

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

索引

 There are essentially three ways to build your NodeMCU firmware: cloud build service, Docker image, dedicated Linux environment (possibly VM).

Tools

Cloud Build Service

NodeMCU "application developers" just need a ready-made firmware. There's a cloud build service [http://nodemcu-build.com/] with a nice UI and configuration options for them.

Docker Image

Occasional NodeMCU firmware hackers don't need full control over the complete tool chain. They might not want to setup a Linux VM with the build environment. Docker to the rescue. Give Docker NodeMCU build [https://hub.docker.com/r/marcelstoer/nodemcu-build/] a try.

Linux Build Environment

NodeMCU firmware developers commit or contribute to the project on GitHub and might want to build their own full fledged build environment with the complete tool chain. The NodeMCU project embeds a ready-made tool chain [https://github.com/nodemcu/nodemcu-firmware/blob/401fa56b863873c4cbf0b6581eb36fc61046ff6c/Makefile#L225] for Linux/x86-64 by default. After working through the Build Options below, simply start the build process with

make

!!! note

Building the tool chain from scratch is out of NodeMCU's scope. Refer to [ESP toolchains](https://github.com/jmattsson/esp-toolchains) for related information.

Git

If you decide to build with either the Docker image or the native environment then use Git to clone the firmware sources instead of downloading the ZIP file from GitHub. Only cloning with Git will retrieve the referenced submodules:

git clone --recurse-submodules -b <branch> https://github.com/nodemcu/nodemcu-firmware.git

Omitting the optional -b <branch> will clone master.

Build Options

The following sections explain some of the options you have if you want to build your own NodeMCU firmware.

Select Modules

Disable modules you won't be using to reduce firmware size and free up some RAM. The ESP8266 is quite limited in available RAM and running out of memory can cause a system panic. The default configuration is designed to run on all ESP modules including the 512 KB modules like ESP-01 and only includes general purpose interface modules which require at most two GPIO pins.

Edit app/include/user_modules.h and comment-out the #define statement for modules you don't need. Example:

...
#define LUA_USE_MODULES_MQTT
// #define LUA_USE_MODULES_COAP
...

TLS/SSL Support

To enable TLS support edit app/include/user_config.h and uncomment the following flag:

//#define CLIENT_SSL_ENABLE

The complete configuration is stored in app/include/user_mbedtls.h. This is the file to edit if you build your own firmware and want to change mbed TLS behavior. See the tls documentation for details.

Debugging

To enable runtime debug messages to serial console edit app/include/user_config.h

#define DEVELOP_VERSION

LFS

LFS is turned off by default. See the LFS documentation for supported config options (e.g. how to enable it).

Set UART Bit Rate

The initial baud rate at boot time is 115200bps. You can change this by
editing BIT_RATE_DEFAULT in app/include/user_config.h:

#define BIT_RATE_DEFAULT BIT_RATE_115200

Note that, by default, the firmware runs an auto-baudrate detection algorithm so that typing a few characters at boot time will cause
the firmware to lock onto that baud rate (between 1200 and 230400).

Integer build

By default a build will be generated supporting floating-point variables.
To reduce memory size an integer build can be created. You can change this
either by uncommenting LUA_NUMBER_INTEGRAL in app/include/user_config.h:

#define LUA_NUMBER_INTEGRAL

OR by overriding this with the make command as it's done during the CI
build [https://github.com/nodemcu/nodemcu-firmware/blob/master/.travis.yml#L30]:

make EXTRA_CCFLAGS="-DLUA_NUMBER_INTEGRAL

Tag Your Build

Identify your firmware builds by editing app/include/user_version.h

#define NODE_VERSION "NodeMCU " ESP_SDK_VERSION_STRING "." NODE_VERSION_XSTR(NODE_VERSION_INTERNAL)
#ifndef BUILD_DATE
#define BUILD_DATE "YYYYMMDD"
#endif

u8g2 Module Configuration

Display drivers and embedded fonts are compiled into the firmware image based on the settings in app/include/u8g2_displays.h and app/include/u8g2_fonts.h. See the u8g2 documentation for details.

ucg Module Configuration

Display drivers and embedded fonts are compiled into the firmware image based on the settings in app/include/ucg_config.h. See the ucg documentation for details.

 Whilst the Lua Virtual Machine (LVM) can compile Lua source dynamically and this can prove
very flexible during development, you will use less RAM resources if you precompile
your sources before execution.

Compiling Lua directly on your ESP8266

	The standard string.dump (function) [https://www.lua.org/manual/5.1/manual.html#pdf-string.dump] returns a string containing the binary code for the specified function and you can write this to a SPIFFS file.

	node.compile() wraps this 'load and dump to file' operation into a single atomic library call.

The issue with both of these approaches is that compilation is RAM-intensive and hence
you will find that you will need to break your application into a lot of small and
compilable modules in order to avoid hitting RAM constraints. This can be mitigated
by doing all compiles immediately after a node.restart()`.

Compiling Lua on your PC for Uploading

If you install lua on your development PC or Laptop then you can use the standard Lua
compiler to syntax check any Lua source before downloading it to the ESP8266 module. However,
the NodeMCU compiler output uses different data types (e.g. it supports ROMtables) so the
compiled output from standard luac cannot run on the ESP8266.

Compiling source on one platform for use on another (e.g. Intel 64-bit Windows to ESP8266) is
known as cross-compilation and the NodeMCU firmware build now automatically generates
a luac.cross image as standard in the firmware root directory; this can be used to
compile and to syntax-check Lua source on the Development machine for execution under
NodeMCU Lua on the ESP8266.

luac.cross will translate Lua source files into binary files that can be later loaded
and executed by the LVM. Such binary files, which normally have the .lc (lua code)
extension are loaded directly by the LVM without the RAM overhead of compilation.

Each luac.cross execution produces a single output file containing the bytecodes
for all source files given in the output file luac.out, but you would normally
change this with the -o option. If you wish you can mix Lua source files (and
even Lua binary files) on the command line. You can use '-' to indicate the
standard input as a source file and '--' to signal the end of options (that is, all
remaining arguments will be treated as files even if they start with '-').

luac.cross supports the standard luac options -l, -o, -p, -s and -v,
as well as the -h option which produces the current help overview.

NodeMCU also implements some major extensions to support the use of the
Lua Flash Store (LFS)), in that it can produce an LFS image file which
is loaded as an overlay into the firmware in flash memory; the LVM can access and
execute this code directly from flash without needing to store code in RAM. This
mode is enabled by specifying the -foption.

luac.cross supports two separate image formats:

	Compact relocatable. This is selected by the -f option. Here the compiler compresses the compiled binary so that image is small for downloading over Wifi/WAN (e.g. a full 64Kb LFS image is compressed down to a 22Kb file.) The LVM processes such image in two passes with the integrity of the image validated on the first, and the LFS itself gets upated on the second. The LVM also checks that the image will fit in the allocated LFS region before loading, but you can also use the -m option to throw a compile error if the image is too large, for example -m 0x10000 will raise an error if the image will not load into a 64Kb regions.

	Absolute. This is selected by the -a <baseAddr> option. Here the compiler fixes all addresses relative to the base address specified. This allows an LFS absolute image to be loaded directly into the ESP flash using a tool such as esptool.py.

These two modes target two separate use cases: the compact relocatable format
facilitates simple OTA updates to an LFS based Lua application; the absolute format
facilitates factory installation of LFS based applicaitons.

Also note that the app/lua/luac_cross make and Makefile can be executed to build
just the luac.cross image. You must first ensure that the following options in
app/include/user_config.h are matched to your target configuration:

//#define LUA_NUMBER_INTEGRAL // uncomment if you want an integer build
//#define LUA_FLASH_STORE 0x10000 // uncomment if you LFS support

Developers have successfully built this on Linux (including docker builds), MacOS, Win10/WSL and WinX/Cygwin.

Extension Developer FAQ

Firmware build options

Building the firmware → Build Options lists a few of the common parameters to customize your firmware at build time.

How does the non-OS SDK structure execution

Details of the execution model for the non-OS SDK is not well documented by
Espressif. This section summarises the project's understanding of how this execution
model works based on the Espressif-supplied examples and SDK documentation, plus
various posts on the Espressif BBS and other forums, and an examination of the
BootROM code.

The ESP8266 boot ROM contains a set of primitive tasking and dispatch functions
which are also used by the SDK. In this model, execution units are either:

	INTERRUPT SERVICE ROUTINES (ISRs) which are declared and controlled
through the ets_isr_attach() and other ets_isr_* and ets_intr_*
functions. ISRs can be defined on a range of priorities, where a higher
priority ISR is able to interrupt a lower priority one. ISRs are time
critical and should complete in no more than 50 µSec.

ISR code and data constants should be run out of RAM or ROM, for two reasons:
if an ISR interrupts a flash I/O operation (which must disable the Flash
instruction cache) and a cache miss occurs, then the ISR will trigger a
fatal exception; secondly, the
execution time for Flash memory (that is located in the irom0 load section)
is indeterminate: whilst cache-hits can run at full memory bandwidth, any
cache-misses require the code to be read from Flash; and even though
H/W-based, this is at roughly 26x slower than memory bandwidth (for DIO
flash); this will cause ISR execution to fall outside the require time
guidelines. (Note that any time critical code within normal execution and that
is bracketed by interrupt lock / unlock guards should also follow this 50
µSec guideline.)

	TASKS. A task is a normal execution unit running at a non-interrupt priority.
Tasks can be executed from Flash memory. An executing task can be interrupted
by one or more ISRs being delivered, but it won't be preempted by another
queued task. The Espressif guideline is that no individual task should run for
more than 15 mSec, before returning control to the SDK.

The ROM will queue up to 32 pending tasks at priorities 0..31 and will
execute the highest priority queued task next (or wait on interrupt if none
is runnable). The SDK tasking system is layered on this ROM dispatcher and
it reserves 29 of these task priorities for its own use, including the
implementation of the various SDK timer, WiFi and other callback mechanisms
such as the software WDT.

Three of these task priorities are allocated for and exposed directly at an
application level. The application can declare a single task handler for each
level, and associate a task queue with the level. Tasks can be posted to this
queue. (The post will fail is the queue is full). Tasks are then delivered
FIFO within task priority.

How the three user task priorities USER0 .. USER2 are positioned relative to
the SDK task priorities is undocumented, but some SDK tasks definitely run at
a lower priority than USER0. As a result if you always have a USER task queued
for execution, then you can starve SDK housekeeping tasks and you will start
to get WiFi and other failures. Espressif therefore recommends that you don't
stay computable for more than 500 mSec to avoid such timeouts.

Note that the 50µS, 15mSec and 500mSec limits are guidelines
and not hard constraints -- that is if you break them (slightly) then your code
may (usually) work, but you can get very difficult to diagnose and intermittent
failures. Also running ISRs from Flash may work until there is a collision with
SPIFFS I/O which will then a cause CPU exception.

Also note that the SDK API function system_os_post(), and the task_post_*()
macros which generate this can be safely called from an ISR.

The Lua runtime is NOT reentrant, and hence any code which calls any Lua API
must run within a task context. Any such task is what we call a Lua-Land Task
(or LLT). ISRs must not access the Lua API or Lua resources. LLTs can be
executed as SDK API callbacks or OS tasks. They can also, of course, call the
Lua execution system to execute Lua code (e.g. luaL_dofile() and related
calls).

Also since the application has no control over the relative time ordering of
tasks and SDK API callbacks, LLTs can't make any assumptions about whether a
task and any posted successors will run consecutively.

This API is designed to complement the Lua library model, so that a library can
declare one or more task handlers and that both ISPs and LLTs can then post a
message for delivery to a task handler. Each task handler has a unique message
associated with it, and may bind a single uint32 parameter. How this parameter
is interpreted is left to the task poster and task handler to coordinate.

The interface is exposed through #include "task/task.h" and involves two API
calls. Any task handlers are declared, typically in the module_init function by
assigning task_get_id(some_task_callback) to a (typically globally) accessible
handle variable, say XXX_callback_handle. This can then be used in an ISR or
normal LLT to execute a task_post_YYY(XXX_callback_handle,param) where YYY is
one of low, medium, high. The callback will then be executed when the SDK
delivers the task.

Note: task_post_YYY can fail with a false return if the task Q is full.

 Below you'll find all necessary information to flash a NodeMCU firmware binary to ESP8266 or ESP8285. Note that this is a reference documentation and not a tutorial with fancy screen shots. Turn to your favorite search engine for those. Make sure you follow a recent tutorial rather than one that is several months old!

!!! attention

Keep in mind that the ESP8266 needs to be [put into flash mode](#putting-device-into-flash-mode) before you can flash a new firmware!

!!! important

When switching between NodeMCU versions, see the notes about
[Upgrading Firmware](#upgrading-firmware).

Tool overview

esptool.py

A Python-based, open source, platform independent, utility to communicate with the ROM bootloader in Espressif ESP8266.

Source: https://github.com/espressif/esptool

Supported platforms: OS X, Linux, Windows, anything that runs Python

Running esptool.py

Run the following command to flash an aggregated binary as is produced for example by the cloud build service or the Docker image.

esptool.py --port <serial-port-of-ESP8266> write_flash -fm <flash-mode> 0x00000 <nodemcu-firmware>.bin

flash-mode [https://github.com/espressif/esptool/#flash-modes] is qio for most ESP8266 ESP-01/07 (512

kByte modules) and dio for most ESP32 and ESP8266 ESP-12 (>=4

MByte modules). ESP8285 requires dout.

Gotchas

	See below if you don't know or are uncertain about the capacity of the flash chip on your device. It might help to double check as e.g. some ESP-01 modules come with 512kB while others are equipped with 1MB.

	esptool.py is under heavy development. It's advised you run the latest version (check with esptool.py version). Since this documentation may not have been able to keep up refer to the esptool flash modes documentation [https://github.com/themadinventor/esptool#flash-modes] for current options and parameters.

	The firmware image file contains default settings dio for flash mode and 40m for flash frequency.

	In some uncommon cases, the SDK init data may be invalid and NodeMCU may fail to boot. The easiest solution is to fully erase the chip before flashing:
esptool.py --port <serial-port-of-ESP8266> erase_flash

NodeMCU PyFlasher

Self-contained NodeMCU [https://github.com/nodemcu/nodemcu-firmware] flasher with GUI based on esptool.py [https://github.com/espressif/esptool] and wxPython [https://www.wxpython.org/].

[image: NodeMCU PyFlasher]

Source: https://github.com/marcelstoer/nodemcu-pyflasher

Supported platforms: anything that runs Python, runnable .exe available for Windows and .dmg for macOS

Disclaimer: the availability of NodeMCU PyFlasher was announced on the NodeMCU Facebook page [https://www.facebook.com/NodeMCU/posts/663197460515251] but it is not an official offering of the current NodeMCU firmware team.

NodeMCU Flasher

A firmware Flash tool for NodeMCU...We are working on next version and will use QT framework. It will be cross platform and open-source.

Source: https://github.com/nodemcu/nodemcu-flasher

Supported platforms: Windows

Note that this tool was created by the initial developers of the NodeMCU firmware. It hasn't seen updates since September 2015 and is not maintained by the current NodeMCU firmware team. Be careful to not accidentally flash the very old default firmware the tool is shipped with.

Putting Device Into Flash Mode

To enable ESP8266 firmware flashing GPIO0 pin must be pulled low before the device is reset. Conversely, for a normal boot, GPIO0 must be pulled high or floating.

If you have a NodeMCU dev kit [https://github.com/nodemcu/nodemcu-devkit-v1.0] then you don't need to do anything, as the USB connection can pull GPIO0 low by asserting DTR and reset your board by asserting RTS.

If you have an ESP-01 or other device without built-in USB, you will need to enable flashing yourself by pulling GPIO0 low or pressing a "flash" switch, while powering up or resetting the module.

Which Files To Flash

If you build your firmware with the cloud builder or the Docker image, or any other method that produces a combined binary, then you can flash that file directly to address 0x00000.

Otherwise, if you built your own firmware from source code:

	bin/0x00000.bin to 0x00000

	bin/0x10000.bin to 0x10000

Upgrading Firmware

There are three potential issues that arise from upgrading (or downgrading!) firmware from one NodeMCU version to another:

	Lua scripts written for one NodeMCU version (like 0.9.x) may not work error-free on a more recent firmware. For example, Espressif changed the socket:send operation to be asynchronous i.e. non-blocking. See API documentation for details.

