decryption=success and index.decryption=failure.
Consider an encrypted e-mail message that contains another
encrypted e-mail message as an attachment – if the outer message
can be decrypted, but the attached part cannot, then both
properties will be set on the message as a whole.

If notmuch never tried to decrypt an encrypted message during
indexing (which is the default, see index.decrypt in
notmuch-config(1)), then this property will not be set on that
message.

session-key

When notmuch-show(1) or nomtuch-reply encounters a message
with an encrypted part, if notmuch finds a session-key
property associated with the message, it will try that stashed
session key for decryption.

If you do not want to use any stashed session keys that might be
present, you should pass those programs --decrypt=false.

Using a stashed session key with “notmuch show” will speed up
rendering of long encrypted threads. It also allows the user to
destroy the secret part of any expired encryption-capable subkey
while still being able to read any retained messages for which
they have stashed the session key. This enables truly deletable
e-mail, since (once the session key and asymmetric subkey are both
destroyed) there are no keys left that can be used to decrypt any
copy of the original message previously stored by an adversary.

However, access to the stashed session key for an encrypted message
permits full byte-for-byte reconstruction of the cleartext
message. This includes attachments, cryptographic signatures, and
other material that cannot be reconstructed from the index alone.

See index.decrypt in notmuch-config(1) for more
details about how to set notmuch’s policy on when to store session
keys.

The session key should be in the ASCII text form produced by
GnuPG. For OpenPGP, that consists of a decimal representation of
the hash algorithm used (identified by number from RFC 4880,
e.g. 9 means AES-256) followed by a colon, followed by a
hexadecimal representation of the algorithm-specific key. For
example, an AES-128 key might be stashed in a notmuch property as:
session-key=7:14B16AF65536C28AF209828DFE34C9E0.

index.repaired

Some messages arrive in forms that are confusing to view; they can
be mangled by mail transport agents, or the sending mail user
agent may structure them in a way that is confusing. If notmuch
knows how to both detect and repair such a problematic message, it
will do so during indexing.

If it applies a message repair during indexing, it will use the
index.repaired property to note the type of repair(s) it
performed.

index.repaired=skip-protected-headers-legacy-display indicates
that when indexing the cleartext of an encrypted message, notmuch
skipped over a “legacy-display” text/rfc822-headers part that it
found in that message, since it was able to index the built-in
protected headers directly.

index.repaired=mixedup indicates the repair of a “Mixed Up”
encrypted PGP/MIME message, a mangling typically produced by
Microsoft’s Exchange MTA. See
https://tools.ietf.org/html/draft-dkg-openpgp-pgpmime-message-mangling
for more information.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-dump(1),
notmuch-insert(1),
notmuch-new(1),
notmuch-reindex(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-show(1),
*notmuch-search-terms(7)

notmuch-reindex

SYNOPSIS

notmuch reindex [option …] <search-term> …

DESCRIPTION

Re-index all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for
<search-term>.

The reindex command searches for all messages matching the
supplied search terms, and re-creates the full-text index on these
messages using the supplied options.

Supported options for reindex include

	--decrypt=(true|nostash|auto|false)

	If true, when encountering an encrypted message, try to
decrypt it while reindexing, stashing any session keys discovered.
If auto, and notmuch already knows about a session key for the
message, it will try decrypting using that session key but will
not try to access the user’s secret keys. If decryption is
successful, index the cleartext itself.

nostash is the same as true except that it will not stash
newly-discovered session keys in the database.

If false, notmuch reindex will also delete any stashed session
keys for all messages matching the search terms.

Be aware that the index is likely sufficient (and a stashed
session key is certainly sufficient) to reconstruct the cleartext
of the message itself, so please ensure that the notmuch message
index is adequately protected. DO NOT USE --decrypt=true or
--decrypt=nostash without considering the security of your
index.

See also index.decrypt in notmuch-config(1).

EXAMPLES

A user just received an encrypted message without indexing its
cleartext. After reading it (via notmuch show --decrypt=true),
they decide that they want to index its cleartext so that they can
easily find it later and read it without having to have access to
their secret keys:

notmuch reindex --decrypt=true id:1234567@example.com

A user wants to change their policy going forward to start indexing
cleartext. But they also want indexed access to the cleartext of all
previously-received encrypted messages. Some messages might have
already been indexed in the clear (as in the example above). They can
ask notmuch to just reindex the not-yet-indexed messages:

notmuch config set index.decrypt true
notmuch reindex tag:encrypted and not property:index.decryption=success

Later, the user changes their mind, and wants to stop indexing
cleartext (perhaps their threat model has changed, or their trust in
their index store has been shaken). They also want to clear all of
their old cleartext from the index. Note that they compact the
database afterward as a workaround for
https://trac.xapian.org/ticket/742:

notmuch config set index.decrypt false
notmuch reindex property:index.decryption=success
notmuch compact

SEE ALSO

notmuch(1),
notmuch-compact(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-reply

SYNOPSIS

notmuch reply [option …] <search-term> …

DESCRIPTION

Constructs a reply template for a set of messages.

