

 Navigation

 	
 index

 	
 next |

 	nodev starter kit 0.2.0 documentation

nodev starter kit

	Version:	0.2.0

	Date:	2016-07-22

Warning

This documentation is work in progress and there will be areas that are lacking.

Table of Contents

	Test-driven code search concepts
	Motivation

	Test-driven code search

	Test-driven code reuse

	Unit tests validation

	Feature specification tests

	Bibliography

	Quickstart
	New user FAQ

	Install nodev-starter-kit

	Install docker-engine and docker

	Create the nodev image

	Execute a search

	Project resources

	Contributing

	License

	Specification Tests
	Why do we love unit tests?

	Why do we hate unit tests?

	Feature vs. implementation

	How to test for a feature without knowing the implementation?

	Examples

 Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nodev starter kit 0.2.0 documentation

Test-driven code search concepts

Motivation

“Have a look at this piece of code that I’m writing–I’m sure it has been written before.
I wouldn’t be surprised to find it verbatim somewhere on GitHub.” - @kr1 [https://github.com/kr1]

Every piece of functionality in a software project
requires code that lies somewhere in the wide reusability spectrum that goes
form extremely custom and strongly tied to the specific implementation
to completely generic and highly reusable.

On the custom side of the spectrum there is all the code that defines the
features of the software and all the choices of its implementation. That one is code that need
to be written.

On the other hand seasoned software developers are trained to spot
pieces of functionality that lie far enough on the generic side of the range
that with high probability are already implemented in a librariy or a framework
and that are documented well enough to be discovered with a
keyword-based search, e.g. on StackOverflow and Google.

In between the two extremes there is a huge gray area populated by pieces of functionality
that are not generic enough to obviously deserve a place in a library, but are
common enough that must have been already implemented by someone else for their
software. This kind of code is doomed to be re-implemented again and again
for the simple reason that there is no way to search code by functionality...

Or is it?

Test-driven code search

To address the limits of keyword-based search test-driven code search
focuses on code behaviour and semantics instead.

The search query is a test function that is executed once for every
candidate class or function available to the search engine
and the search result is the list of candidates that pass the test.

Due to its nature the approach is better suited for discovering smaller functions
with a generic signature.

pytest-nodev is a pytest plugin that enables test-driven code search for Python.

Test-driven code reuse

Test-driven reuse (TDR) is an extension of the well known test-driven development (TDD)
development practice.

Developing a new feature in TDR starts with the developer writing the tests
that will validate the correct implementation of the desired functionality.

Before writing any functional code the tests are run against all functions
and classes of all available projects.

Any code passing the tests is presented to the developer
as a candidate implementation for the target feature:

	if nothing passes the tests the developer need to implement the feature and TDR reduces to TDD

	if any code passes the tests the developer can:
	import: accept code as a dependency and use the class / function directly

	fork: copy the code and the related tests into their project

	study: use the code and the related tests as guidelines for their implementation,
in particular identifyng corner cases and optimizations

Unit tests validation

An independent use case for test-driven code search is unit tests validation.
If a test passes with an unexpected object there are two possibilities,
either the test is not strict enough and allows for false positives and needs to be updated,
or the PASSED is actually a function you could use instead of your implementation.

Feature specification tests

Similarly to keyword-based search also in test-driven code search
the quality of the search results depends strongly from
the ability to build a strong search query,
in particular from the way our feature specification tests are written.

Writing effective feature specification tests is an art.

Bibliography

	“CodeGenie: a tool for test-driven source code search”, O.A. Lazzarini Lemos et al,
Companion to the 22nd ACM SIGPLAN conference on Object-oriented programming systems and applications companion,
917–918, 2007, ACM, http://dx.doi.org/10.1145/1297846.1297944

	“Code conjurer: Pulling reusable software out of thin air”, O. Hummel et al,
IEEE Software, (25) 5 45-52, 2008, IEEE, http://dx.doi.org/10.1109/MS.2008.110 —
PDF [http://cosc612.googlecode.com/svn/Research%20Paper/Code%20Conjurer.pdf]

	“Finding Source Code on the Web for Remix and Reuse”, S.E. Sim et al, 251, 2013 —
PDF [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.308.2645&rep=rep1&type=pdf]

	“Test-Driven Reuse: Improving the Selection of Semantically Relevant Code”, M. Nurolahzade,
Ph.D. thesis, 2014, UNIVERSITY OF CALGARY —
PDF [http://lsmr.org/docs/nurolahzade_phd_2014.pdf]

 Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	nodev starter kit 0.2.0 documentation

Quickstart

New user FAQ

nodev-starter-kit lets you perform test-driven code search queries
with pytest-nodev [https://pypi.python.org/pypi/pytest-nodev]
safely and efficiently using docker [https://docker.com].

Why do I need special care to run pytest-nodev?

Searching code with pytest-nodev looks very much like running arbitrary callables with random arguments.
A lot of functions called with the wrong set of arguments may have unexpected consequences ranging
from slightly annoying, think os.mkdir('false'),
to utterly catastrophic, think shutil.rmtree('/', True).
Serious use of pytest-nodev, in particular using --candidates-from-all,
require running the tests with operating-system level isolation,
e.g. as a dedicated user or even better inside a dedicated container.