	The NodeMCU flash file system may need to be reformatted, particularly if its address has changed because the new firmware is different in size from the old firmware. If it is not automatically formatted then it should be valid and have the same contents as before the flash operation. You can still run file.format() manually to re-format your flash file system. You will know if you need to do this if your flash files exist but seem empty, or if data cannot be written to new files. However, this should be an exceptional case.
Formatting a file system on a large flash device (e.g. the 16MB parts) can take some time. So, on the first boot, you shouldn't get worried if nothing appears to happen for a minute. There's a message printed to console to make you aware of this.

	The Espressif SDK Init Data may change between each NodeMCU firmware version, and may need to be erased or reflashed. See SDK Init Data for details. Fully erasing the module before upgrading firmware will avoid this issue.

SDK Init Data

!!! note

Normally, NodeMCU will take care of writing the SDK init data when needed. Most users can ignore this section.

NodeMCU versions are compiled against specific versions of the Espressif SDK. The SDK reserves space in flash that is used to store calibration and other data. This data changes between SDK versions, and if it is invalid or not present, the firmware may not boot correctly. Symptoms include messages like rf_cal[0] !=0x05,is 0xFF, or endless reboot loops and/or fast blinking module LEDs.

!!! tip

If you are seeing one or several of the above symptoms, ensure that your chip is fully erased before flashing, for example:

`esptool.py --port <serial-port-of-ESP8266> erase_flash`

Also verify that you are using an up-to-date NodeMCU release, as some early releases of NodeMCU 1.5.4.1 did not write the SDK init data to a freshly erased chip.

Espressif refers to this area as "System Param" and it resides in the last four 4

kB sectors of flash. Since SDK 1.5.4.1 a fifth sector is reserved for RF calibration (and its placement is controlled by NodeMCU) as described by this patch notice [http://bbs.espressif.com/viewtopic.php?f=46&t=2407]. At minimum, Espressif states that the 4th sector from the end needs to be flashed with "init data", and the 2nd sector from the end should be blank.

The default init data is provided as part of the SDK in the file esp_init_data_default.bin. NodeMCU will automatically flash this file to the right place on first boot if the sector appears to be empty.

If you need to customize init data then first download the Espressif SDK 2.2.0 [https://github.com/espressif/ESP8266_NONOS_SDK/archive/v2.2.0.zip] and extract esp_init_data_default.bin. Then flash that file just like you'd flash the firmware. The correct address for the init data depends on the capacity of the flash chip.

	0x7c000 for 512 kB, modules like most ESP-01, -03, -07 etc.

	0xfc000 for 1 MB, modules like ESP8285, PSF-A85, some ESP-01, -03 etc.

	0x1fc000 for 2 MB

	0x3fc000 for 4 MB, modules like ESP-12E, NodeMCU devkit 1.0, WeMos D1 mini

	0x7fc000 for 8 MB

	0xffc000 for 16 MB, modules like WeMos D1 mini pro

See "4.1 Non-FOTA Flash Map" and "6.3 RF Initialization Configuration" of the ESP8266 Getting Started Guide [https://espressif.com/en/support/explore/get-started/esp8266/getting-started-guide] for details on init data addresses and customization.

Determine flash size

To determine the capacity of the flash chip before a firmware is installed you can run

esptool.py --port <serial-port> flash_id

It will return a manufacturer ID and a chip ID like so:

Connecting...
Manufacturer: e0
Device: 4016

The chip ID can then be looked up in https://review.coreboot.org/cgit/flashrom.git/tree/flashchips.h. This leads to a manufacturer name and a chip model name/number e.g. AMIC_A25LQ032. That information can then be fed into your favorite search engine to find chip descriptions and data sheets.

By convention the last two or three digits in the module name denote the capacity in megabits. So, A25LQ032 in the example above is a 32Mb(=4MB) module.

Getting Started aka NodeMCU Quick Start

The basic process to get started with NodeMCU consists of the following three steps.

	Build the firmware with the modules you need

	Flash the firmware to the chip

	Upload code to the device.

You will typically do steps 1 and 2 only once, but then repeat step 3 as you develop your application. If your application outgrows the limited on-chip RAM then you can use the Lua Flash Store (LFS) to move your Lua code into flash memory, freeing a lot more RAM for variable data. This is why it is a good idea to enable LFS for step 1 if you are developing a larger application. As documented below there is a different approach to uploading Lua code.

!!! caution
There's more than one way to skin a cat. For each of the tasks you have a number of choices with regards to tooling. The colored boxes represent an opinionated path to start your journey - the quickest way to success so to speak. Feel free to follow the links above to get more detailed information.

Task / OS selector

 	Task \ OS
 	Windows

 Hardware FAQ

Hardware FAQ

This content is now maintained at http://www.esp8266.com/wiki/doku.php?id=nodemcu-unofficial-faq.

 Lua Compact Debug (LCD)

Lua Compact Debug (LCD)

LCD (Lua Compact Debug) was developed in Sept 2015 by Terry Ellison as a patch to the Lua system to decrease the RAM usage of Lua scripts. This makes it possible to run larger Lua scripts on systems with limited RAM. Its use is most typically for eLua-type applications, and in this version it targets the NodeMCU implementation for the ESP8266 chipsets.

This section gives a full description of LCD. If you are writing NodeMCU Lua modules, then this paper will be of interest to you, as it shows how to use LCD in an easy to configure way. Note that the default user_config.h has enabled LCD at a level 2 stripdebug since mid-2016.

Motivation

The main issue that led me to write this patch is the relatively high Lua memory consumption of its embedded debug information, as this typically results in a 60% memory increase for most Lua code. This information is generated when any Lua source is complied because the Lua parser uses this as meta information during the compilation process. It is then retained by default for use in generating debug information. The only standard method of removing this information is to use the “strip” option when precompiling source using a standard eLua luac.cross on the host, or (in the case of NodeMCU) using the node.compile() function on the target environment.

Most application developers that are new to embedded development simply live with this overhead, because either they aren't familiar with these advanced techniques, or they want to keep the source line information in error messages for debugging.

The standard Lua compiler generates fixed 4 byte instructions which are interpreted by the Lua VM during execution. The debug information consists of a map from instruction count to source line number (4 bytes per instruction) and two tables keyed by the names of each local and upvalue. These tables contain metadata on these variables used in the function. This information can be accessed to enable symbolic debugging of Lua source (which isn't supported on NodeMCU platforms anyway), and the line number information is also used to generate error messages.

This overhead is sufficient large on limited RAM systems to replace this scheme by making two changes which optimize for space rather than time:

	The encoding scheme used in this patch typically uses 1 byte per source line instead of 4 bytes per instruction, and this represents a 10 to 20-fold reduction in the size of this vector. The access time during compile is still O(1), and O(N) during runtime error handling, where N is number of non-blank lines in the function. In practice this might add a few microseconds to the time take to generate the error message for typical embedded functions.

	The line number, local and upvalue information is needed during the compilation of a given compilation unit (a source file or source string), but its only use after this is for debugging and so can be discarded. (This is what the luac -s option and node.compile() do). The line number information if available is used in error reporting. An extra API call has therefore been added to discarded this debug information on completion of the compilation.

To minimise the impact within the C source code for the Lua system, an extra system define LUA_OPTIMIZE_DEBUG can be set in the user_config.h file to configure a given firmware build. This define sets the default value for all compiles and can take one of four values:

	(or not defined) use the default Lua scheme.

	Use compact line encoding scheme and retain all debug information.

	Use compact line encoding scheme and only retain line number debug information.

	Discard all debug information on completion of compile.

Building the firmware with the 0 option compiles to the pre-patch version. Options 1-3 generate the strip_debug() function, which allows this default value to be set at runtime.

Note that options 2 and 3 can also change the default behaviour of the loadstring() function in that any functions declared within the string cannot inherited any outer locals within the parent hierarchy as upvalues if these have been stripped of the locals and upvalues information.

Details

There are various API calls which compile and load Lua source code. During compilation each variable name is parsed, and is then resolved in the following order:

	Against the list of local variables declared so far in the current scope is scanned for a match.

	Against the local variable lists for each of the lexically parent functions are then scanned for a match, and if found the variable is tagged as an upvalue.

	If unmatched against either of these local scopes then the variable defaults to being a global reference.

The parser and code generator must therefore access the line mapping, upvalues, and locals information tables maintained in each function Prototype header during source compilation. This scoping scheme works because function compilation is recursive: if function A contains the definition of function B which contains the definition of function C, then the compilation of A is paused to compile B and this is in turn paused to compile C; then B complete and then A completes.

The variable meta information is stored in standard Lua tables which are allocated using the standard Lua doubling algorithm and hence they can contain a lot of unused space. The parser therefore calls close_func() once compilation of a function has been completed to trim these vectors to the final sizes.

The patch makes the following if LUA_OPTIMIZE_DEBUG > 0. (The existing functionality is preserved if this define is zero or undefined.)

	It adds an extra API call: stripdebug([level[, function]]) as discussed below.

	It extends the trim logic in close_func() to replace this trim action by deleting the information according to the current default debug optimization level.

	The lineinfo vector associated with each function is replaced by a packedlineinfo string using a run length encoding scheme that uses a repeat of an optional line number delta (this is omitted if the line offset is zero) and a count of the number of instruction generated for that source line. This scheme uses roughly an M byte vector where M is the number of non-blank source lines, as opposed to a 4N byte vector where N is the number of VM instruction. This vector is built sequentially during code generation so it is this patch conditionally replaces the current map with an algorithm to generate the packed version on the fly.

The stripdebug([level[, function]]) call is processed as follows:

	If both arguments are omitted then the function returns the current default strip level.

	If the function parameter is omitted, then the level is used as the default setting for future compiles. The level must be 1-3 corresponding to the above debug optimization settings. Hence if stripdebug(3) is included in init.lua, then all debug information will be stripped out of subsequently compiled functions.

	The function parameter if present is parsed in the same way as the function argument in setfenv() (except that the integer 0 level is not permitted, and this function tree corresponding to this scope is walked to implement this debug optimization level.

The packedlineinfo encoding scheme is as follows:

	It comprises a repeat of (optional) line delta + VM instruction count (IC) for that line starting from a base line number of zero. The line deltas are optional because line deltas of +1 are assumed as default and therefore not emitted.

	ICs are stored as a single byte with the high bit set to zero. Sequences longer than 126 instructions for a single sequence are rare, but can be are encoded using a multi byte sequence using 0 line deltas, e.g. 126 (0) 24 for a line generating 150 VM instructions. The high bit is always unset, and note that this scheme reserves the code 0x7F as discussed below.

	Line deltas are stored with the high bit set and are variable (little-endian) in length. Since deltas are always delimited by an IC which has the top bit unset, the length of each delta can be determined from these delimiters. Deltas are stored as signed ones-compliment with the sign bit in the second bit of low order byte, that is in the format (in binary) 1snnnnnnn [1nnnnnnn]*, with s denoting the sign and n…n the value element using the following map. This means that a single byte is used encode line deltas in the range -63 … 65; two bytes used to encode line deltas in the range -8191 … 8193, etc..

 value = (sign == 1) ? -delta : delta - 2

	This approach has no arbitrary limits, in that it can accommodate any line delta or IC count. Though in practice, most deltas are omitted and multi-byte sequences are rarely generated.

	The codes 0x00 and 0x7F are reserved in this scheme. This is because Lua allocates such growing vectors on a size-doubling basis. The line info vector is always null terminated so that the standard strlen() function can be used to determine its length. Any unused bytes between the last IC and the terminating null are filled with 0x7F.

The current mapping scheme has O(1) access, but with a code-space overhead of some 140%. This alternative approach has been designed to be space optimized rather than time optimized. It requires the actual IC to line number map to be computed by linearly enumerating the string from the low instruction end during execution, resulting in an O(N) access cost, where N is the number of bytes in the encoded vector. However, code generation builds this information incrementally, and so only appends to it (or occasionally updates the last element's line number), and the patch adds a couple of fields to the parser FuncState record to enable efficient O(1) access during compilation.

Testing

Essentially testing any eLua compiler or runtime changes are a total pain, because eLua is designed to be build against a newlib-based ELF. Newlib uses a stripped down set of headers and libraries that are intended for embedded use (rather than being ran over a standard operating system). Gdb support is effectively non-existent, so I found it just easier first to develop this code on a standard Lua build running under Linux (and therefore with full gdb support), and then port the patch to NodeMCU once tested and working.

I tested my patch in standard Lua built with "make generic" and against the Lua 5.1 suite [http://lua-users.org/lists/lua-l/2006-03/msg00723.html]. The test suite was an excellent testing tool, and it revealed a number of cases that exposed logic flaws in my approach, resulting from Lua's approach of not carrying out inline status testing by instead implementing a throw / catch strategy. In fact I realised that I had to redesign the vector generation algorithm to handle this robustly.

As with all eLua builds the patch assumes Lua will not be executing in a multithreaded environment with OS threads running different lua_States. (This is also the case for the NodeMCU firmware). It executes the full test suite cleanly as maximum test levels and I also added some specific tests to cover new stripdebug usecases.

Once this testing was completed, I then ported the patch to the NodeMCU build. This was pretty straight forward as this code is essentially independent of the NodeMCU functional changes. The only real issue as to ensure that the NodeMCU c_strlen() calls replaced the standard strlen(), etc.

I then built both luac.cross and firmware images with the patch disable to ensure binary compatibility with the non-patched version and then with the patch enabled at optimization level 3.

In use there is little noticeable difference other than the code size during development are pretty much the same as when running with node.compile() stripped code. The new option 2 (retaining packed line info only) has such a minimal size impact that its worth using this all the time. I've also added a separate patch to NodeMCU (which this assumes) so that errors now generate a full traceback.

How to enable LCD

Enabling LCD is simple: all you need is a patched version and define LUA_OPTIMIZE_DEBUG at the default level that you want in app/include/user_config.h and do a normal make.

Without this define enabled, the unpatched version is generated.

Note that since node.compile() strips all debug information, old .lc files generated by this command will still run under the patched firmware, but binary files which retain debug information will not work across patched and non-patched versions.

Other than optionally including a node.stripdebug(N) or whatever in your init.lua, the patch is otherwise transparent at an application level.

 Lua Flash Store (LFS)

Lua Flash Store (LFS)

Background

Lua was originally designed as a general purpose embedded extension language for use in applications run on a conventional computer such as a PC, where the processor is mounted on a motherboard together with multiple Gb of RAM and a lot of other chips providing CPU and I/O support to connect to other devices.

ESP8266 modules are on a very different scale: they cost a few dollars; they are postage stamp-sized and only mount two main components, an ESP SoC [https://en.wikipedia.org/wiki/System_on_a_chip] and a flash memory chip. The SoC includes limited on-chip RAM, but also provides hardware support to map part of the external flash memory into a separate memory address region so that firmware can be executed directly out of this flash memory —

 a type of modified Harvard architecture [https://en.wikipedia.org/wiki/Modified_Harvard_architecture] found on many IoT [https://en.wikipedia.org/wiki/Internet_of_things] devices. Even so, Lua's design goals of speed, portability, small kernel size, extensibility and ease-of-use have made it a good choice for embedded use on an IoT platform, but with one major limitaton: the standard Lua core runtime system (RTS) assumes that both Lua data and code are stored in RAM; this isn't a material constraint with a conventional computer, but it can be if your system only has some 48Kb RAM available for application use.

The Lua Flash Store (LFS) patch modifies the Lua RTS to support a modified Harvard architecture by allowing the Lua code and its associated constant data to be executed directly out of flash-memory (just as the NoceMCU firmware is itself executed). This now allows NodeMCU Lua developers to create Lua applications with up to 256Kb Lua code and read-only (RO) constants executing out of flash, with all of the RAM is available for read-write (RW) data.

Unfortunately, the ESP architecture provides very restricted write operations to flash memory (writing to NAND flash involves bulk erasing complete 4Kb memory pages, before overwriting each erased page with any new content). Whilst it is possible to develop a R/W file system within this constraint (as SPIFFS demonstrates), this makes impractical to modify Lua code pages on the fly. Hence the LFS patch works within a reflash-and-restart paradigm for reloading the LFS, and does this by adding two API new calls: one to reflash the LFS and restart the processor, and one to access LFS stored functions. The patch also addresses all of the technical issues 'under the hood' to make this magic happen.