To make replying to email easier, notmuch reply takes an existing
set of messages and constructs a suitable mail template. Its To:
address is set according to the original email in this way: if the
Reply-to: header is present and different from any To:/Cc: address it
is used, otherwise From: header is used. Unless
--reply-to=sender is specified, values from the To: and Cc: headers
are copied, but not including any of the current user’s email addresses
(as configured in primary_mail or other_email in the .notmuch-config
file) in the recipient list.

It also builds a suitable new subject, including Re: at the front (if
not already present), and adding the message IDs of the messages being
replied to to the References list and setting the In-Reply-To: field
correctly.

Finally, the original contents of the emails are quoted by prefixing
each line with ‘> ‘ and included in the body.

The resulting message template is output to stdout.

Supported options for reply include

	--format=(default|json|sexp|headers-only)

	
	default

	Includes subject and quoted message body as an RFC 2822
message.

	json

	Produces JSON output containing headers for a reply message
and the contents of the original message. This output can be
used by a client to create a reply message intelligently.

	sexp

	Produces S-Expression output containing headers for a reply
message and the contents of the original message. This output
can be used by a client to create a reply message
intelligently.

	headers-only

	Only produces In-Reply-To, References, To, Cc, and Bcc
headers.

	--format-version=N

	Use the specified structured output format version. This is
intended for programs that invoke notmuch(1) internally. If
omitted, the latest supported version will be used.

	--reply-to=(all|sender)

	
	all (default)

	Replies to all addresses.

	sender

	Replies only to the sender. If replying to user’s own message
(Reply-to: or From: header is one of the user’s configured
email addresses), try To:, Cc:, and Bcc: headers in this
order, and copy values from the first that contains something
other than only the user’s addresses.

--decrypt=(false|auto|true)

If true, decrypt any MIME encrypted parts found in the
selected content (i.e., “multipart/encrypted” parts). Status
of the decryption will be reported (currently only supported
with --format=json and --format=sexp), and on successful
decryption the multipart/encrypted part will be replaced by
the decrypted content.

If auto, and a session key is already known for the
message, then it will be decrypted, but notmuch will not try
to access the user’s secret keys.

Use false to avoid even automatic decryption.

Non-automatic decryption expects a functioning
gpg-agent(1) to provide any needed credentials. Without
one, the decryption will likely fail.

Default: auto

See notmuch-search-terms(7) for details of the supported syntax for
<search-terms>.

Note: It is most common to use notmuch reply with a search string
matching a single message, (such as id:<message-id>), but it can be
useful to reply to several messages at once. For example, when a series
of patches are sent in a single thread, replying to the entire thread
allows for the reply to comment on issues found in multiple patches. The
default format supports replying to multiple messages at once, but the
JSON and S-Expression formats do not.

EXIT STATUS

This command supports the following special exit status codes

	20

	The requested format version is too old.

	21

	The requested format version is too new.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-restore

SYNOPSIS

notmuch restore [–accumulate] [–format=(auto|batch-tag|sup)] [–input=<filename>]

DESCRIPTION

Restores the tags from the given file (see notmuch dump).

The input is read from the given filename, if any, or from stdin.

Supported options for restore include

	--accumulate

	The union of the existing and new tags is applied, instead of
replacing each message’s tags as they are read in from the dump
file.

	--format=(sup|batch-tag|auto)

	Notmuch restore supports two plain text dump formats, with each
line specifying a message-id and a set of tags. For details of the
actual formats, see notmuch-dump(1).

	sup

	The sup dump file format is specifically chosen to be
compatible with the format of files produced by sup-dump. So
if you’ve previously been using sup for mail, then the
notmuch restore command provides you a way to import all
of your tags (or labels as sup calls them).

	batch-tag

	The batch-tag dump format is intended to more robust
against malformed message-ids and tags containing whitespace
or non-ascii(7) characters. See notmuch-dump(1) for
details on this format.

notmuch restore updates the maildir flags according to tag
changes if the maildir.synchronize_flags configuration
option is enabled. See notmuch-config(1) for details.

	auto

	This option (the default) tries to guess the format from the
input. For correctly formed input in either supported format,
this heuristic, based the fact that batch-tag format contains
no parentheses, should be accurate.