But isn’t it docker overkill? Can’t I just use a dedicated user to run pytest-nodev?

We tried hard to find a simpler setup, but once all the nitty-gritty details are factored in
we choose docker as the best trade-off between safety, reproducibility and easiness of use.

Install nodev-starter-kit

To install nodev-starter-kit clone the official repo [https://github.com/nodev-io/nodev-startet-kit]:

$ git clone https://github.com/nodev-io/nodev-starter-kit.git
$ cd nodev-starter-kit

Advanced GitHub users are suggested to
fork the offical repo [https://help.github.com/articles/fork-a-repo/] and clone their fork.

Install docker-engine and docker

In order to run pytest-nodev you need to access a docker-engine server via the docker client,
if you don’t have Docker already setup
you need to follow the official installation instructions for your platform:

	Docker for Linux [https://docs.docker.com/engine/installation/linux/]

	Docker for MacOS [https://docs.docker.com/docker-for-mac/]

	Docker for Windows [https://docs.docker.com/docker-for-windows/]

Only on Ubuntu 16.04 you can use the script we provide:

$ bash ./docker-engine-setup.sh

And test your setup with:

$ docker info

Refer to the official Docker documentation for trouble-shooting and additional configurations.

Create the nodev image

The nodev docker image will be your search engine,
it needs to be created once and updated every time you want to
change the packages installed in the search engine environment.

With an editor fill the requirements.txt file with the packages to be installed in the search engine.

Build the docker image with:

$ docker build -t nodev .

Execute a search

Run the search engine container on a local docker-engine server, e.g. with:

$ docker run --rm -it -v `pwd`:/src nodev --candidates-from-stdlib tests/test_parse_bool.py

Or alternatively after having set the DOCKER_HOST environment variable, e.g. with:

$ export DOCKER_HOST='tcp://127.0.0.1:4243' # change '127.0.0.1:4243' with the IP address and port
 # of your docker-engine host

you can run the search engine container on a remote docker-engine server, e.g. with:

$ python docker-nodev.py --candidates-from-stdlib tests/test_parse_bool.py
======================= test session starts ==========================
platform darwin -- Python 3.5.1, pytest-2.9.2, py-1.4.31, pluggy-0.3.1
rootdir: /tmp, inifile: setup.cfg
plugins: nodev-1.0.0, timeout-1.0.0
collected 4000 items

test_parse_bool.py xxxxxxxxxxxx[...]xxxxxxxxXxxxxxxxx[...]xxxxxxxxxxxx

====================== pytest_nodev: 1 passed ========================

test_parse_bool.py::test_parse_bool[distutils.util:strtobool] PASSED

=== 3999 xfailed, 1 xpassed, 260 pytest-warnings in 75.38 seconds ====

Project resources

	Documentation
	http://nodev-starter-kit.readthedocs.io

	Support
	https://stackoverflow.com/search?q=pytest-nodev

	Development
	https://github.com/nodev-io/nodev-starter-kit

Contributing

Contributions are very welcome. Please see the CONTRIBUTING [https://github.com/nodev-io/nodev-starter-kit/blob/master/CONTRIBUTING.rst] document for
the best way to help.
If you encounter any problems, please file an issue along with a detailed description.

Authors:

	Alessandro Amici - @alexamici [https://github.com/alexamici]

Sponsors:

	[image: B-Open Solutions srl]
 [http://bopen.eu/]

License

nodev-starter-kit is free and open source software
distributed under the terms of the MIT [http://opensource.org/licenses/MIT] license.

 Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	nodev starter kit 0.2.0 documentation

Specification Tests

“If it’s not tested, it’s broken.” - Bruce Eckel.

Testing assure you that the code works... at least in one very specific case.

Why do we love unit tests?

We love unit tests because they...

	help writing better code in the first place

	make refactoring possible

	keep internal API tidy

	help design and document the intended behaviour of the code

Why do we hate unit tests?

We hate unit tests because they...

	need as much work as code

	need to be refactored during a refactoring

	break when you change trivial implementation details

	risk keeping the focus on the process, not on the product

Feature vs. implementation

How to test for a feature without knowing the implementation?

Examples

Another example, find a function that decomposes a URL into individual rfc3986 components:

$ py.test examples/test_rfc3986_parse.py --candidates-from-modules urllib.parse
[...]
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib.parse:urlparse] HIT
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib.parse:urlsplit] HIT
[...]

the two functions urlparse and urlsplit pass the basic rfc3986 parsing test, but do not
pass the more complex test_rfc3986_parse_full test.

More advanced functions are available on PyPI:

$ pip install urllib3
$ py.test examples/test_rfc3986_parse.py --candidates-from-modules urllib3
[...]
examples/test_rfc3986_parse.py::test_rfc3986_parse_basic[urllib3.util.url:parse_url] HIT
examples/test_rfc3986_parse.py::test_rfc3986_parse_full[urllib3.util.url:parse_url] HIT
[...]

now the function parse_url in the module urllib3.util.url passes both tests.

 Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	nodev starter kit 0.2.0 documentation

Index

 Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

 _static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		nodev starter kit 0.2.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Alessandro Amici.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_static/minus.png