The remainder of this paper is for those who want to understand a little of how this magic happens, and gives more details on the technical issues that were addressed in order to implement the patch.

If you're just interested in learning how to quickly get started with LFS then please read the respective chapters in the Getting Started overview.

Using LFS

Selecting the firmware

Power developers might want to use Docker or their own build environment as per our Building the firmware [https://nodemcu.readthedocs.io/en/master/en/build/] documentation, and so app/include/user_config.h has now been updated to include the necessary documentation on how to select the configuration options to make an LFS firmware build.

However, most Lua developers seem to prefer the convenience of our Cloud Build Service [https://nodemcu-build.com/], so we have added extra LFS menu options to facilitate building LFS images:

Variable	Option
LFS size | (none, 32, 64, 96 or 128Kb) The default is none. The default is none, in which case LFS is disabled. Selecting a numeric value enables LFS with the LFS region sized at this value.
SPIFFS base | If you have a 4Mb flash module then I suggest you choose the 1024Kb option as this will preserve the SPIFFS even if you reflash with a larger firmware image; otherwise leave this at the default 0.
SPIFFS size | (default or various multiples of 64Kb) Choose the size that you need. Larger FS require more time to format on first boot.

You must choose an explicit (non-default) LFS size to enable the use of LFS. Most developers find it more useful to work with a fixed SPIFFS size matched to their application requirements.

Choosing your development life-cycle

The build environment for generating the firmware images is Linux-based, but you can still develop NodeMCU applications on pretty much any platform including Windows and MacOS, as you can use our cloud build service to generate these images. Unfortunately LFS images must be built off-ESP on a host platform, so you must be able to run the luac.cross cross compiler on your development machine to build LFS images.

	For Windows 10 developers, one method of achieving this is to install the Windows Subsystem for Linux [https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux]. The default installation uses the GNU bash shell and includes the core GNU utilities. WSL extends the NT kernel to support the direct execution of Linux ELF images, and it can directly run the luac.cross and spiffsimg that are build as part of the firmware. You will also need the esptool.py tool but python.org already provides Python releases for Windows. Of course all Windows developers can use the Cygwin environment as this runs on all Windows versions and it also takes up less than ½Gb HDD (WSL takes up around 5Gb).

	Linux users can just use these tools natively. Windows users can also to do this in a linux VM or use our standard Docker image. Another alternaive is to get yourself a Raspberry Pi or equivalent SBC and use a package like DietPi [http://www.dietpi.com/] which makes it easy to install the OS, a Webserver and Samba and make the RPi look like a NAS to your PC. It is also straightforward to write a script to automatically recompile a Samba folder after updates and to make the LFS image available on the webservice so that your ESP modules can update themselves OTA using the new HTTP_OTA.lua example.

	In principle, only the environment component needed to support applicatin development is luac.cross, built by the app/lua/lua_cross make. (Some developers might also use the spiffsimg exectable, made in the tools/spifsimg subdirectory). Both of these components use the host toolchain (that is the compiler and associated utilities), rather than the Xtensa cross-compiler toolchain, so it is therefore straightforward to make under any environment which provides POSIX runtime support, including WSL, MacOS and Cygwin.

Most Lua developers seem to start with the ESPlorer [https://github.com/4refr0nt/ESPlorer] tool, a 'simple to use' IDE that enables beginning Lua developers to get started. ESPlorer can be slow cumbersome for larger ESP application, and it requires a direct UART connection. So many experienced Lua developers switch to a rapid development cycle where they use a development machine to maintain your master Lua source. Going this route will allow you use your favourite program editor and source control, with one of various techniques for compiling the lua on-host and downloading the compiled code to the ESP:

	If you use a fixed SPIFFS image (I find 128Kb is enough for most of my applications) and are developing on a UART-attached ESP module, then you can also recompile any LC files and LFS image, then rebuild a SPIFFS file system image before loading it onto the ESP using esptool.py; if you script this you will find that this cycle takes less than a minute. You can either embed the LFS.img in the SPIFFS. You can also use the luac.cross -a option to build an absolute address format image that you can directly flash into the LFS region within the firmware.

	If you only need to update the Lua components, then you can work over-the-air (OTA). For example see my
HTTP_OTA.lua [https://github.com/nodemcu/nodemcu-firmware/tree/dev/lua_examples/lfs/HTTP_OTA.lua], which pulls a new LFS image from a webservice and reloads it into the LFS region. This only takes seconds, so I often use this in preference to UART-attached loading.

	Another option would be to include the FTP and Telnet modules in the base LFS image and to use telnet and FTP to update your system. (Given that a 64Kb LFS can store thousands of lines of Lua, doing this isn't much of an issue.)

My current practice is to use a small bootstrap init.lua file in SPIFFS to connect to WiFi, and also load the _init module from LFS to do all of the actual application initialisation. There is a few sec delay whilst connecting to the Wifi, and this delay also acts as a "just in case" when I am developing, as it is enough to allow me to paste a file.remove('init.lua') into the UART if my test applicaiton is stuck into a panic loop, or set up a different development path for debugging.

Under rare circumstances, for example a power fail during the flashing process, the flash can be left in a part-written state following a flashreload(). The Lua RTS start-up sequence will detect this and take the failsafe opton of resetting the LFS to empty, and if this happens then the LFS _init function will be unavailable. Your init.lua should therefore not assume that the LFS contains any modules (such as _init), and should contain logic to detect if LFS reset has occurred and if necessary reload the LFS again. Calling node.flashindex("_init")() directly will result in a panic loop in these circumstances. Therefore first check that node.flashindex("_init") returns a function or protect the call, pcall(node.flashindex("_init")), and decode the error status to validate that initialisation was successful.

No doubt some standard usecase / templates will be developed by the community over the next six months.

Programming Techniques and approachs

I have found that moving code into LFS has changed my coding style, as I tend to use larger modules and I don't worry about in-memory code size. This make it a lot easier to adopt a clearer coding style, so my ESP Lua code now looks more similar to host-based Lua code. Lua code can still be loaded from SPIFFS, so you still have the option to keep code under test in SPIFFS, and only move modules into LFS once they are stable.

Accessing LFS functions and loading LFS modules

See lua_examples/lfs/_init.lua [https://github.com/nodemcu/nodemcu-firmware/tree/dev/lua_examples/lfs/_init.lua] for the code that I use in my _init module to do create a simple access API for LFS. There are two parts to this.

The first sets up a table in the global variable LFS with the __index and __newindex metamethods. The main purpose of the __index() is to resolve any names against the LFS using a node.flashindex() call, so that LFS.someFunc(params) does exactly what you would expect it to do: this will call someFunc with the specified parameters, if it exists in in the LFS. The LFS properties _time, _config and _list can be used to access the other LFS metadata that you need. See the code to understand what they do, but LFS._list is the array of all module names in the LFS. The __newindex method makes LFS readonly.

The second part uses standard Lua functionality to add the LFS to the require package.loaders [http://pgl.yoyo.org/luai/i/package.loaders] list. (Read the link if you want more detail). There are four standard loaders, which the require loader searches in turn. NodeMCU only uses the second of these (the Lua loader from the file system), and since loaders 1,3 and 4 aren't used, we can simply replace the 1st or the 3rd by code to use node.flashindex() to return the LFS module. The supplied _init puts the LFS loader at entry 3, so if the module is in both SPIFFS and LFS, then the SPIFFS version will be loaded. One result of this has burnt me during development: if there is an out of date version in SPIFFS, then it will still get loaded instead of the one if LFS.

If you want to swap this search order so that the LFS is searched first, then SET package.loaders[1] = loader_flash in your _init code. If you need to swap the search order temporarily for development or debugging, then do this after you've run the _init code:

do local pl = package.loaders; pl[1],pl[3] = pl[3],pl[1]; end

Moving common string constants into LFS

LFS is mainly used to store compiled modules, but it also includes its own string table and any strings loaded into this can be used in your Lua application without taking any space in RAM. Hence, you might also want to preload any other frequently used strings into LFS as this will both save RAM use and reduced the Lua Garbage Collector (LGC) overheads.

The new debug function debug.getstrings() can help you determine what strings are worth adding to LFS. It takes an optional string argument 'RAM' (the default) or 'ROM', and returns a list of the strings in the corresponding table. So the following example can be used to get a listing of the strings in RAM.

do
 local a=debug.getstrings'RAM'
 for i =1, #a do a[i] = ('%q'):format(a[i]) end
 print ('local preload='..table.concat(a,','))
end

You can do this at the interactive prompt or call it as a debug function during a running application in order to generate this string list, (but note that calling this still creates the overhead of an array in RAM, so you do need to have enough "head room" to do the call).

You can then create a file, say LFS_dummy_strings.lua, and insert these local preload lines into it. By including this file in your luac.cross compile, then the cross compiler will also include all strings referenced in this dummy module in the generated ROM string table. Note that you don''t need to call this module; it's inclusion in the LFS build is enough to add the strings to the ROM table. Once in the ROM table, then you can use them subsequently in your application without incurring any RAM or LGC overhead.

A useful starting point may be found in lua_examples/lfs/dummy_strings.lua [https://github.com/nodemcu/nodemcu-firmware/tree/dev/lua_examples/lfs/dummy_strings.lua]; this saves about 4Kb of RAM by moving a lot of common compiler and Lua VM strings into ROM.

Another good use of this technique is when you have resources such as CSS, HTML and JS fragments that you want to output over the internet. Instead of having lots of small resource files, you can just use string assignments in an LFS module and this will keep these constants in LFS instead.

Technical issues

Whilst memory capacity isn't a material constraint on most conventional machines, the Lua RTS still includes some features to minimise overall memory usage. In particular:

	The more resource intensive data types are know as collectable objects, and the RTS includes a LGC which regularly scans these collectable resources to determine which are no longer in use, so that their associated memory can be reclaimed and reused.

	The Lua RTS also treats strings and compiled function code as collectable objects, so that these can also be LGCed when no longer referenced

The compiled code, as executed by Lua RTS, internally comprises one or more function prototypes (which use a Proto structure type) plus their associated vectors (constants, instructions and meta data for debug). Most of these compiled constant types are basic (e.g. numbers) and the only collectable constant data type are strings. The other collectable types such as arrays are actually created at runtime by executing Lua compiled instructions to build each resource dynamically.

When any Lua file is loaded without LFS into an ESP application, the RTS loads the corresponding compiled version into RAM. Each compiled function has its own Proto structure hierarchy, but this hierarchy is not exposed directly to the running application; instead the compiler generates CLOSURE instruction which is executed at runtime to bind the Proto to a Lua function value thus creating a closure [https://en.wikipedia.org/wiki/Closure_(computer_programming)]. Since this occurs at runtime, any Proto can be bound to multiple closures. A Lua closure can also have multiple RW Upvalues [https://www.lua.org/pil/27.3.3.html] bound to it, and so function value is a Lua RW object in that it is referring to something that can contain RW state, even though the Proto hierarchy itself is intrinsically RO.

Whilst advanced ESP Lua programmers can use overlay techniques to ensure that only active functions are loaded into RAM and thus increase the effective application size, this adds to runtime and program complexity. Moving Lua "program" resources into ESP Flash addressable memory typically at least doubles the effective RAM available, and removes the need to complicate applications code by implementing overlaying.

Any RO resources that are relocated to a flash address space:

	Must not be collected. Also RW references to RO resources must be robustly handled by the LGC.

	Cannot reference to any volatile RW data elements (though RW resources can refer to RO resources).

All strings in Lua are interned [https://en.wikipedia.org/wiki/String_interning], so that only one copy of any string is kept in memory, and most string manipulation uses the address of this single copy as a unique reference. This uniqueness and the LGC of strings is facilitated by using a global string table that is hooked into the Lua global state. Within standard Lua VM, any new string is first resolved against RAM string table, so that only the string-misses are added to the string table.

The LFS patch adds a second RO string table in flash and this contains all strings used in the LFS Protos. Maintaining integrity across the two string tables is simple and low-cost, with LFS resolution process extended across both the RAM and ROM string tables. Hence any strings already in the ROM string table already have a unique string reference avoiding the need to add an additional entry in the RAM table. This both significantly reduces the size of the RAM string table, and removes a lot of strings from the LCG scanning.

Note that my early development implementations of the LFS build process allowed on-target ESP builds, but I found that the Lua compiler was too resource hungry for usable application sizes, and it was impractical to get this approach to scale. So we abandoned this approach and moved the LFS build process onto the development host machine by embedding this into luac.cross. This approach also avoids all of the update integrity issues involved in building a new LFS which might require RO resources already referenced in the RW ones.

A LFS image can be loaded in the LFS store by one of two mechanisms:

	The image can be build on the host and then copied into SPIFFS. Calling the node.flashreload() API with this filename will load the image, and then schedule a restart to leave the ESP in normal application mode, but with an updated flash block. This sequence is essentially atomic. Once called, and the format of the LFS image has been valiated, then the only exit is the reboot.

	The second option is to build the LFS image using the -a option to base it at the correct absolute address of the LFS store for a given firmware image. The LFS can then be flashed to the ESP along with the firmware image.

The LFS store is a fixed size for any given firmware build (configurable by the a pplication developer through user_config.h) and is at a build-specific base address within the ICACHE_FLASH address space. This is used to store the ROM string table and the set of Proto hierarchies corresponding to a list of Lua files in the loaded image.

A separate node.flashindex() function creates a new Lua closure based on a module loaded into LFS and more specfically its flash-based prototype; whilst this access function is not transparent at a coding level, this is no different functionally than already having to handle lua and lc files and the existing range of load functions (load,loadfile, loadstring). Either way, creating a closure on flash-based prototype is fast in terms of runtime. (It is basically a single instruction rather than a compile, and it has minimal RAM impact.)

Implementation details

This LFS patch uses two string tables: the standard Lua RAM-based table (RWstrt) and a second RO flash-based one (ROstrt). The RWstrt is searched first when resolving new string requests, and then the ROstrt. Any string not already in either table is then added to the RWstrt, so this means that the RAM-based string table only contains application strings that are not already defined in the ROstrt.

Any Lua file compiled into the LFS image includes its main function prototype and all the child resources that are linked in its Proto structure; so all of these resources are compiled into the LFS image with this entire hierarchy self-consistently within the flash memory.

 TValue *k; Constants used by the function
 Instruction *code The Lua VM instuction codes
 struct Proto **p; Functions defined inside the function
 int *lineinfo; Debug map from opcodes to source lines
 struct LocVar *locvars; Debug information about local variables
 TString **upvalues Debug information about upvalue names
 TString *source String name associated with source file

Such LFS images are created by luac.cross using the -f option, and this builds a flash image using the list of modules provided but with a master "main" function of the form:

local n = ...,1518283691 -- The Unix Time of the compile
if n == "module1" then return module1 end
if n == "module2" then return module2 end
-- and so on
if n == "moduleN" then return module2 end
return 1518283691,"module1","module2", --[[...]] ""moduleN"

Note that you can't actually code this Lua because the modules are in separate compilation units, but the compiler being a compiler can just emit the compiled code directly. (See app/lua/luac_cross/luac.c for the details.)

The deep cross-copy of the compiled Proto hierarchy is also complicated because current hosts are typically 64bit whereas the ESPs are 32bit, so the structures need repacking. (See app/lua/luac_cross/luac.c for the details.)

This patch moves the luac.cross build into the overall application make hierarchy and so it is now simply a part of the NodeMCU make. The old Lua script has been removed from the tools directory, together with the need to have Lua pre-installed on the host.

The LFS image is by default position independent, so is independent of the actual NodeMCU target image. You just have to copy it to the target file system and execute a flashreload and this copies the image from SPIFSS to the correct flash location, relocating all address to the correct base. (See app/lua/lflash.c for the details.) This process is fast.

A luac.cross -a option also allows absolute address images to be built for direct flashing the LFS store onto the module during provisioning.