	--include=(config|properties|tags)

	Control what kind of metadata is restored.

	config

	Restore configuration data to the database. Each configuration
line starts with “#@ “, followed by a space separated
key-value pair. Both key and value are hex encoded if needed.

	properties

	Restore per-message (key,value) metadata. Each line starts
with “#= “, followed by a message id, and a space separated
list of key=value pairs. Ids, keys and values are hex encoded
if needed. See notmuch-properties(7) for more details.

	tags

	Restore per-message metadata, namely tags. See format above
for more details.

The default is to restore all available types of data. The option
can be specified multiple times to select some subset.

	--input=<filename>

	Read input from given file instead of stdin.

GZIPPED INPUT

notmuch restore will detect if the input is compressed in
gzip(1) format and automatically decompress it while reading. This
detection does not depend on file naming and in particular works for
standard input.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-properties(7),
notmuch-reply(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)

notmuch-search

SYNOPSIS

notmuch search [option …] <search-term> …

DESCRIPTION

Search for messages matching the given search terms, and display as
results the threads containing the matched messages.

The output consists of one line per thread, giving a thread ID, the date
of the newest (or oldest, depending on the sort option) matched message
in the thread, the number of matched messages and total messages in the
thread, the names of all participants in the thread, and the subject of
the newest (or oldest) message.

See notmuch-search-terms(7) for details of the supported syntax for
<search-terms>.

Supported options for search include

	--format=(json|sexp|text|text0)

	Presents the results in either JSON, S-Expressions, newline
character separated plain-text (default), or null character
separated plain-text (compatible with xargs(1) -0 option where
available).

	--format-version=N

	Use the specified structured output format version. This is
intended for programs that invoke notmuch(1) internally. If
omitted, the latest supported version will be used.

	--output=(summary|threads|messages|files|tags)

	
	summary

	Output a summary of each thread with any message matching the
search terms. The summary includes the thread ID, date, the
number of messages in the thread (both the number matched and
the total number), the authors of the thread and the
subject. In the case where a thread contains multiple files
for some messages, the total number of files is printed in
parentheses (see below for an example).

	threads

	Output the thread IDs of all threads with any message matching
the search terms, either one per line (--format=text),
separated by null characters (--format=text0), as a JSON array
(--format=json), or an S-Expression list (--format=sexp).

	messages

	Output the message IDs of all messages matching the search
terms, either one per line (--format=text), separated by null
characters (--format=text0), as a JSON array (--format=json),
or as an S-Expression list (--format=sexp).

	files

	Output the filenames of all messages matching the search
terms, either one per line (--format=text), separated by null
characters (--format=text0), as a JSON array (--format=json),
or as an S-Expression list (--format=sexp).

Note that each message may have multiple filenames associated
with it. All of them are included in the output (unless
limited with the --duplicate=N option). This may be
particularly confusing for folder: or path: searches
in a specified directory, as the messages may have duplicates
in other directories that are included in the output, although
these files alone would not match the search.

	tags

	Output all tags that appear on any message matching the search
terms, either one per line (--format=text), separated by null
characters (--format=text0), as a JSON array (--format=json),
or as an S-Expression list (--format=sexp).

	--sort=(newest-first|oldest-first)

	This option can be used to present results in either chronological
order (oldest-first) or reverse chronological order
(newest-first).

Note: The thread order will be distinct between these two options
(beyond being simply reversed). When sorting by oldest-first
the threads will be sorted by the oldest message in each thread,
but when sorting by newest-first the threads will be sorted by
the newest message in each thread.

By default, results will be displayed in reverse chronological
order, (that is, the newest results will be displayed first).

	--offset=[-]N

	Skip displaying the first N results. With the leading ‘-‘, start
at the Nth result from the end.

	--limit=N

	Limit the number of displayed results to N.

	--exclude=(true|false|all|flag)

	A message is called “excluded” if it matches at least one tag in
search.exclude_tags that does not appear explicitly in the search
terms. This option specifies whether to omit excluded messages in
the search process.

	true (default)

	Prevent excluded messages from matching the search terms.

	all

	Additionally prevent excluded messages from appearing in
displayed results, in effect behaving as though the excluded
messages do not exist.

	false

	Allow excluded messages to match search terms and appear in
displayed results. Excluded messages are still marked in the
relevant outputs.

	flag

	Only has an effect when --output=summary. The output is
almost identical to false, but the “match count” is the
number of matching non-excluded messages in the thread, rather
than the number of matching messages.