Impact of the Lua Garbage Collector

The LGC applies to what the Lua VM classifies as collectable objects (strings, tables, functions, userdata, threads -- known collectively as GCObjects). A simple two "colour" LGC was used in previous Lua versions, but Lua 5.1 introduced the Dijkstra's 3-colour (white, grey, black) variant that enabled the LGC to operate in an incremental mode. This permits smaller LGC steps interspersed by LGC pause, and is very useful for larger scale Lua implementations. Whilst this is probably not really needed for IoT devices, NodeMCU follows this standard Lua 5.1 implementation, albeit with the elua EGC changes.

In fact, two white flavours are used to support incremental working (so this 3-colour algorithm really uses 4). All newly allocated collectable objects are marked as the current white, and a link in GCObject header enables scanning through all such Lua objects. Collectable objects can be referenced directly or indirectly via one of the Lua application's roots: the global environment, the Lua registry and the stack.

The standard LGC algorithm is quite complex and assumes that all GCObjects are RW so that a flag byte within each object can be updated during the mark and sweep processing. LFS introduces GCObjects that are stored in RO memory and are therefore truly RO.The LFS patch therefore modifies the LGC processing to avoid such updates to GCObjects in RO memory, whilst still maintaining overall object integrity, as any attempt to update their content during LGC will result in the firmware crashing with a memory exception; the remainder of this section provides further detail on how this was achieved. The LGC operates two broad phases: mark and sweep

	The mark phase walks collectable objects by a recursive walk starting at at the LGC roots. (This is referred to as traverse.) Any object that is visited in this walk has its colour flipped from white to grey to denote that it is in use, and it is relinked into a grey list. The grey list is iteratively processed, removing one grey object at a time. Such objects can reference other objects (e.g. a table has many keys and values which can also be collectable objects), so each one is then also traversed and all objects reachable from it are marked, as above. After an object has been traversed, it's turned from grey to black. The LGC will walks all RW collectable objects, traversing the dependents of each in turn. As RW objects can now refer to RO ones, the traverse routines has additinal tests to skip trying to mark any RO LFS references.

	The white flavour is flipped just before entering the sweep phase. This phase then loops over all collectable objects. Any objects found with previous white are no longer in use, and so can be freed. The 'current' white are kept; this prevents any new objects created during a paused sweep from being accidentally collected before being marked, but this means that it takes two sweeps to free all unused objects. There are other subtleties introduced in this 3-colour algorithm such as barriers and back-tracking to maintain integrity of the LGC, and these also needed extra rules to handle RO GCObjects correclty, but detailed explanation of these is really outside the scope of this paper.

As well as standard collectable GCOobjets:

	Standard Lua has the concept of fixed objects. (E.g. the main thread). These won't be collected by the LGC, but they may refer to objects that aren't fixed, so the LGC still has to walk through an fixed objects.

	eLua added the the concept of readonly objects, which confusingly are a hybrid RW/RO implementation, where the underlying string resource is stored as a program constant in flash memory but the TSstring structure which points to this is still kept in RAM and can by GCed, except that in this case the LGC does not free the RO string constant itself.

	LFS introduces a third variant flash object for LUA_TPROTO and LUA_TSTRING types. Flash objects can only refer to other flash objects and are entirely located in the LFS area in flash memory.

The LGC already processed the fixed and readonly object, albeit as special cases. In the case of flash GCObjects, the mark flag is in read-only memory and therefore the LGC clearly can't use this as a RW flag in its mark and sweep processing. So the LGC skips any marking operations for flash objects. Likewise, where all other GCObjects are linked into one of a number of sweeplists using the object's gclist field. In the case of flash objects, the compiler presets the mark and gclist fields with the fixed and readonly mark bits set, and the list pointer to NULL during the compile process.

As far as the LGC algorithm is concerned, encountering any flash object in a sweep is a dead end, so that branch of the walk of the GCObject hierarchy can be terminated on encountering a flash object. This in practice all flash objects are entirely removed from the LGC process, without compromising collection of RW resources.

General comments

	Reboot implementation. Whilst the application initiated LFS reload might seem an overhead, it typically only adds a few seconds per reboot.

	LGC reduction. Since the cost of LGC is directly related to the size of the LGC sweep lists, moving RO resources into LFS memory removes them from the LGC scope and therefore reduces LGC runtime accordingly.

	Typical Usecase. The rebuilding of a store is an occasional step in the development cycle. (Say up to 10-20 times a day in a typical intensive development process). Modules and source files under development can also be executed from SPIFFS in .lua format. The developer is free to reorder the package.loaders and load any SPIFFS files in preference to Flash ones. And if stable code is moved into Flash, then there is little to be gained in storing development Lua code in SPIFFS in lc compiled format.

	Flash caching coherency. The ESP chipset employs hardware enabled caching of the ICACHE_FLASH address space, and writing to the flash does not flush this cache. However, in this restart model, the CPU is always restarted before any updates are read programmatically, so this (lack of) coherence isn't an issue.

	Failsafe reversion. Since the entire image is precompiled and validated before loading into LFS, the chances of failure during reload are small. The loader uses the Flash NAND rules to write the flash header flag in two parts: one at start of the load and again at the end. If on reboot, the flag in on incostent state, then the LFS is cleared and disabled until the next reload.

 FAQ

FAQ

This FAQ was started by Terry Ellison [https://github.com/TerryE] as an unofficial FAQ in mid 2015. This version as at April 2017 includes some significant rewrites.

What is this FAQ for?

This FAQ does not aim to help you to learn to program or even how to program in Lua. There are plenty of resources on the Internet for this, some of which are listed in Where to start. What this FAQ does is to answer some of the common questions that a competent Lua developer would ask in learning how to develop Lua applications for the ESP8266 based boards running the NodeMcu firmware [https://github.com/nodemcu/nodemcu-firmware]. This includes the NodeMCU Devkits. However, the scope of the firmware is far wider than this as it can be used on any ESP8266 module.

What has changed since the first version of this FAQ?

The NodeMCU company [http://NodeMCU.com/index_en.html] was set up by Zeroday to develop and to market a set of Lua firmware-based development boards which employ the Espressif ESP8266 SoC. The initial development of the firmware was done by Zeroday and a colleague, Vowstar, in-house with the firmware being first open-sourced on Github in late 2014. In mid-2015, Zeroday decided to open the firmware development to a wider group of community developers, so the core group of developers now comprises 6 community developers (including this author), and we are also supported by another dozen or so active contributors, and two NodeMCU originators.

This larger active team has allowed us to address most of the outstanding issues present at the first version of this FAQ. These include:

	For some time the project was locked into an old SDK version, but we now regularly rebaseline to the current SDK version.

	Johny Mattsson's software exception handler and my LCD patch have allowed us to move the bulk of constant data out of RAM and into the firmware address space, and as a result current builds now typically boot with over 40Kb free RAM instead of 15Kb free and the code density is roughly 40% better.

	We have fixed error reporting so errors now correctly report line numbers in tracebacks.

	We have addressed most of the various library resource leaks, so memory exhaustion is much less of an issue.

	We have reimplemented the network stack natively over the now Open-sourced Espressif implementation of LwIP.

	Thanks to a documentation effort lead by Marcel Stör, we now have a complete documentation online, and this FAQ forms a small part.

	We have fixed various stability issues relating to the use of GPIO trigger callbacks.

	Johny Mattsson is currently leading an ESP32 port.

	We have a lot more hardware modules supported.

Because the development is active this list will no doubt continue to be revised and updated. See the development README [https://github.com/nodemcu/nodemcu-firmware/blob/dev/README.md] for more details.

Lua Language

Where to start

The NodeMCU firmware implements Lua 5.1 over the Espressif SDK for its ESP8266 SoC and the IoT modules based on this.

	The official lua.org Lua Language specification [http://www.lua.org/manual/5.1/manual.html] gives a terse but complete language specification.

	Its FAQ [http://www.lua.org/faq.html] provides information on Lua availability and licensing issues.

	The unofficial Lua FAQ [http://www.luafaq.org/] provides a lot of useful Q and A content, and is extremely useful for those learning Lua as a second language.

	The Lua User's Wiki [http://lua-users.org/wiki/] gives useful example source and relevant discussion. In particular, its Lua Learning Lua [http://lua-users.org/wiki/Learning] section is a good place to start learning Lua.

	The best book to learn Lua is *Programming in Lua- by Roberto Ierusalimschy, one of the creators of Lua. It's first edition is available free online [http://www.lua.org/pil/contents.html] . The second edition was aimed at Lua 5.1, but is out of print. The third edition is still in print and available in paperback. It contains a lot more material and clearly identifies Lua 5.1 vs Lua 5.2 differences. This third edition is widely available for purchase and probably the best value for money. References of the format [PiL n.m] refer to section n.m in this edition.

	The Espressif ESP8266 architecture is closed source, but the Espressif SDK itself is continually being updated so the best way to get the documentation for this is to google Espressif IoT SDK Programming Guide [https://www.google.co.uk/search?q=Espressif+IoT+SDK+Programming+Guide] or to look at the Espressif downloads forum [http://bbs.espressif.com/viewforum.php?f=5].

How is NodeMCU Lua different to standard Lua?

Whilst the Lua standard distribution includes a stand-alone Lua interpreter, Lua itself is primarily an extension language that makes no assumptions about a "main" program: Lua works embedded in a host application to provide a powerful, lightweight scripting language for use within the application. This host application can then invoke functions to execute a piece of Lua code, can write and read Lua variables, and can register C functions to be called by Lua code. Through the use of C functions, Lua can be augmented to cope with a wide range of different domains, thus creating customized programming languages sharing a syntactical framework.

The ESP8266 was designed and is fabricated in China by Espressif Systems [http://espressif.com/new-sdk-release/]. Espressif have also developed and released a companion software development kit (SDK) to enable developers to build practical IoT applications for the ESP8266. The SDK is made freely available to developers in the form of binary libraries and SDK documentation. However this is in a closed format, with no developer access to the source files, so anyone developing ESP8266 applications must rely solely on the SDK API (and the somewhat Spartan SDK API documentation). (Note that for the ESP32, Espressif have moved to an open-source approach for its ESP-IDF.)

The NodeMCU Lua firmware is an ESP8266 application and must therefore be layered over the ESP8266 SDK. However, the hooks and features of Lua enable it to be seamlessly integrated without losing any of the standard Lua language features. The firmware has replaced some standard Lua modules that don't align well with the SDK structure with ESP8266-specific versions. For example, the standard io and os libraries don't work, but have been largely replaced by the NodeMCU node and file libraries. The debug and math libraries have also been omitted to reduce the runtime footprint (modulo can be done via %, power via ^). Note that the io.write() function described in Lua's Simple I/O Model [https://www.lua.org/pil/21.1.html] is not replaced by the file library. To write to the same serial port that the print(string) function uses by default, use uart.write(0,string).

NodeMCU Lua is based on eLua [http://www.eluaproject.net/overview], a fully featured implementation of Lua 5.1 that has been optimized for embedded system development and execution to provide a scripting framework that can be used to deliver useful applications within the limited RAM and Flash memory resources of embedded processors such as the ESP8266. One of the main changes introduced in the eLua fork is to use read-only tables and constants wherever practical for library modules. On a typical build this approach reduces the RAM footprint by some 20-25KB and this makes a Lua implementation for the ESP8266 feasible. This technique is called LTR and this is documented in detail in an eLua technical paper: Lua Tiny RAM [http://www.eluaproject.net/doc/master/en_arch_ltr.html].

The main impacts of the ESP8266 SDK and together with its hardware resource limitations are not in the Lua language implementation itself, but in how application programmers must approach developing and structuring their applications. As discussed in detail below, the SDK is non-preemptive and event driven. Tasks can be associated with given events by using the SDK API to registering callback functions to the corresponding events. Events are queued internally within the SDK, and it then calls the associated tasks one at a time, with each task returning control to the SDK on completion. The SDK states that if any tasks run for more than 15 mSec, then services such as WiFi can fail.

The NodeMCU libraries act as C wrappers around registered Lua callback functions to enable these to be used as SDK tasks. You must therefore use an Event-driven programming style in writing your ESP8266 Lua programs. Most programmers are used to writing in a procedural style where there is a clear single flow of execution, and the program interfaces to operating system services by a set of synchronous API calls to do network I/O, etc. Whilst the logic of each individual task is procedural, this is not how you code up ESP8266 applications.

ESP8266 Specifics

How is coding for the ESP8266 the same as standard Lua?

	This is a fully featured Lua 5.1 implementation so all standard Lua language constructs and data types work.

	The main standard Lua libraries -- core, coroutine, string and table are implemented.

How is coding for the ESP8266 different to standard Lua?

The ESP8266 uses a combination of on-chip RAM and off-chip Flash memory connected using a dedicated SPI interface. Code can be executed directly from Flash-mapped address space. In fact the ESP hardware actually executes code in RAM, and in the case of Flash-mapped addresses it executes this code from a RAM-based L1 cache which maps onto the Flash addresses. If the addressed line is in the cache then the code runs at full clock speed, but if not then the hardware transparently handles the address fault by first copying the code from Flash to RAM. This is largely transparent in terms of programming ESP8266 applications, though the faulting access runs at SRAM speeds and this code runs perhaps 13× slower than already cached code. The Lua firmware largely runs out of Flash, but even so, both the RAM and the Flash memory are *very- limited when compared to systems that most application programmers use.

Over the last two years, both the Espressif non-OS SDK developers and the NodeMCU team have made a range of improvements and optimisations to increase the amount of RAM available to developers, from a typical 15Kb or so with Version 0.9 builds to some 45Kb with the current firmware Version 2.x builds. See the ESP8266 Non-OS SDK API Reference [https://espressif.com/sites/default/files/documentation/2c-esp8266_non_os_sdk_api_reference_en.pdf] for more details on the SDK.

The early ESP8266 modules were typically configured with 512Kb Flash. Fitting a fully featured Lua build with a number of optional libraries and still enough usable Flash to hold a Lua application needs a careful selection of libraries and features. The current NodeMCU firmware will fit comfortably in a 1Mb Flash and still have ample remaining Flash memory to support Lua IoT applications.

The NodeMCU firmware makes any unused Flash memory available as a SPI Flash File System (SPIFFS) [https://github.com/pellepl/spiffs] through the file library. The SPIFFS file system is designed for SPI NOR flash devices on embedded targets, and is optimised for static wear levelling and low RAM footprint. For further details, see the link. How much Flash is available as SPIFFS file space depends on the number of modules included in the specific firmware build.

The firmware has a wide range of libraries available to support common hardware options. Including any library will increase both the code and RAM size of the build, so our recommended practice is for application developers to choose a custom build that only includes the library that are needed for your application and hardware variants. The developers that don't want to bother with setting up their own build environment can use Marcel Stör's excellent Cloud build service [http://nodemcu-build.com] instead.

There are also further tailoring options available, for example you can choose to have a firmware build which uses 32-bit integer arithmetic instead of floating point. Our integer builds have a smaller Flash footprint and execute faster, but working in integer also has a number of pitfalls, so our general recommendation is to use floating point builds.

Unlike Arduino or ESP8266 development, where each application change requires the flashing of a new copy of the firmware, in the case of Lua the firmware is normally flashed once, and all application development is done by updating files on the SPIFFS file system. In this respect, Lua development on the ESP8266 is far more like developing applications on a more traditional PC. The firmware will only be reflashed if the developer wants to add or update one or more of the hardware-related libraries.

Those developers who are used to dealing in MB or GB of RAM and file systems can easily run out of memory resources, but with care and using some of the techniques discussed below can go a long way to mitigate this.

The ESP8266 runs the SDK over the native hardware, so there is no underlying operating system to capture errors and to provide graceful failure modes. Hence system or application errors can easily "PANIC" the system causing it to reboot. Error handling has been kept simple to save on the limited code space, and this exacerbates this tendency. Running out of a system resource such as RAM will invariably cause a messy failure and system reboot.

Note that in the 3 years since the firmware was first developed, Espressif has developed and released a new RTOS alternative to the non-OS SDK, and and the latest version of the SDK API reference recommends using RTOS. Unfortunately, the richer RTOS has a significantly larger RAM footprint. Whilst our port to the ESP-32 (with its significantly larger RAM) uses the ESP-IDF [https://github.com/espressif/esp-idf] which is based on RTOS, the ESP8266 RTOS versions don't have enough free RAM for a RTOS-based NodeMCU firmware build to have sufficient free RAM to write usable applications.

There is currently no debug library support. So you have to use 1980s-style "binary-chop" to locate errors and use print statement diagnostics though the system's UART interface. (This omission was largely because of the Flash memory footprint of this library, but there is no reason in principle why we couldn't make this library available in the near future as a custom build option).

The LTR implementation means that you can't extend standard libraries as easily as you can in normal Lua, so for example an attempt to define function table.pack() will cause a runtime error because you can't write to the global table. Standard sand-boxing techniques can be used to achieve the same effect by using metatable based inheritance, but if you choose this option, then you need to be aware of the potential runtime and RAM impacts of this approach.

There are standard libraries to provide access to the various hardware options supported by the hardware: WiFi, GPIO, One-wire, I²C, SPI, ADC, PWM, UART, etc.

The runtime system runs in interactive-mode. In this mode it first executes any init.lua script. It then "listens" to the serial port for input Lua chunks, and executes them once syntactically complete.

There is no batch support, although automated embedded processing is normally achieved by setting up the necessary event triggers in the init.lua script.

The various libraries (net, tmr, wifi, etc.) use the SDK callback mechanism to bind Lua processing to individual events (for example a timer alarm firing). Developers should make full use of these events to keep Lua execution sequences short.

Non-Lua processing (e.g. network functions) will usually only take place once the current Lua chunk has completed execution. So any network calls should be viewed at an asynchronous request. A common coding mistake is to assume that they are synchronous, that is if two socket:send() are on consecutive lines in a Lua programme, then the first has completed by the time the second is executed. This is wrong. A socket:send() request simply queues the send task for dispatch by the SDK. This task can't start to process until the Lua code has returned to is calling C function to allow this running task to exit. Stacking up such requests in a single Lua task function burns scarce RAM and can trigger a PANIC. This is true for timer, network, and other callbacks. It is even the case for actions such as requesting a system restart, as can be seen by the following example which will print twenty "not quite yet" messages before restarting.

node.restart(); for i = 1, 20 do print("not quite yet -- ",i); end

You, therefore, have to implement ESP8266 Lua applications using an event driven approach. You have to understand which SDK API requests schedule asynchronous processing, and which define event actions through Lua callbacks. Yes, such an event-driven approach makes it difficult to develop procedurally structured applications, but it is well suited to developing the sorts of application that you will typically want to implement on an IoT device.

So how does the SDK event / tasking system work in Lua?

	The SDK uses a small number of Interrupt Service Routines (ISRs) to handle short time critical hardware interrupt related processing. These are very short duration and can interrupt a running task for up to 10µSec. (Modifying these ISRs or adding new ones is not a viable options for most developers.)

	All other service and application processing is split into code execution blocks, known as tasks. The individual tasks are executed one at a time and run to completion. No task can never pre-empt another.

	Runnable tasks are queued in one of three priority queues and the SDK contains a simple scheduler which executes queued tasks FIFO within priority. The high priority queue is used for hardware-related task, the middle for timer and event-driven tasks and the low priority queue for all other tasks.

	It is important to keep task times as short as practical so that the overall system can work smoothly and responsively. The general recommendation is to keep medium priority tasks under 2mSec and low priority tasks under 15 mSec in duration. This is a guideline, and your application might work stably if you exceed this, but you might also start to experience intermittent problems because of internal timeout within the WiFi and network services, etc..

	If tasks take longer than 500mSec then the watchdog timer will reset the processor. This watchdog can be reset at an application level using the tmr.wdclr() function, but this should be avoided.

	Application tasks can disable interrupts to prevent an ISR interrupting a time-critical code section, The SDK guideline is that system ISRs might overrun if such critical code section last more than 10µSec. This means that such disabling can only be done within hardware-related library modules, written in C; it is not available at a Lua application level.

	The SDK provide a C API for interfacing to it; this includes a set of functions for declaring application functions (written in C) as callbacks to associate application tasks with specific hardware and timer events, and their execution will be interleaved with the SDKs Wifi and Network processing tasks.

In essence, the NodeMCU firmware is a C application which exploits the ability of Lua to execute as a embedded language and runtime to mirror this structure at a Lua scripting level. All of the complexities of, and interface to, the SDK and the hardware are wrapped in firmware libraries which translate the appropriate calls into the corresponding Lua API.

	The SDK invokes a startup hook within the firmware on boot-up. This firmware code initialises the Lua environment and then attempts to execute the Lua module init.lua from the SPIFFS file system. This init.lua module can then be used to do any application initialisation required and to call the necessary timer alarms or library calls to bind and callback routines to implement the tasks needed in response to any system events.

	By default, the Lua runtime also 'listens' to UART 0, the serial port, in interactive mode and will execute any Lua commands input through this serial port. Using the serial port in this way is the most common method of developing and debugging Lua applications on the ESP8266/

	The Lua libraries provide a set of functions for declaring application functions (written in Lua) as callbacks (which are stored in the Lua registry) to associate application tasks with specific hardware and timer events. These are also non-preemptive at an applications level. The Lua libraries work in consort with the SDK to queue pending events and invoke any registered Lua callback routines, which then run to completion uninterrupted. For example the Lua mytimer:alarm(interval, repeat, callback) calls a function in the tmr library which registers a C function for this alarm using the SDK, and when this C alarm callback function is called it then in turn invokes the Lua callback.

	Excessively long-running Lua functions (or Lua code chunks executed at the interactive prompt through UART 0) can cause other system functions and services to timeout, or to allocate scarce RAM resources to buffer queued data, which can then trigger either the watchdog timer or memory exhaustion, both of which will ultimately cause the system to reboot.

	Just like their C counterparts, Lua tasks initiated by timer, network, GPIO and other callbacks run non pre-emptively to completion before the next task can run, and this includes SDK tasks. Printing to the default serial port is done by the Lua runtime libraries, but SDK services including even a reboot request are run as individual tasks. This is why in the previous example printout out twenty copies of "not quite yet --" before completing and return control the SDK which then allows the reboot to occur.

This event-driven approach is very different to a conventional procedural applications written in Lua, and different from how you develop C sketches and applications for the Arduino architectures. There is little point in constructing poll loops in your NodeMCU Lua code since almost always the event that you are polling will not be delivered by the SDK until after your Lua code returns control to the SDK. The most robust and efficient approach to coding ESP8266 Lua applications is to embrace this event model paradigm, and to decompose your application into atomic tasks that are threaded by events which themselves initiate callback functions. Each event task is established by a callback in an API call in an earlier task.

Understanding how the system executes your code can help you structure it better and improve both performance and memory usage.

	If you are not using timers and other callback, then you are using the wrong approach.

	If you are using poll loops, then you are using the wrong approach.

	If you are executing more an a few hundred lines of Lua per callback, then you are using the wrong approach.

So what Lua library functions enable the registration of Lua callbacks?

SDK Callbacks include:

Lua Module	Functions which define or remove callbacks
tmr	register([id,] interval, mode, function())
node	task.post([task_priority], function), output(function(str), serial_debug)
wifi	startsmart(chan, function()), sta.getap(function(table))
net.server	sk:listen(port,[ip],function(socket))
net	sk:on(event, function(socket, [, data])), sk:send(string, function(sent)), sk:dns(domain, function(socket,ip))
gpio	trig(pin, type, function(level))
mqtt	client:m:on(event, function(conn[, topic, data])
uart	uart.on(event, cnt, [function(data)], [run_input])

For a comprehensive list refer to the module documentation on this site.

So what are the different ways of declaring variables and how is NodeMCU different here?

The following is all standard Lua and is explained in detail in PiL etc., but it is worth summarising here because understanding this is of particular importance in the NodeMCU environment.

All variables in Lua can be classed as globals, locals or upvalues. But by default any variable that is referenced and not previously declared as local is global and this variable will persist in the global table until it is explicitly deleted. If you want to see what global variables are in scope then try

for k,v in pairs(_G) do print(k,v) end

Local variables are 'lexically scoped', and you may declare any variables as local within nested blocks or functions without affecting the enclosing scope. Because locals are lexically scoped you can also refer to local variables in an outer scope and these are still accessible within the inner scope. Such variables are know as upvalues.

Lua variable can be assigned two broad types of data: values such as numbers, booleans, and strings and references such as functions, tables and userdata. You can see the difference here when you assign the contents of a variable a to b. In the case of a value then it is simply copied into b. In the case of a reference, both a and b now refer to the same object, and no copying of content takes place. This process of referencing can have some counter-intuitive consequences. For example, in the following code by the time it exists, the variable tmr2func is out of scope. However a reference to the function has now been stored in the Lua registry by the alarm API call, so it and any upvalues that it uses will persist until it is eventually entirely dereferenced (e.g. by tmr2:unregister()).

do
 local tmr2func = function() ds.convert_T(true); tmr1:start() end
 tmr2:alarm(300000, tmr.ALARM_AUTO, tmr2func)
end

You need to understand the difference between when a function is compiled, when it is bound as a closure and when it is invoked at runtime. The closure is normally bound once pretty much immediately after compile, but this isn't necessarily the case. Consider the following example from my MCP23008 module below.

-- Bind the read and write functions for commonly accessed registers
for reg, regAddr in pairs {
 IODOR = 0x00,
 GPPU = 0x06, -- Pull-up resistors register for MCP23008
 GPIO = 0x09,
 OLAT = 0x0A,
} do
 dev['write' .. reg] = function(o, dataByte)
 write(MCP23008addr, regAddr, dataByte)
 end
 dev['read' .. reg] = function(o)
 return read(MCP23008addr, regAddr)
 end
end

This loop is compiled once when the module is required. The opcode vectors for the read and write functions are created during the compile, along with a header which defines how many upvalues and locals are used by each function. However, these two functions are then bound four times as different functions (e.g. mcp23008.writeIODOR()) and each closure inherits its own copies of the upvalues it uses so the regAddr for this function is 0x00). The upvalue list is created when the closure is created and through some Lua magic, even if the outer routine that initially declared them is no longer in scope and has been GCed (Garbage Collected), the Lua RTS ensures that any upvalue will still persist whilst the closure persists.

On the other hand the storage for any locals is allocated each time the routine is called, and this can be many times in a running application.

The Lua runtime uses hashed key access internally to retrieve keyed data from a table. On the other hand locals and upvalues are stored as a contiguous vector and are accessed directly by an index, which is a lot faster. In NodeMCU Lua accesses to Firmware-based tables is particularly slow, which is why you will often see statements like the following at the beginning of modules. Using locals and upvalues this way is both a lot faster at runtime and generates less bytecode instructions for their access.

local i2c = i2c
local i2c_start, i2c_stop, i2c_address, i2c_read, i2c_write, i2c_TRANSMITTER, i2c_RECEIVER =
i2c.start, i2c.stop, i2c.address, i2c.read, i2c.write, i2c.TRANSMITTER, i2c.RECEIVER

So how is context passed between Lua event tasks?

It is important to understand that a single Lua function is associated with / bound to any event callback task. This function is executed from within the relevant NodeMCU library C code using a lua_call(). Even system initialisation which executes the dofile("init.lua") is really a special case of this. Each function can invoke other functions and so on, but it must ultimately return control to the C library code which then returns control the SDK, terminating the task.

By their very nature Lua local variables only exist within the context of an executing Lua function, and so locals are unreferenced on exit and any local data (unless also a reference type such as a function, table, or user data which is also referenced elsewhere) can therefore be garbage collected between these lua_call() actions.

So context can only be passed between event routines by one of the following mechanisms:

	Globals are by nature globally accessible. Any global will persist until explicitly dereferenced by assigning nil to it. Globals can be readily enumerated, e.g. by a for k,v in pairs(_G) do, so their use is transparent.

	The File system is a special case of persistent global, so there is no reason in principle why it and the files it contains can't be used to pass context. However the ESP8266 file system uses flash memory and even with the SPIFFS file system still has a limited write cycle lifetime, so it is best to avoid using the file system to store frequently changing content except as a mechanism of last resort.

	The Lua Registry. This is a normally hidden table used by the library modules to store callback functions and other Lua data types. The GC treats the registry as in scope and hence any content referenced in the registry will not be garbage collected.

	Upvalues. These are a standard feature of Lua as described above that is fully implemented in NodeMCU. When a function is declared within an outer function, all of the local variables within the outer scope are available to the inner function. Ierusalimschy's paper, Closures in Lua [http://www.cs.tufts.edu/~nr/cs257/archive/roberto-ierusalimschy/closures-draft.pdf], gives a lot more detail for those that want to dig deeper.

So how is the Lua Registry used and why is this important?

All Lua callbacks are called by C wrapper functions within the NodeMCU libraries that are themselves callbacks that have been activated by the SDK as a result of a given event. Such C wrapper functions themselves frequently need to store state for passing between calls or to other wrapper C functions. The Lua registry is a special Lua table which is used for this purpose, except that it is hidden from direct Lua access, but using a standard Lua table for this store enables standard garbage collection algorithms to operate on its content. Any content that needs to be saved is created with a unique key. The upvalues for functions that are global or referenced in the Lua Registry will persist between event routines, and hence any upvalues used by them will also persist and can be used for passing context.

If you are running out of memory, then you might not be correctly clearing down Registry entries. One example is as above where you are setting up timers but not unregistering them. Another occurs in the following code fragment. The on() function passes the socket to the connection callback as it's first argument sck. This is local variable in the callback function, and it also references the same socket as the upvalue srv. So functionally srv and sck are interchangeable. So why pass it as an argument? Normally garbage collecting a socket will automatically unregister any of its callbacks, but if you use a socket as an upvalue in the callback, the socket is now referenced through the Register, and now it won't be GCed because it is referenced. Catch-22 and a programming error, not a bug.

Example of wrong upvalue usage in the callback:

srv:on("connection", function(sck, c)
 svr:send(reply) -- should be 'sck' instead of 'srv'
end)

Examples of correct callback implementations can be found in the net socket documentation.

One way to check the registry is to use the construct for k,v in pairs(debug.getregistry()) do print (k,v) end to track the registry size. If this is growing then you've got a leak.

How do I track globals

	See the Unofficial Lua FAQ: Detecting Undefined Variables [http://lua-users.org/wiki/DetectingUndefinedVariables].

	My approach is to avoid using them unless I have a very good reason to justify this. I track them statically by running a luac -p -l XXX.lua | grep GLOBAL filter on any new modules and replace any accidental globals by local or upvalued local declarations.

	On NodeMCU, _G's metatable is _G, so you can create any globals that you need and then 'close the barn door' by assigning
_G.__newindex=function(g,k,v) error ("attempting to set global "..k.." to "..v) end and any attempt to create new globals with now throw an error and give you a traceback of where this has happened.

Why is it importance to understand how upvalues are implemented when programming for the ESP8266?

The use of upvalues is a core Lua feature. This is explained in detail in PiL. Any Lua routines defined within an outer scope my use them. This can include routines directly or indirectly referenced in the globals table, **_G**, or in the Lua Registry.

The number of upvalues associated with a given routine is calculated during compile and a stack vector is allocated for them when the closure is bound to hold these references. Each upvalues is classed as open or closed. All upvalues are initially open which means that the upvalue references back to the outer function's register set. However, upvalues must be able to outlive the scope of the outer routine where they are declared as a local variable. The runtime VM does this by adding extra checks when executing a function return to scan any defined closures within its scope for back references and allocate memory to hold the upvalue and points the upvalue's reference to this. This is known as a closed upvalue.

This processing is a mature part of the Lua 5.x runtime system, and for normal Lua applications development this "behind-the-scenes" magic ensures that upvalues just work as any programmer might expect. Sufficient garbage collector metadata is also stored so that these hidden values will be garbage collected correctly when properly dereferenced.

One further complication is that some library functions don't implicitly dereference expired callback references and as a result their upvalues may not be garbage collected and this application error can be be manifested as a memory leak. So using upvalues can cause more frequent and difficult to diagnose PANICs during testing. So my general recommendation is still to stick to globals during initial development, and explicitly dereference resources by setting them to nil when you have done with them.

Can I encapsulate actions such as sending an email in a Lua function?

Think about the implications of these last few answers.

An action such as composing and sending an email involves a message dialogue with a mail server over TCP. This in turn requires calling multiple API calls to the SDK and your Lua code must return control to the C calling library for this to be scheduled, otherwise these requests will just queue up, you'll run out of RAM and your application will PANIC. Hence it is simply impossible to write a Lua module so that you can do something like:

-- prepare message
status = mail.send(to, subject, body)
-- move on to next phase of processing.