	--duplicate=N

	For --output=files, output the Nth filename associated with
each message matching the query (N is 1-based). If N is greater
than the number of files associated with the message, don’t print
anything.

For --output=messages, only output message IDs of messages
matching the search terms that have at least N filenames
associated with them.

Note that this option is orthogonal with the folder: search
prefix. The prefix matches messages based on filenames. This
option filters filenames of the matching messages.

EXAMPLE

The following shows an example of the summary output format, with one
message having multiple filenames.

% notmuch search date:today.. and tag:bad-news
thread:0000000000063c10 Today [1/1] Some Persun; To the bone (bad-news inbox unread)
thread:0000000000063c25 Today [1/1(2)] Ann Other; Bears (bad-news inbox unread)
thread:0000000000063c00 Today [1/1] A Thurd; Bites, stings, sad feelings (bad-news unread)

EXIT STATUS

This command supports the following special exit status codes

	20

	The requested format version is too old.

	21

	The requested format version is too new.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search-terms(7),
notmuch-show(1),
notmuch-tag(1)
notmuch-address(1)

notmuch-search-terms

SYNOPSIS

notmuch count [option …] <search-term> …

notmuch dump [–gzip] [–format=(batch-tag|sup)] [–output=<file>] [–] [<search-term> …]

notmuch reindex [option …] <search-term> …

notmuch search [option …] <search-term> …

notmuch show [option …] <search-term> …

notmuch tag +<tag> … -<tag> [–] <search-term> …

DESCRIPTION

Several notmuch commands accept a common syntax for search terms.

The search terms can consist of free-form text (and quoted phrases)
which will match all messages that contain all of the given
terms/phrases in the body, the subject, or any of the sender or
recipient headers.

As a special case, a search string consisting of exactly a single
asterisk (“*”) will match all messages.

Search prefixes

In addition to free text, the following prefixes can be used to force
terms to match against specific portions of an email, (where <brackets>
indicate user-supplied values).

Some of the prefixes with <regex> forms can be also used to restrict
the results to those whose value matches a regular expression (see
regex(7)) delimited with //, for example:

notmuch search 'from:"/bob@.*[.]example[.]com/"'

	body:<word-or-quoted-phrase>

	Match terms in the body of messages.

	from:<name-or-address> or from:/<regex>/

	The from: prefix is used to match the name or address of
the sender of an email message.

	to:<name-or-address>

	The to: prefix is used to match the names or addresses of any
recipient of an email message, (whether To, Cc, or Bcc).

	subject:<word-or-quoted-phrase> or subject:/<regex>/

	Any term prefixed with subject: will match only text from the
subject of an email. Searching for a phrase in the subject is
supported by including quotation marks around the phrase,
immediately following subject:.

	attachment:<word>

	The attachment: prefix can be used to search for specific
filenames (or extensions) of attachments to email messages.

	mimetype:<word>

	The mimetype: prefix will be used to match text from the
content-types of MIME parts within email messages (as specified by
the sender).

	tag:<tag> or tag:/<regex>/ or is:<tag> or is:/<regex>/

	For tag: and is: valid tag values include inbox and
unread by default for new messages added by notmuch new as
well as any other tag values added manually with notmuch tag.

	id:<message-id> or mid:<message-id> or mid:/<regex>/

	For id: and mid:, message ID values are the literal
contents of the Message-ID: header of email messages, but without
the ‘<’, ‘>’ delimiters.

	thread:<thread-id>

	The thread: prefix can be used with the thread ID values that
are generated internally by notmuch (and do not appear in email
messages). These thread ID values can be seen in the first column
of output from notmuch search

	thread:{<notmuch query>}

	Threads may be searched for indirectly by providing an arbitrary
notmuch query in {}. For example, the following returns
threads containing a message from mallory and one (not necessarily
the same message) with Subject containing the word “crypto”.

% notmuch search 'thread:"{from:mallory}" and thread:"{subject:crypto}"'

The performance of such queries can vary wildly. To understand
this, the user should think of the query thread:{<something>}
as expanding to all of the thread IDs which match <something>;
notmuch then performs a second search using the expanded query.

	path:<directory-path> or path:<directory-path>/** or path:/<regex>/

	The path: prefix searches for email messages that are in
particular directories within the mail store. The directory must
be specified relative to the top-level maildir (and without the
leading slash). By default, path: matches messages in the
specified directory only. The “/**” suffix can be used to match
messages in the specified directory and all its subdirectories
recursively. path:”“ matches messages in the root of the mail
store and, likewise, path:** matches all messages.

path: will find a message if any copy of that message is in
the specific directory.