But you could code up a event-driven task to do this and pass it a callback to be executed on completion of the mail send, something along the lines of the following. Note that since this involves a lot of asynchronous processing and which therefore won't take place until you've returned control to the calling library C code, you will typically execute this as the last step in a function and therefore this is best done as a tailcall [PiL 6.3].

-- prepare message
local ms = require("mail_sender")
return ms.send(to, subject, body, function(status)
 loadfile("process_next.lua")(status)
end)

Building an application on the ESP8266 is a bit like threading pearls onto a necklace. Each pearl is an event task which must be small enough to run within its RAM resources and the string is the variable context that links the pearls together.

When and why should I avoid using tmr.delay()?

If you are used coding in a procedural paradigm then it is understandable that you consider using tmr.delay() to time sequence your application. However as discussed in the previous section, with NodeMCU Lua you are coding in an event-driven paradigm.

If you look at the app/modules/tmr.c code for this function, then you will see that it executes a low level ets_delay_us(delay). This function isn't part of the NodeMCU code or the SDK; it's actually part of the xtensa-lx106 boot ROM, and is a simple timing loop which polls against the internal CPU clock. tmr.delay() is really intended to be used where you need to have more precise timing control on an external hardware I/O (e.g. lifting a GPIO pin high for 20 μSec). It does this with interrupts enabled, because so there is no guarantee that the delay will be as requested, and the Lua RTS itself may inject operations such as GC, so if you do this level of precise control then you should encode your application as a C library.

It will achieve no functional purpose in pretty much every other usecase, as any other system code-based activity will be blocked from execution; at worst it will break your application and create hard-to-diagnose timeout errors. We therefore deprecate its general use.

How do I avoid a PANIC loop in init.lua?

Most of us have fallen into the trap of creating an init.lua that has a bug in it, which then causes the system to reboot and hence gets stuck in a reboot loop. If you haven't then you probably will do so at least once.

When this happens, the only robust solution is to reflash the firmware.

The simplest way to avoid having to do this is to keep the init.lua as simple as possible -- say configure the wifi and then start your app using a one-time tmr.alarm() after a 2-3 sec delay. This delay is long enough to issue a file.remove("init.lua") through the serial port and recover control that way.

Another trick is to poll a spare GPIO input pin in your startup. I do this on my boards by taking this GPIO plus Vcc to a jumper on the board, so that I can set the jumper to jump into debug mode or reprovision the software.

Also it is always best to test any new init.lua by creating it as init_test.lua, say, and manually issuing a dofile("init_test.lua") through the serial port, and then only rename it when you are certain it is working as you require.

See "Uploading code" → init.lua for a very detaild example.

Compiling and Debugging

We recommend that you install Lua 5.1 on your development host. This often is useful for debugging Lua fragments on your PC. You also use it for compile validation.

You can also build luac.cross on your development host if you have Lua locally installed. This runs on your host and has all of the features of standard luac, except that the output code file will run under NodeMCU as an lc file.

Techniques for Reducing RAM and SPIFFS footprint

How do I minimise the footprint of an application?

Perhaps the simplest aspect of reducing the footprint of an application is to get its scope correct. The ESP8266 is an IoT device and not a general purpose system. It is typically used to attach real-world monitors, controls, etc. to an intranet and is therefore designed to implement functions that have limited scope. We commonly come across developers who are trying to treat the ESP8266 as a general purpose device and can't understand why their application can't run.

The simplest and safest way to use IoT devices is to control them through a dedicated general purpose system on the same network. This could be a low cost system such as a RaspberryPi (RPi) [https://www.raspberrypi.org/] server, running your custom code or an open source home automation (HA) application. Such systems have orders of magnitude more capacity than the ESP8266, for example the RPi has 2GB RAM and its SD card can be up to 32GB in capacity, and it can support the full range of USB-attached disk drives and other devices. It also runs a fully featured Linux OS, and has a rich selection of applications pre configured for it. There are plenty of alternative systems available in this under $50 price range, as well as proprietary HA systems which can cost 10-50 times more.

Using a tiered approach where all user access to the ESP8266 is passed through a controlling server means that the end-user interface (or smartphone connector), together with all of the associated validation and security can be implemented on a system designed to have the capacity to do this. This means that you can limit the scope of your ESP8266 application to a limited set of functions being sent to or responding to requests from this system.

If you are trying to implement a user-interface or HTTP webserver in your ESP8266 then you are really abusing its intended purpose. When it comes to scoping your ESP8266 applications, the adage Keep It Simple Stupid truly applies.

How do I minimise the footprint of an application on the file system

	It is possible to write Lua code in a very compact format which is very dense in terms of functionality per KB of source code.

	However if you do this then you will also find it extremely difficult to debug or maintain your application.

	A good compromise is to use a tool such as LuaSrcDiet [http://luaforge.net/projects/luasrcdiet/], which you can use to compact production code for downloading to the ESP8266:

	Keep a master repository of your code on your PC or a cloud-based versioning repository such as GitHub [https://github.com/]

	Lay it out and comment it for ease of maintenance and debugging

	Use a package such as Esplorer [https://github.com/4refr0nt/ESPlorer] to download modules that you are debugging and to test them.

	Once the code is tested and stable, then compress it using LuaSrcDiet before downloading to the ESP8266. Doing this will reduce the code footprint on the SPIFFS by 2-3x. Also note that LuaSrcDiet has a mode which achieves perhaps 95% of the possible code compaction but which still preserves line numbering. This means that any line number-based error messages will still be usable.

	Standard Lua compiled code includes a lot of debug information which almost doubles its RAM size. node.stripdebug() can be used to change this default setting either to increase the debug information for a given module or to remove line number information to save a little more space. Using node.compile() to pre-compile any production code will remove all compiled code including error line info and so is not recommended except for stable production code where line numbers are not needed.

How do I minimise the footprint of running application?

The Lua Garbage collector is very aggressive at scanning and recovering dead resources. It uses an incremental mark-and-sweep strategy which means that any data which is not ultimately referenced back to the Globals table, the Lua registry or in-scope local variables in the current Lua code will be collected.

Setting any variable to nil dereferences the previous context of that variable. (Note that reference-based variables such as tables, strings and functions can have multiple variables referencing the same object, but once the last reference has been set to nil, the collector will recover the storage.

Unlike other compile-on-load languages such as PHP, Lua compiled code is treated the same way as any other variable type when it comes to garbage collection and can be collected when fully dereferenced, so that the code-space can be reused.

The default garbage collection mode is very aggressive and results in a GC sweep after every allocation. See node.egc.setmode() for how to turn this down. node.egc.setmode(node.egc.ON_MEM_LIMIT, 4096) is a good compromise of performance and having enough free headboard.

Lua execution is intrinsically divided into separate event tasks with each bound to a Lua callback. This, when coupled with the strong dispose on dereference feature, means that it is very easy to structure your application using an classic technique which dates back to the 1950s known as Overlays.

Various approaches can be use to implement this. One is described by DP Whittaker in his Massive memory optimization: flash functions [http://www.esp8266.com/viewtopic.php?f=19&t=1940] topic. Another is to use volatile modules. There are standard Lua templates for creating modules, but the require() library function creates a reference for the loaded module in the package.loaded table, and this reference prevents the module from being garbage collected. To make a module volatile, you should remove this reference to the loaded module by setting its corresponding entry in package.loaded to nil. You can't do this in the outermost level of the module (since the reference is only created once execution has returned from the module code), but you can do it in any module function, and typically an initialisation function for the module, as in the following example:

local s = net.createServer(net.TCP)
s:listen(80, function(c) require("connector").init(c) end)

connector.lua would be a standard module pattern except that the M.init() routine must include the lines

local M, module = {},
function M.init(csocket)
 package.loaded[module] = nil...
end

return M

This approach ensures that the module can be fully dereferenced on completion. OK, in this case, this also means that the module has to be reloaded on each TCP connection to port 80; however, loading a compiled module from SPIFFS only takes a few mSec, so surely this is an acceptable overhead if it enables you to break down your application into RAM-sized chunks. Note that require() will automatically search for connector.lc followed by connector.lua, so the code will work for both source and compiled variants.

	Whilst the general practice is for a module to return a table, [PiL 15.1] suggests that it is sometimes appropriate to return a single function instead as this avoids the memory overhead of an additional table. This pattern would look as follows:

local s = net.createServer(net.TCP)
s:listen(80, function(c) require("connector")(c) end)

local module = _ -- this is a situation where using an upvalue is essential!
return function(csocket)
 package.loaded[module] = nil
 module = nil...
end

Also note that you should not normally code this up listener call as the following because the RAM now has to accommodate both the module which creates the server and the connector logic.

...
local s = net.createServer(net.TCP)
local connector = require("connector") -- don't do this unless you've got the RAM available!
s:listen(80, connector)

How do I reduce the size of my compiled code?

Note that there are two methods of saving compiled Lua to SPIFFS:

	The first is to use node.compile() on the .lua source file, which generates the equivalent bytecode .lc file. This approach strips out all the debug line and variable information.

	The second is to use loadfile() to load the source file into memory, followed by string.dump() to convert it in-memory to a serialised load format which can then be written back to a .lc file. The amount of debug saved will depend on the node.stripdebug() settings.

The memory footprint of the bytecode created by method (3) is the same as when executing source files directly, but the footprint of bytecode created by method (2) is typically 10% smaller than a dump with the stripdebug level of 3 or 60% smaller than a dump with a stripdebug level of 1, because the debug information is almost as large as the code itself.

In general consider method (2) if you have stable production code that you want to run in as low a RAM footprint as possible. Yes, method (3) can be used if you are still debugging, but you will probably be changing this code quite frequently, so it is easier to stick with .lua files for code that you are still developing.

Note that if you use require("XXX") to load your code then this will automatically search for XXX.lc then XXX.lua so you don't need to include the conditional logic to load the bytecode version if it exists, falling back to the source version otherwise.

How do I get a feel for how much memory my functions use?

You should get an overall understanding of the VM model if you want to make good use of the limited resources available to Lua applications. An essential reference here is A No Frills Introduction to Lua 5.1 VM Instructions [http://luaforge.net/docman/83/98/ANoFrillsIntroToLua51VMInstructions.pdf] . This explain how the code generator works, how much memory overhead is involved with each table, function, string etc..

You can't easily get a bytecode listing of your ESP8266 code; however there are two broad options for doing this:

	Generate a bytecode listing on your development PC. The Lua 5.1 code generator is basically the same on the PC and on the ESP8266, so whilst it isn't identical, using the standard Lua batch compiler luac against your source on your PC with the -l -s option will give you a good idea of what your code will generate. The main difference between these two variants is the size_t for ESP8266 is 4 bytes rather than the 8 bytes size_t found on modern 64bit development PCs; and the eLua variants generate different access references for ROM data types. If you want to see what the string.dump() version generates then drop the -s option to retain the debug information. You can also build luac.cross with this firmware and this generate lc code for the target ESP architecture.

	Upload your .lc files to the PC and disassemble them there. There are a number of Lua code disassemblers which can list off the compiled code that your application modules will generate, if you have a script to upload files from your ESP8266 to your development PC. I use ChunkSpy [http://luaforge.net/projects/chunkspy/] which can be downloaded here [http://files.luaforge.net/releases/chunkspy/chunkspy/ChunkSpy-0.9.8/ChunkSpy-0.9.8.zip] , but you will need to apply the following patch so that ChunkSpy understands eLua data types:

 --- a/ChunkSpy-0.9.8/5.1/ChunkSpy.lua 2015-05-04 12:39:01.267975498 +0100
 +++ b/ChunkSpy-0.9.8/5.1/ChunkSpy.lua 2015-05-04 12:35:59.623983095 +0100
 @@ -2193,6 +2193,9 @@
 config.AUTO_DETECT = true
 elseif a == "--brief" then
 config.DISPLAY_BRIEF = true
 + elseif a == "--elua" then
 + config.LUA_TNUMBER = 5
 + config.LUA_TSTRING = 6
 elseif a == "--interact" then
 perform = ChunkSpy_Interact

Your other great friend is to use node.heap() regularly through your code.

Use these tools and play with coding approaches to see how many instructions each typical line of code takes in your coding style. The Lua Wiki gives some general optimisation tips, but in general just remember that these focus on optimising for execution speed and you will be interested mainly in optimising for code and variable space as these are what consumes precious RAM.

What is the cost of using functions?

Functions have fixed overheads, so in general the more that you group your application code into larger functions, then the less RAM used will be used overall. The main caveat here is that if you are starting to do "copy and paste" coding across functions then you are wasting resources. So of course you should still use functions to structure your code and encapsulate common repeated processing, but just bear in mind that each function definition has a relatively high overhead for its header record and stack frame. So try to avoid overusing functions. If there are less than a dozen or so lines in the function then you should consider putting this code inline if it makes sense to do so.

What other resources are available?

Install lua and luac on your development PC. This is freely available for Windows, Mac and Linux distributions, but we strongly suggest that you use Lua 5.1 to maintain source compatibility with ESP8266 code. This will allow you not only to unit test some modules on your PC in a rich development environment, but you can also use luac to generate a bytecode listing of your code and to validate new code syntactically before downloading to the ESP8266. This will also allow you to develop server-side applications and embedded applications in a common language.

Firmware and Lua app development

How to reduce the size of the firmware?

We recommend that you use a tailored firmware build; one which only includes the modules that you plan to use in developing any Lua application. Once you have the ability to make and flash custom builds, the you also have the option of moving time sensitive or logic intensive code into your own custom module. Doing this can save a large amount of RAM as C code can be run directly from Flash memory. See Building the firmware for more details and options.

 FAT File System on SD Card

FAT File System on SD Card

Accessing files on external SD cards is currently only supported from the file module. This imposes the same overall restrictions of internal SPIFFS to SD cards:

	no support for sub-folders

	no timestamps

	no file attributes (read-only, system, etc.)

Work is in progress to extend the file API with support for the missing features.

Enabling FatFs

The FAT file system is implemented by Chan's FatFs [http://elm-chan.org/fsw/ff/00index_e.html] version R0.12a [http://elm-chan.org/fsw/ff/ff12a.zip]. It's disabled by default to save memory space and has to be enabled before compiling the firmware:

Uncomment #define BUILD_FATFS in user_config.h.

SD Card connection

The SD card is operated in SPI mode, thus the card has to be wired to the respective ESP pins of the HSPI interface. There are several naming schemes used on different adapters - the following list shows alternative terms:

	CK, CLK, SCLK to pin5 / GPIO14

	DO, DAT0, MISO to pin 6 / GPIO12

	DI, CMD, MOSI to pin 7 / GPIO13

	CS, DAT3, SS to pin 8 / GPIO15 recommended

	VCC, VDD to 3V3 supply

	VSS, GND to common ground

Connection of SS/CS can be done to any of the GPIOs on pins 1 to 12. This allows coexistence of the SD card with other SPI slaves on the same bus. There's no support for detection of card presence or the write protection switch. These would need to be handled as additional GPIOs in the user application.

!!! caution

The adapter does not require level shifters since SD and ESP are supposed to be powered with the same voltage. If your specific model contains level shifters then make sure that both sides can be operated at 3V3.

[image: 1:1 micro-sd adapter]
[image: micro-sd shield]

Lua bindings

Before mounting the volume(s) on the SD card, you need to initialize the SPI interface from Lua.

spi.setup(1, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 8)

-- initialize other spi slaves

-- then mount the sd
-- note: the card initialization process during `file.mount()` will set spi divider temporarily to 200 (400 kHz)
-- it's reverted back to the current user setting before `file.mount()` finishes
vol = file.mount("/SD0", 8) -- 2nd parameter is optional for non-standard SS/CS pin
if not vol then
 print("retry mounting")
 vol = file.mount("/SD0", 8)
 if not vol then
 error("mount failed")
 end
end
file.open("/SD0/path/to/somefile")
print(file.read())
file.close()

!!! note

If the card doesn't work when calling `file.mount()` for the first time then re-try the command. It's possible that certain cards time out during the first initialization after power-up.