	folder:<maildir-folder> or folder:/<regex>/

	The folder: prefix searches for email messages by maildir or
MH folder. For MH-style folders, this is equivalent to
path:. For maildir, this includes messages in the “new” and
“cur” subdirectories. The exact syntax for maildir folders depends
on your mail configuration. For maildir++, folder:”“ matches
the inbox folder (which is the root in maildir++), other folder
names always start with “.”, and nested folders are separated by
“.”s, such as folder:.classes.topology. For “file system”
maildir, the inbox is typically folder:INBOX and nested
folders are separated by slashes, such as
folder:classes/topology.

folder: will find a message if any copy of that message is
in the specific folder.

	date:<since>..<until> or date:<date>

	The date: prefix can be used to restrict the results to only
messages within a particular time range (based on the Date:
header).

See DATE AND TIME SEARCH below for details on the range
expression, and supported syntax for <since> and <until> date and
time expressions.

The time range can also be specified using timestamps without
including the date prefix using a syntax of:

<initial-timestamp>..<final-timestamp>

Each timestamp is a number representing the number of seconds
since 1970-01-01 00:00:00 UTC. Specifying a time range this way
is considered legacy and predates the date prefix.

	lastmod:<initial-revision>..<final-revision>

	The lastmod: prefix can be used to restrict the result by the
database revision number of when messages were last modified (tags
were added/removed or filenames changed). This is usually used in
conjunction with the --uuid argument to notmuch search to
find messages that have changed since an earlier query.

	query:<name>

	The query: prefix allows queries to refer to previously saved
queries added with notmuch-config(1).

	property:<key>=<value>

	The property: prefix searches for messages with a particular
<key>=<value> property pair. Properties are used internally by
notmuch (and extensions) to add metadata to messages. A given key
can be present on a given message with several different values.
See notmuch-properties(7) for more details.

User defined prefixes are also supported, see notmuch-config(1) for
details.

Operators

In addition to individual terms, multiple terms can be combined with
Boolean operators (and, or, not, and xor). Each term
in the query will be implicitly connected by a logical AND if no
explicit operator is provided (except that terms with a common prefix
will be implicitly combined with OR). The shorthand ‘-<term>’ can be
used for ‘not <term>’ but unfortunately this does not work at the
start of an expression. Parentheses can also be used to control the
combination of the Boolean operators, but will have to be protected
from interpretation by the shell, (such as by putting quotation marks
around any parenthesized expression).

In addition to the standard boolean operators, Xapian provides several
operators specific to text searching.

notmuch search term1 NEAR term2

will return results where term1 is within 10 words of term2. The
threshold can be set like this:

notmuch search term1 NEAR/2 term2

The search

notmuch search term1 ADJ term2

will return results where term1 is within 10 words of term2, but in the
same order as in the query. The threshold can be set the same as with
NEAR:

notmuch search term1 ADJ/7 term2

Stemming

Stemming in notmuch means that these searches

notmuch search detailed
notmuch search details
notmuch search detail

will all return identical results, because Xapian first “reduces” the
term to the common stem (here ‘detail’) and then performs the search.

There are two ways to turn this off: a search for a capitalized word
will be performed unstemmed, so that one can search for “John” and not
get results for “Johnson”; phrase searches are also unstemmed (see
below for details). Stemming is currently only supported for
English. Searches for words in other languages will be performed unstemmed.

Wildcards

It is possible to use a trailing ‘*’ as a wildcard. A search for
‘wildc*’ will match ‘wildcard’, ‘wildcat’, etc.

Boolean and Probabilistic Prefixes

Xapian (and hence notmuch) prefixes are either boolean, supporting
exact matches like “tag:inbox” or probabilistic, supporting a more
flexible term based searching. Certain special prefixes are
processed by notmuch in a way not strictly fitting either of Xapian’s
built in styles. The prefixes currently supported by notmuch are as
follows.

	Boolean

	tag:, id:, thread:, folder:, path:, property:

	Probabilistic

	body:, to:, attachment:, mimetype:

	Special

	from:, query:, subject:

Terms and phrases

In general Xapian distinguishes between lists of terms and
phrases. Phrases are indicated by double quotes (but beware you
probably need to protect those from your shell) and insist that those
unstemmed words occur in that order. One useful, but initially
surprising feature is that the following are equivalent ways to write
the same phrase.

	“a list of words”

	a-list-of-words

	a/list/of/words

	a.list.of.words

Both parenthesised lists of terms and quoted phrases are ok with
probabilistic prefixes such as to:, from:, and subject:. In particular

subject:(pizza free)

is equivalent to

subject:pizza and subject:free

Both of these will match a subject “Free Delicious Pizza” while

subject:"pizza free"

will not.