The logical drives are mounted at the root of a unified directory tree where the mount points distinguish between internal flash (/FLASH) and the card's partitions (/SD0 to /SD3). Files are accessed via either the absolute hierarchical path or relative to the current working directory. It defaults to /FLASH and can be changed with file.chdir(path).

Subdirectories are supported on FAT volumes only.

Multiple partitions / multiple cards

The mapping from logical volumes (eg. /SD0) to partitions on an SD card is defined in fatfs_config.h. More volumes can be added to the VolToPart array with any combination of physical drive number (aka SS/CS pin) and partition number. Their names have to be added to _VOLUME_STRS in ffconf.h as well.

 SPIFFS File System

SPIFFS File System

The NodeMCU project uses the SPIFFS [https://github.com/pellepl/spiffs]
filesystem to store files in the flash chip. The technical details about how this is configured can be found below, along with various build time options.

spiffsimg - Manipulate SPI Flash File System disk images

Ever wished you could prepare a SPIFFS image offline and flash the whole
thing onto your microprocessor's storage instead of painstakingly upload
file-by-file through your app on the micro? With spiffsimg you can!

NodeMCU uses a SPIFFS filesystem that knows how big it is -- i.e. when you build a file system
image, it must fit into the flash chip, and it cannot be expanded once flashed.
It is important to give the spiffimg tool the correct size. You can provide either the -c option or both the -U and -S options.

Syntax

spiffsimg -f <filename>
 [-o <offsetfile>]
 [-c <size>]
 [-S <flashsize>]
 [-U <usedsize>]
 [-d]
 [-l | -i | -r <scriptname>]

Supported operations:

	-f specifies the filename for the disk image. '%x' will be replaced by the calculated offset of the file system (-U must also be specified to calculate the offset).

	-o specifies the filename which is to contain the calculated offset.

	-S specifies the size of the flash chip. 32m is 32 mbits, 4MB is 4 megabytes.

	-U specifies the amount of flash used by the firmware. Decimal or Hex bytes (if starts with 0x).

	-c Create a blank disk image of the given size. Decimal or Hex bytes (if starts with 0x).

	-l List the contents of the given disk image.

	-i Interactive commands.

	-r Scripted commands from filename.

	-d causes the disk image to be deleted on error. This makes it easier to script.

Available commands:

	ls List contents. Output format is {type} {size} {name}.

	cat <filename> Dump file contents to stdout.

	rm <filename> Delete file.

	info Display SPIFFS usage estimates.

	import <srcfile> <spiffsname> Import a file into the disk image.

	export <spiffsname> <dstfile> Export a file from the disk image.

Example:

spiffsimg -f flash.img -S 32m -U 524288 -i
> import myapp/lua/init.lua init.lua
> import myapp/lua/httpd.lua httpd.lua
> import myapp/html/index.html http/index.html
> import myapp/html/favicon.ico http/favicon.ico
> ls
f 122 init.lua
f 5169 httpd.lua
f 2121 http/index.html
f 880 http/favicon.ico
>^D
#

Known limitations:

	The block & page sizes are hard-coded to be compatible with nodemcu.

	Error handling is not entirely consistent, some errors result in an
early exit, others just print an error (both cause a non-zero exit though).

	Only flat SPIFFS is supported.

Technical Details

The SPIFFS configuration is 4k sectors (the only size supported by the SDK) and 8k blocks. 256 byte pages. Magic is enabled and magic_len is also enabled. This allows the firmware to find the start of the filesystem (and also the size).
One of the goals is to make the filsystem more persistent across reflashing of the firmware. However, there are still cases
where spiffs detects a filesystem and uses it when it isn't valid. If you are getting weirdness with the filesystem, then just reformat it.

There are two significant sizes of flash -- the 512K and 4M (or bigger).

The file system has to start on a 4k boundary, but since it ends on a much bigger boundary (a 16k boundary), it also starts on an 8k boundary. For the small flash chip, there is
not much spare space, so a newly formatted file system will start as low as possible (to get as much space as possible). For the large flash, the
file system will start on a 64k boundary. A newly formatted file system will start between 64k and 128k from the end of the firmware. This means that the file
system will survive lots of reflashing and at least 64k of firmware growth.

The standard build process for the firmware builds the spiffsimg tool (found in the tools/spiffsimg subdirectory).
The top level Makfile also checks if
there is any data in the local/fs directory tree, and it will then copy these files
into the flash disk image. Two images will normally be created -- one for the 512k flash part and the other for the 4M flash part. If the data doesn't
fit into the 512k part after the firmware is included, then the file will not be generated.
The disk image file is placed into the bin directory and it is named 0x<offset>-<size>.bin where the offset is the location where it should be
flashed, and the size is the size of the flash part. It is quite valid (and quicker) to flash the 512k image into a 4M part. However, there will probably be
limited space in the file system for creating new files.

The default configuration will try and build three different file systems for 512KB, 1MB and 4MB flash sizes. The 1MB size is suitable for the ESP8285. This can be overridden by specifying the FLASHSIZE parameter to the makefile.

If the local/fs directory is empty, then no flash images will be created (and the ones from the last build will be removed). The spiffsimg tool can
then be used to build an image as required.

If no file system is found during platform boot, then a new file system will be formatted. This can take some time on the first boot.

Note that the last 16k of the flash chip is reserved for the SDK to store parameters (such as the client wifi settings).

In order to speed up the boot time, it is possible to define (at build time) the size of the SPIFFS Filesystem to be formatted. This can be as small as 32768 bytes which gives a filesystem with about 15k bytes of usable space.
Just place the following define in user_config.h or some other file that is included during the build.

#define SPIFFS_MAX_FILESYSTEM_SIZE 32768

This filesystem size limit only affects the formatting of a file system -- if the firm finds an existing valid filesystem (of any size) it will use that. However, if the
filesystem is reformatted from Lua (using file.format()) then the new file system will obey the size limit.

There is also an option to control the positioning of the SPIFFS file system:

#define SPIFFS_FIXED_LOCATION 0x100000

This specifies that the SPIFFS filesystem starts at 1Mb from the start of the flash. Unless otherwise specified, it will run to the end of the flash (excluding the 16k of space reserved by the SDK).

There is an option that limits the size of the file system to run up to the next 1MB boundary (minus the 16k for the parameter space). This may be useful when dealing with OTA upgrades.

#define SPIFFS_SIZE_1M_BOUNDARY

 Stack Overflow

 The issues list on GitHub [https://github.com/nodemcu/nodemcu-firmware/issues] is not the right place to ask for help. Use it to report bugs and to place feature requests. Questions like "how do I ..." or "I can't get this to work ..." should be directed to StackOverflow or esp8266.com.

Which ever site you use you need to make sure the description of the problem is to the point. It should be accompanied by a stripped down version of your Lua source code i.e. create a Minimal, Complete, and Verifiable Example (MCVE). A good resource is http://stackoverflow.com/help/how-to-ask

Stack Overflow

Stack Overflow is the perfect place to ask coding questions. Use one or several of the following tags: esp8266 [http://stackoverflow.com/tags/esp8266], nodemcu [http://stackoverflow.com/tags/nodemcu] or Lua [http://stackoverflow.com/tags/lua].

esp8266.com Forums

esp8266.com has a few NodeMCU specific forums [http://www.esp8266.com/viewforum.php?f=17] where a number of our active community members tend to hang out.

 Tools

 As with flashing there are several ways to upload code from your computer to the device.

!!! note

The NodeMCU serial interface uses 115'200bps at boot time. To change the speed after booting, issue `uart.setup(0,9600,8,0,1,1)`. If the device panics and resets at any time, errors will be written to the serial interface at 115'200 bps.

Tools

Transferring application code to ESP8266/8285 is an essential task, one that you'll perform quite frequently. Hence, it does make sense to try a few different uploading tools until you find one you feel comfortable with. https://frightanic.com/iot/tools-ides-nodemcu/ lists almost a dozen classical uploaders - in addition to IDEs or IDE-like applications which of course transfer code as well.

The NodeMCU firmware team does not give any recommendations as for which uploader to use nor are there any "NodeMCU approved" tools. The below listed tools are just three, in no particular order, which seem popular and/or reasonably well maintained.

ESPlorer

The essential multiplatforms tools for any ESP8266 developer from luatool author’s, including Lua for NodeMCU and MicroPython. Also, all AT commands are supported. Requires Java (Standard Edition - SE ver 7 and above) installed.

[image: ESPlorer]

Source: https://github.com/4refr0nt/ESPlorer

Supported platforms: macOS, Linux, Windows, anything that runs Java

nodemcu-uploader.py

A simple tool for uploading files to the filesystem of an ESP8266 running NodeMCU as well as some other useful commands.

Source: https://github.com/kmpm/nodemcu-uploader

Supported platforms: macOS, Linux, Windows, anything that runs Python

NodeMCU-Tool

Upload/Download Lua files to your ESP8266 module with NodeMCU firmware.
Simple. Command Line. Cross-Platform. File Management. NodeMCU.

Source: https://github.com/andidittrich/NodeMCU-Tool

Supported platforms: macOS, Linux Windows, anything that runs Node.js

init.lua

You will see "lua: cannot open init.lua" printed to the serial console when the device boots after it's been freshly flashed. If NodeMCU finds a init.lua in the root of the file system it will execute it as part of the boot sequence (standard Lua feature). Hence, your application is initialized and triggered from init.lua. Usually you first set up the WiFi connection and only continue once that has been successful.

Be very careful not to lock yourself out! If there's a bug in your init.lua you may be stuck in an infinite reboot loop. It is, therefore, advisable to build a small delay into your startup sequence that would allow you to interrupt the sequence by e.g. deleting or renaming init.lua (see also FAQ). Your init.lua is most likely going to be different than the one below but it's a good starting point for customizations:

-- load credentials, 'SSID' and 'PASSWORD' declared and initialize in there
dofile("credentials.lua")

function startup()
 if file.open("init.lua") == nil then
 print("init.lua deleted or renamed")
 else
 print("Running")
 file.close("init.lua")
 -- the actual application is stored in 'application.lua'
 -- dofile("application.lua")
 end
end

-- Define WiFi station event callbacks
wifi_connect_event = function(T)
 print("Connection to AP("..T.SSID..") established!")
 print("Waiting for IP address...")
 if disconnect_ct ~= nil then disconnect_ct = nil end
end

wifi_got_ip_event = function(T)
 -- Note: Having an IP address does not mean there is internet access!
 -- Internet connectivity can be determined with net.dns.resolve().
 print("Wifi connection is ready! IP address is: "..T.IP)
 print("Startup will resume momentarily, you have 3 seconds to abort.")
 print("Waiting...")
 tmr.create():alarm(3000, tmr.ALARM_SINGLE, startup)
end

wifi_disconnect_event = function(T)
 if T.reason == wifi.eventmon.reason.ASSOC_LEAVE then
 --the station has disassociated from a previously connected AP
 return
 end
 -- total_tries: how many times the station will attempt to connect to the AP. Should consider AP reboot duration.
 local total_tries = 75
 print("\nWiFi connection to AP("..T.SSID..") has failed!")

 --There are many possible disconnect reasons, the following iterates through
 --the list and returns the string corresponding to the disconnect reason.
 for key,val in pairs(wifi.eventmon.reason) do
 if val == T.reason then
 print("Disconnect reason: "..val.."("..key..")")
 break
 end
 end

 if disconnect_ct == nil then
 disconnect_ct = 1
 else
 disconnect_ct = disconnect_ct + 1
 end
 if disconnect_ct < total_tries then
 print("Retrying connection...(attempt "..(disconnect_ct+1).." of "..total_tries..")")
 else
 wifi.sta.disconnect()
 print("Aborting connection to AP!")
 disconnect_ct = nil
 end
end

-- Register WiFi Station event callbacks
wifi.eventmon.register(wifi.eventmon.STA_CONNECTED, wifi_connect_event)
wifi.eventmon.register(wifi.eventmon.STA_GOT_IP, wifi_got_ip_event)
wifi.eventmon.register(wifi.eventmon.STA_DISCONNECTED, wifi_disconnect_event)

print("Connecting to WiFi access point...")
wifi.setmode(wifi.STATION)
wifi.sta.config({ssid=SSID, pwd=PASSWORD})
-- wifi.sta.connect() not necessary because config() uses auto-connect=true by default

Compiling Lua on your PC for Uploading

If you install Lua on your development PC or Laptop, then you can use a standard lua environment to develop PC applications and also use the standard luac compiler to syntax check any Lua source code. However because of architectural differences between the ESP8266 chipset with its SDK and a standard PC CPU, the system APIs are different and the binary output from the standard PC luac cannot be run on the ESP8266.

To address this issue, the standard NodeMCU make now generates a host executable lua.cross (or lua.cross.int for integer builds) as well as the firmware binary itself. Compiling source on one platform for use on another is known as cross-compilation and this luac.cross compiler allows you to compile Lua source files on your PC for downloading onto ESP8266 in a binary format.

The firmware also includes API calls to allow Lua sources to be compiled on ESP, but this mode of compilation is limited by the RAM heap available. Host cross compilation bypasses this ESP compile limit entirely and allows you to use larger modules within your code. In the case of LFS compiles, this code is stored in flash memory on the ESP, and so has no RAM overhead; the only limit is the size of the allocated LFS region.

 ADC Module

ADC Module

Since	Origin / Contributor	Maintainer	Source
2014-12-24	Zeroday [https://github.com/funshine]	jmattsson [https://github.com/jmattsson]	adc.c

The ADC module provides access to the in-built ADC.

On the ESP8266 there is only a single-channel, which is multiplexed with the battery voltage. Depending on the setting in the "esp init data" (byte 107) one can either use the ADC to read an external voltage, or to read the system voltage (vdd33), but not both.

Which mode to use the ADC in can be configured via the adc.force_init_mode() function. Note that after switching from one to the other a system restart (e.g. power cycle, reset button, node.restart()) is required before the change takes effect.

adc.force_init_mode()

Checks and if necessary reconfigures the ADC mode setting in the ESP init data block.

####Syntax
adc.force_init_mode(mode_value)

####Parameters
mode_value One of adc.INIT_ADC or adc.INIT_VDD33.

####Returns
True if the function had to change the mode, false if the mode was already configured. On a true return the ESP needs to be restarted for the change to take effect.

####Example

-- in you init.lua:
if adc.force_init_mode(adc.INIT_VDD33)
then
 node.restart()
 return -- don't bother continuing, the restart is scheduled
end

print("System voltage (mV):", adc.readvdd33(0))

####See also
node.restart()

adc.read()

Samples the ADC.

####Syntax
adc.read(channel)

####Parameters
channel always 0 on the ESP8266

####Returns
the sampled value (number)

If the ESP8266 has been configured to use the ADC for reading the system voltage, this function will always return 65535. This is a hardware and/or SDK limitation.

####Example

val = adc.read(0)

adc.readvdd33()

Reads the system voltage.

####Syntax
adc.readvdd33()

####Parameters
none

####Returns
system voltage in millivolts (number)

If the ESP8266 has been configured to use the ADC for sampling the external pin, this function will always return 65535. This is a hardware and/or SDK limitation.

 ADS1115 Module

ADS1115 Module

Since	Origin / Contributor	Maintainer	Source
2017-04-24	fetchbot [https://github.com/fetchbot]	fetchbot [https://github.com/fetchbot]	ads1115.c

This module provides access to the ADS1115 (16-Bit) and ADS1015 (12-Bit) analog-to-digital converters.
Other chips from the same family (ADS1113, ADS1114, ADS1013 and ADS1014) are likely to work. Missing hardware features will be silently ignored.

This module supports multiple devices connected to I²C bus. The devices of different types can be mixed.
The addressing of ADS family allows for maximum of 4 devices connected to the same I²C bus.

!!! caution

The **ABSOLUTE MAXIMUM RATINGS** for all analog inputs are `–0.3V to VDD+0.3V` referred to GND.

ads1115.ads1115()

Registers ADS1115 (ADS1113, ADS1114) device.

Syntax

ads1115.ADS1115(I2C_ID, I2C_ADDR)

Parameters

	I2C_ID - always 0

	ADDRESS - I²C address of a device

	ads1115.ADDR_GND

	ads1115.ADDR_VDD

	ads1115.ADDR_SDA

	ads1115.ADDR_SCL

Returns

Registered device object

Example

local id, sda, scl = 0, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()
adc1 = ads1115.ads1115(id, ads1115.ADDR_GND)

ads1115.ads1015()

Registers ADS1015 (ADS1013, ADS1014) device.