Quoting

Double quotes are also used by the notmuch query parser to protect
boolean terms, regular expressions, or subqueries containing spaces or
other special characters, e.g.

tag:"a tag"

folder:"/^.*/(Junk|Spam)$/"

thread:"{from:mallory and date:2009}"

As with phrases, you need to protect the double quotes from the shell
e.g.

% notmuch search 'folder:"/^.*/(Junk|Spam)$/"'
% notmuch search 'thread:"{from:mallory and date:2009}" and thread:{to:mallory}'

DATE AND TIME SEARCH

notmuch understands a variety of standard and natural ways of expressing
dates and times, both in absolute terms (“2012-10-24”) and in relative
terms (“yesterday”). Any number of relative terms can be combined (“1
hour 25 minutes”) and an absolute date/time can be combined with
relative terms to further adjust it. A non-exhaustive description of the
syntax supported for absolute and relative terms is given below.

The range expression

date:<since>..<until>

The above expression restricts the results to only messages from <since>
to <until>, based on the Date: header.

<since> and <until> can describe imprecise times, such as “yesterday”.
In this case, <since> is taken as the earliest time it could describe
(the beginning of yesterday) and <until> is taken as the latest time it
could describe (the end of yesterday). Similarly, date:january..february
matches from the beginning of January to the end of February.

If specifying a time range using timestamps in conjunction with the
date prefix, each timestamp must be preceded by @ (ASCII hex 40). As
above, each timestamp is a number representing the number of seconds
since 1970-01-01 00:00:00 UTC. For example:

date:@<initial-timestamp>..@<final-timestamp>

Currently, spaces in range expressions are not supported. You can
replace the spaces with ‘_’, or (in most cases) ‘-‘, or (in some cases)
leave the spaces out altogether. Examples in this man page use spaces
for clarity.

Open-ended ranges are supported. I.e. it’s possible to specify
date:..<until> or date:<since>.. to not limit the start or
end time, respectively.

Single expression

date:<expr> works as a shorthand for date:<expr>..<expr>.
For example, date:monday matches from the beginning of Monday until
the end of Monday.

Relative date and time

[N|number]
(years|months|weeks|days|hours|hrs|minutes|mins|seconds|secs)
[…]

All refer to past, can be repeated and will be accumulated.

Units can be abbreviated to any length, with the otherwise ambiguous
single m being m for minutes and M for months.

Number can also be written out one, two, …, ten, dozen, hundred.
Additionally, the unit may be preceded by “last” or “this” (e.g., “last
week” or “this month”).

When combined with absolute date and time, the relative date and time
specification will be relative from the specified absolute date and
time.

Examples: 5M2d, two weeks

Supported absolute time formats

	H[H]:MM[:SS] [(am|a.m.|pm|p.m.)]

	H[H] (am|a.m.|pm|p.m.)

	HHMMSS

	now

	noon

	midnight

	Examples: 17:05, 5pm

Supported absolute date formats

	YYYY-MM[-DD]

	DD-MM[-[YY]YY]

	MM-YYYY

	M[M]/D[D][/[YY]YY]

	M[M]/YYYY

	D[D].M[M][.[YY]YY]

	D[D][(st|nd|rd|th)] Mon[thname] [YYYY]

	Mon[thname] D[D][(st|nd|rd|th)] [YYYY]

	Wee[kday]

Month names can be abbreviated at three or more characters.

Weekday names can be abbreviated at three or more characters.

Examples: 2012-07-31, 31-07-2012, 7/31/2012, August 3

Time zones

	(+|-)HH:MM

	(+|-)HH[MM]

Some time zone codes, e.g. UTC, EET.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reindex(1),
notmuch-properties(1),
*notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
*notmuch-show(1),
notmuch-tag(1)

notmuch-show

SYNOPSIS

notmuch show [option …] <search-term> …

DESCRIPTION

Shows all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for
<search-terms>.

The messages will be grouped and sorted based on the threading (all
replies to a particular message will appear immediately after that
message in date order). The output is not indented by default, but depth
tags are printed so that proper indentation can be performed by a
post-processor (such as the emacs interface to notmuch).

Supported options for show include

	--entire-thread=(true|false)

	If true, notmuch show outputs all messages in the thread of
any message matching the search terms; if false, it outputs only
the matching messages. For --format=json and --format=sexp
this defaults to true. For other formats, this defaults to false.

	--format=(text|json|sexp|mbox|raw)

	
	text (default for messages)

	The default plain-text format has all text-content MIME parts
decoded. Various components in the output, (message,
header, body, attachment, and MIME part), will
be delimited by easily-parsed markers. Each marker consists of
a Control-L character (ASCII decimal 12), the name of the
marker, and then either an opening or closing brace, (‘{‘ or
‘}’), to either open or close the component. For a multipart
MIME message, these parts will be nested.

	json

	The output is formatted with Javascript Object Notation
(JSON). This format is more robust than the text format for
automated processing. The nested structure of multipart MIME
messages is reflected in nested JSON output. By default JSON
output includes all messages in a matching thread; that is, by
default, --format=json sets --entire-thread. The
caller can disable this behaviour by setting
--entire-thread=false. The JSON output is always encoded
as UTF-8 and any message content included in the output will
be charset-converted to UTF-8.

	sexp

	The output is formatted as the Lisp s-expression (sexp)
equivalent of the JSON format above. Objects are formatted as
property lists whose keys are keywords (symbols preceded by a
colon). True is formatted as t and both false and null are
formatted as nil. As for JSON, the s-expression output is
always encoded as UTF-8.

	mbox

	All matching messages are output in the traditional, Unix mbox
format with each message being prefixed by a line beginning
with “From ” and a blank line separating each message. Lines
in the message content beginning with “From ” (preceded by
zero or more ‘>’ characters) have an additional ‘>’ character
added. This reversible escaping is termed “mboxrd” format and
described in detail here:

http://homepage.ntlworld.com/jonathan.deboynepollard/FGA/mail-mbox-formats.html

	raw (default if --part is given)

	Write the raw bytes of the given MIME part of a message to
standard out. For this format, it is an error to specify a
query that matches more than one message.

If the specified part is a leaf part, this outputs the body of
the part after performing content transfer decoding (but no
charset conversion). This is suitable for saving attachments,
for example.

For a multipart or message part, the output includes the part
headers as well as the body (including all child parts). No
decoding is performed because multipart and message parts
cannot have non-trivial content transfer encoding. Consumers
of this may need to implement MIME decoding and similar
functions.

	--format-version=N

	Use the specified structured output format version. This is
intended for programs that invoke notmuch(1) internally. If
omitted, the latest supported version will be used.

	--part=N

	Output the single decoded MIME part N of a single message. The
search terms must match only a single message. Message parts are
numbered in a depth-first walk of the message MIME structure, and
are identified in the ‘json’, ‘sexp’ or ‘text’ output formats.

Note that even a message with no MIME structure or a single body
part still has two MIME parts: part 0 is the whole message
(headers and body) and part 1 is just the body.

	--verify

	Compute and report the validity of any MIME cryptographic
signatures found in the selected content (e.g., “multipart/signed”
parts). Status of the signature will be reported (currently only
supported with --format=json and --format=sexp), and the
multipart/signed part will be replaced by the signed data.

	--decrypt=(false|auto|true|stash)

	If true, decrypt any MIME encrypted parts found in the
selected content (e.g., “multipart/encrypted” parts). Status of
the decryption will be reported (currently only supported
with --format=json and --format=sexp) and on successful
decryption the multipart/encrypted part will be replaced by
the decrypted content.

stash behaves like true, but upon successful decryption it
will also stash the message’s session key in the database, and
index the cleartext of the message, enabling automatic decryption
in the future.

If auto, and a session key is already known for the
message, then it will be decrypted, but notmuch will not try
to access the user’s keys.

Use false to avoid even automatic decryption.

Non-automatic decryption (stash or true, in the absence of
a stashed session key) expects a functioning gpg-agent(1) to
provide any needed credentials. Without one, the decryption will
fail.

Note: setting either true or stash here implies
--verify.

Here is a table that summarizes each of these policies:

	
	false

	auto

	true

	stash

	Show cleartext if
session key is
already known

	
	X

	X

	X

	Use secret keys to
show cleartext

	
	
	X

	X

	Stash any newly
recovered session keys,
reindexing message if
found

	
	
	
	X

Note: --decrypt=stash requires write access to the database.
Otherwise, notmuch show operates entirely in read-only mode.

Default: auto

	--exclude=(true|false)

	Specify whether to omit threads only matching search.exclude_tags
from the search results (the default) or not. In either case the
excluded message will be marked with the exclude flag (except when
output=mbox when there is nowhere to put the flag).

If --entire-thread is specified then complete threads are returned
regardless (with the excluded flag being set when appropriate) but
threads that only match in an excluded message are not returned
when --exclude=true.

The default is --exclude=true.

	--body=(true|false)

	If true (the default) notmuch show includes the bodies of the
messages in the output; if false, bodies are omitted.
--body=false is only implemented for the text, json and sexp
formats and it is incompatible with --part > 0.

This is useful if the caller only needs the headers as body-less
output is much faster and substantially smaller.

	--include-html

	Include “text/html” parts as part of the output (currently
only supported with --format=text, --format=json and
--format=sexp). By default, unless --part=N is used to
select a specific part or --include-html is used to include all
“text/html” parts, no part with content type “text/html” is included
in the output.

A common use of notmuch show is to display a single thread of email
messages. For this, use a search term of “thread:<thread-id>” as can be
seen in the first column of output from the notmuch search command.

EXIT STATUS

This command supports the following special exit status codes

	20

	The requested format version is too old.

	21

	The requested format version is too new.

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-tag(1)

notmuch-tag

SYNOPSIS

notmuch tag [options …] +<tag>|-<tag> [–] <search-term> …

notmuch tag –batch [–input=<filename>]

DESCRIPTION

Add/remove tags for all messages matching the search terms.

See notmuch-search-terms(7) for details of the supported syntax for
<search-term>.

Tags prefixed by ‘+’ are added while those prefixed by ‘-‘ are removed.
For each message, tag changes are applied in the order they appear on
the command line.

The beginning of the search terms is recognized by the first argument
that begins with neither ‘+’ nor ‘-‘. Support for an initial search term
beginning with ‘+’ or ‘-‘ is provided by allowing the user to specify a
“–” argument to separate the tags from the search terms.

notmuch tag updates the maildir flags according to tag changes if
the maildir.synchronize_flags configuration option is enabled. See
notmuch-config(1) for details.

Supported options for tag include

	--remove-all

	Remove all tags from each message matching the search terms before
applying the tag changes appearing on the command line. This
means setting the tags of each message to the tags to be added. If
there are no tags to be added, the messages will have no tags.

	--batch

	Read batch tagging operations from a file (stdin by default).
This is more efficient than repeated notmuch tag
invocations. See TAG FILE FORMAT below for
the input format. This option is not compatible with specifying
tagging on the command line.

	--input=<filename>

	Read input from given file, instead of from stdin. Implies
--batch.

TAG FILE FORMAT

The input must consist of lines of the format:

+<tag>|-<tag> […] [–] <query>

Each line is interpreted similarly to notmuch tag command line
arguments. The delimiter is one or more spaces ‘ ‘. Any characters in
<tag> may be hex-encoded with %NN where NN is the hexadecimal
value of the character. To hex-encode a character with a multi-byte
UTF-8 encoding, hex-encode each byte. Any spaces in <tag> must be
hex-encoded as %20. Any characters that are not part of <tag> must
not be hex-encoded.

In the future tag:”tag with spaces” style quoting may be supported for
<tag> as well; for this reason all double quote characters in
<tag> should be hex-encoded.

The <query> should be quoted using Xapian boolean term quoting
rules: if a term contains whitespace or a close paren or starts with a
double quote, it must be enclosed in double quotes (not including any
prefix) and double quotes inside the term must be doubled (see below for
examples).

Leading and trailing space ‘ ‘ is ignored. Empty lines and lines
beginning with ‘#’ are ignored.

EXAMPLE

The following shows a valid input to batch tagging. Note that only the
isolated ‘*’ acts as a wildcard. Also note the two different quotings
of the tag space in tags

+winner *
+foo::bar%25 -- (One and Two) or (One and tag:winner)
+found::it -- tag:foo::bar%
ignore this line and the next

+space%20in%20tags -- Two
add tag '(tags)', among other stunts.
+crazy{ +(tags) +&are +#possible\ -- tag:"space in tags"
+match*crazy -- tag:crazy{
+some_tag -- id:"this is ""nauty)"""

SEE ALSO

notmuch(1),
notmuch-config(1),
notmuch-count(1),
notmuch-dump(1),
notmuch-hooks(5),
notmuch-insert(1),
notmuch-new(1),
notmuch-reply(1),
notmuch-restore(1),
notmuch-search(1),
notmuch-search-terms(7),
notmuch-show(1),

Index

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to notmuch’s documentation!

 		
 notmuch

 		
 notmuch-address

 		
 notmuch-compact

 		
 notmuch-config

 		
 notmuch-count

 		
 notmuch-dump

 		
 notmuch-emacs-mua

 		
 notmuch-hooks

 		
 notmuch-insert

 		
 notmuch-new

 		
 notmuch-properties

 		
 notmuch-reindex

 		
 notmuch-reply

 		
 notmuch-restore

 		
 notmuch-search

 		
 notmuch-search-terms

 		
 notmuch-show

 		
 notmuch-tag

_static/comment-bright.png

_static/ajax-loader.gif