Syntax

ads1115.ads1015(I2C_ID, I2C_ADDR)

Parameters

	I2C_ID - always 0

	ADDRESS - I²C address of a device

	ads1115.ADDR_GND

	ads1115.ADDR_VDD

	ads1115.ADDR_SDA

	ads1115.ADDR_SCL

Returns

Registered device object

Example

local id, sda, scl = 0, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()
adc1 = ads1115.ads1015(id, ads1115.ADDR_VDD)
adc2 = ads1115.ads1115(id, ads1115.ADDR_SDA)

ads1115.reset()

Reset all devices connected to I²C interface.

Syntax

ads1115.reset()

Parameters

none

Returns

nil

Example

local id, alert_pin, sda, scl = 0, 7, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()

ADS Device

ads1115.device:read()

Gets the result stored in the register of a previously issued conversion, e.g. in continuous mode or with a conversion ready interrupt.

Syntax

volt, volt_dec, raw, sign = device:read()

Parameters

none

Returns

	volt voltage in mV (see note below)

	volt_dec voltage decimal in uV (see note below)

	adc raw adc register value

	sign sign of the result (see note below)

!!! note

If using float firmware then `volt` is a floating point number, `volt_dec` and `sign` are nil. On an integer firmware, the final value has to be concatenated from `volt`, `volt_dec` and `sign`. On integer firmware `volt` and `volt_dec` are always positive, sign can be `-1`, `0`, `1`.

Example

local id, alert_pin, sda, scl = 0, 7, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()
adc1 = ads1115.ads1115(id, ads1115.ADDR_GND)

-- continuous mode
adc1:setting(ads1115.GAIN_6_144V, ads1115.DR_128SPS, ads1115.SINGLE_0, ads1115.CONTINUOUS)
-- read adc result with read()
volt, volt_dec, adc, sign = ads1:read()
print(volt, volt_dec, adc, sign)

-- comparator
adc1:setting(ads1115.GAIN_6_144V, ads1115.DR_128SPS, ads1115.SINGLE_0, ads1115.CONTINUOUS, ads1115.COMP_1CONV, 1000, 2000)
local function comparator(level, when)
 -- read adc result with read() when threshold reached
 gpio.trig(alert_pin)
 volt, volt_dec, adc, sign = ads1:read()
 print(volt, volt_dec, adc, sign)
end
gpio.mode(alert_pin, gpio.INT)
gpio.trig(alert_pin, "both", comparator)

-- read adc result with read()
volt, volt_dec, adc, sign = ads1115:read()
print(volt, volt_dec, adc, sing)

-- format value in int build
if sign then
 -- int build
 print(string.format("%s%d.%03d mV", sign >= 0 and "+" or "-", volt, volt_dec))
else
 -- float build
 -- just use V as it is
end

ads1115.device:setting()

Configuration settings for the ADC.

Syntax

device:setting(GAIN, SAMPLES, CHANNEL, MODE[, CONVERSION_RDY][, COMPARATOR, THRESHOLD_LOW, THRESHOLD_HI[,COMP_MODE]])

Parameters

	GAIN Programmable gain amplifier

	ads1115.GAIN_6_144V 2/3x Gain

	ads1115.GAIN_4_096V 1x Gain

	ads1115.GAIN_2_048V 2x Gain

	ads1115.GAIN_1_024V 4x Gain

	ads1115.GAIN_0_512V 8x Gain

	ads1115.GAIN_0_256V 16x Gain

	SAMPLES Data rate in samples per second

	ads1115.DR_8SPS ADS1115 only

	ads1115.DR_16SPS ADS1115 only

	ads1115.DR_32SPS ADS1115 only

	ads1115.DR_64SPS ADS1115 only

	ads1115.DR_128SPS

	ads1115.DR_250SPS

	ads1115.DR_475SPS ADS1115 only

	ads1115.DR_490SPS ADS1015 only

	ads1115.DR_860SPS ADS1115 only

	ads1115.DR_920SPS ADS1015 only

	ads1115.DR_1600SPS ADS1015 only

	ads1115.DR_2400SPS ADS1015 only

	ads1115.DR_3300SPS ADS1015 only

	CHANNEL Input multiplexer for single-ended or differential measurement

	ads1115.SINGLE_0 channel 0 to GND

	ads1115.SINGLE_1 channel 1 to GND

	ads1115.SINGLE_2 channel 2 to GND

	ads1115.SINGLE_3 channel 3 to GND

	ads1115.DIFF_0_1 channel 0 to 1

	ads1115.DIFF_0_3 channel 0 to 3

	ads1115.DIFF_1_3 channel 1 to 3

	ads1115.DIFF_2_3 channel 2 to 3

	MODE Device operating mode

	ads1115.SINGLE_SHOT single-shot mode

	ads1115.CONTINUOUS continuous mode

	CONVERSION_RDY Number of conversions after conversion ready asserts (optional)

	ads1115.CONV_RDY_1

	ads1115.CONV_RDY_2

	ads1115.CONV_RDY_4

	COMPARATOR Number of conversions after comparator asserts (optional)

	ads1115.COMP_1CONV

	ads1115.COMP_2CONV

	ads1115.COMP_4CONV

	THRESHOLD_LOW

	0 - + GAIN_MAX in mV for single-ended inputs

	- GAIN_MAX - + GAIN_MAX in mV for differential inputs

	THRESHOLD_HI

	0 - + GAIN_MAX in mV for single-ended inputs

	- GAIN_MAX - + GAIN_MAX in mV for differential inputs

	COMP_MODE Comparator mode

	ads1115.CMODE_TRAD traditional comparator mode (with hysteresis)

	ads1115.CMODE_WINDOW window comparator mode

note: Comparator and conversion ready are always configured to non-latching, active low.

Returns

nil

Example

local id, sda, scl = 0, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()
adc1 = ads1115.ads1015(id, ads1115.ADDR_GND)

adc1:setting(ads1115.GAIN_6_144V, ads1115.DR_3300SPS, ads1115.SINGLE_0, ads1115.SINGLE_SHOT)

ads1115.device:startread()

Starts the ADC reading for single-shot mode and after the conversion is done it will invoke an optional callback function in which the ADC conversion result can be obtained.

Syntax

device:startread([CALLBACK])

Parameters

	CALLBACK callback function which will be invoked after the adc conversion is done

	function(volt, volt_dec, adc, sign) end

Returns

	nil

Example

local id, alert_pin, sda, scl = 0, 7, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW)
ads1115.reset()
adc1 = ads1115.ads1115(id, ads1115.ADDR_VDD)

-- single shot
adc1:setting(ads1115.GAIN_6_144V, ads1115.DR_128SPS, ads1115.SINGLE_0, ads1115.SINGLE_SHOT)
-- start adc conversion and get result in callback after conversion is ready
adc1:startread(function(volt, volt_dec, adc, sign) print(volt, volt_dec, adc, sign) end)

-- conversion ready
adc1:setting(ads1115.GAIN_6_144V, ads1115.DR_128SPS, ads1115.SINGLE_0, ads1115.SINGLE_SHOT, ads1115.CONV_RDY_1)
local function conversion_ready(level, when)
 gpio.trig(alert_pin)
 volt, volt_dec, adc, sign = adc1:read()
 print(volt, volt_dec, adc, sign)
end
gpio.mode(alert_pin, gpio.INT)
gpio.trig(alert_pin, "down", conversion_ready)
-- start conversion and get result with read() after conversion ready pin asserts
adc1:startread()

 ADXL345 Module

ADXL345 Module

Since	Origin / Contributor	Maintainer	Source
2016-04-08	Jason Schmidlapp [https://github.com/jschmidlapp]	Jason Schmidlapp [https://github.com/jschmidlapp]	adxl345.c

This module provides access to the ADXL345 [https://www.sparkfun.com/products/9836] triple axis accelerometer.

adxl345.read()

Samples the sensor and returns X,Y and Z data from the accelerometer.

Syntax

adxl345.read()

Returns

X,Y,Z data (integers)

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
adxl345.setup()
local x,y,z = adxl345.read()
print(string.format("X = %d, Y = %d, Z = %d", x, y, z))

adxl345.setup()

Initializes the module.

Syntax

adxl345.setup()

Parameters

None

Returns

nil

 AM2320 Module

AM2320 Module

Since	Origin / Contributor	Maintainer	Source
2016-02-14	Henk Vergonet [https://github.com/hvegh]	Henk Vergonet [https://github.com/hvegh]	am2320.c

This module provides access to the AM2320 [https://akizukidenshi.com/download/ds/aosong/AM2320.pdf] humidity and temperature sensor, using the i2c interface.

am2320.read()

Samples the sensor and returns the relative humidity in % and temperature in celsius, as an integer multiplied with 10.

Syntax

am2320.read()

Returns

	relative humidity percentage multiplied with 10 (integer)

	temperature in celcius multiplied with 10 (integer)

Example

sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
am2320.setup()
rh, t = am2320.read()
print(string.format("RH: %s%%", rh / 10))
print(string.format("Temperature: %s degrees C", t / 10))

am2320.setup()

Initializes the module. Returns model, version, serial but is seams these where all zero on my model.

Syntax

model, version, serial = am2320.setup()

Parameters

None

Returns

	model 16 bits number of model

	version 8 bits version number

	serial 32 bits serial number

Note: I have only observed values of 0 for all of these, maybe other sensors return more sensible readings.

 APA102 Module

APA102 Module

Since	Origin / Contributor	Maintainer	Source
2016-01-26	Robert Foss [https://github.com/robertfoss]	Robert Foss [https://github.com/robertfoss]	apa102.c

This module provides Lua access to APA102 RGB LEDs [https://youtu.be/UYvC-hukz-0] which are similar in function to the common WS2812 addressable LEDs.

DotStar LEDs are 5050-sized LEDs with an embedded micro controller inside the LED. You can set the color/brightness of each LED to 24-bit color (8 bits each red green and blue). Each LED acts like a shift register, reading incoming color data on the input pins, and then shifting the previous color data out on the output pin. By sending a long string of data, you can control an infinite number of LEDs, just tack on more or cut off unwanted LEDs at the end.

source: Adafruit [https://www.adafruit.com/products/2343]

apa102.write()

Send ABGR data in 8 bits to a APA102 chain.

Syntax

apa102.write(data_pin, clock_pin, string)

Parameters

	data_pin any GPIO pin 0, 1, 2, ...

	clock_pin any GPIO pin 0, 1, 2, ...

	string payload to be sent to one or more APA102 LEDs.
It should be composed from a ABGR quadruplet per element.

	A1 the first pixel's Intensity channel (0-31)

	B1 the first pixel's Blue channel (0-255)

	G1 the first pixel's Green channel (0-255)

	R1 the first pixel's Red channel (0-255)
... You can connect a lot of APA102 ...

	A2, B2, G2, R2 are the next APA102s Intensity, Blue, Green and Red channel parameters

Returns

nil

Example 1

a = 31
b = 0
g = 0
r = 255
leds_abgr = string.char(a, b, g, r, a, b, g, r)
apa102.write(2, 3, leds_abgr) -- turn two APA102s to red, connected to data_pin 2 and clock_pin 3

Example 2

-- set the first 30 leds to red
apa102.write(2, 3, string.char(31, 255, 0, 0):rep(30))

 bit Module

bit Module

Since	Origin / Contributor	Maintainer	Source
2014-12-24	https://github.com/LuaDist/bitlib, Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	bit.c

Bit manipulation support, on 32bit integers.

bit.arshift()

Arithmetic right shift a number equivalent to value >> shift in C.

Syntax

bit.arshift(value, shift)

Parameters

	value the value to shift

	shift positions to shift

Returns

the number shifted right (arithmetically)

Example

bit.arshift(3, 1) -- returns 1
-- Using a 4 bits representation: 0011 >> 1 == 0001

bit.band()

Bitwise AND, equivalent to val1 & val2 & ... & valn in C.

Syntax

bit.band(val1, val2 [, ... valn])

Parameters

	val1 first AND argument

	val2 second AND argument

	...valn ...nth AND argument

Returns

the bitwise AND of all the arguments (number)

Example

bit.band(3, 2) -- returns 2
-- Using a 4 bits representation: 0011 & 0010 == 0010

bit.bit()

Generate a number with a 1 bit (used for mask generation). Equivalent to 1 << position in C.

Syntax

bit.bit(position)

Parameters

position position of the bit that will be set to 1

Returns

a number with only one 1 bit at position (the rest are set to 0)

Example

bit.bit(4) -- returns 16

bit.bnot()

Bitwise negation, equivalent to ~value in C.

Syntax

bit.bnot(value)

Parameters

value the number to negate

Returns

the bitwise negated value of the number

bit.bor()

Bitwise OR, equivalent to val1 | val2 | ... | valn in C.

Syntax

bit.bor(val1, val2 [, ... valn])

Parameters

	val1 first OR argument.

	val2 second OR argument.

	...valn ...nth OR argument

Returns

the bitwise OR of all the arguments (number)

Example

bit.bor(3, 2) -- returns 3
-- Using a 4 bits representation: 0011 | 0010 == 0011

bit.bxor()

Bitwise XOR, equivalent to val1 ^ val2 ^ ... ^ valn in C.

Syntax

bit.bxor(val1, val2 [, ... valn])

Parameters

	val1 first XOR argument

	val2 second XOR argument

	...valn ...nth XOR argument

Returns

the bitwise XOR of all the arguments (number)

Example

bit.bxor(3, 2) -- returns 1
-- Using a 4 bits representation: 0011 ^ 0010 == 0001

bit.clear()

Clear bits in a number.

Syntax

bit.clear(value, pos1 [, ... posn])

Parameters

	value the base number

	pos1 position of the first bit to clear

	...posn position of thet nth bit to clear

Returns

the number with the bit(s) cleared in the given position(s)

Example

bit.clear(3, 0) -- returns 2

bit.isclear()

Test if a given bit is cleared.

Syntax

bit.isclear(value, position)

Parameters

	value the value to test

	position bit position to test

Returns

true if the bit at the given position is 0, false othewise

Example

bit.isclear(2, 0) -- returns true

bit.isset()

Test if a given bit is set.

Syntax

bit.isset(value, position)

Parameters

	value the value to test

	position bit position to test

Returns

true if the bit at the given position is 1, false otherwise

Example

bit.isset(2, 0) -- returns false

bit.lshift()

Left-shift a number, equivalent to value << shift in C.

Syntax

bit.lshift(value, shift)

Parameters

	value the value to shift

	shift positions to shift

Returns

the number shifted left

Example

bit.lshift(2, 2) -- returns 8
-- Using a 4 bits representation: 0010 << 2 == 1000

bit.rshift()

Logical right shift a number, equivalent to (unsigned)value >> shift in C.

Syntax

bit.rshift(value, shift)

Parameters

	value the value to shift.

	shift positions to shift.

Returns

the number shifted right (logically)

Example

bit.rshift(2, 1) -- returns 1
-- Using a 4 bits representation: 0010 >> 1 == 0001

bit.set()

Set bits in a number.

Syntax

bit.set(value, pos1 [, ... posn])

Parameters

	value the base number.

	pos1 position of the first bit to set.

	...posn position of the nth bit to set.

Returns

the number with the bit(s) set in the given position(s)

Example

bit.set(2, 0) -- returns 3

 Bloom Module

Bloom Module

Since	Origin / Contributor	Maintainer	Source
2017-11-13	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	bloom.c

This module implements a Bloom filter [https://en.wikipedia.org/wiki/Bloom_filter]. This is a probabilistic data structure that is used to test for set membership. There are two operations -- add and check that allow
arbitrary strings to be added to the set or tested for set membership. Since this is a probabilistic data structure, the answer returned can be incorrect. However,
if the string is a member of the set, then the check operation will always return true.

bloom.create()

Create a filter object.

Syntax

bloom.create(elements, errorrate)

Parameters

	elements The largest number of elements to be added to the filter.

	errorrate The error rate (the false positive rate). This is represented as n where the false positive rate is 1 / n. This is the maximum rate of check returning true when the string is not in the set.

Returns

A filter object.

Example

 filter = bloom.create(10000, 100) -- this will use around 11kB of memory

filter:add()

Adds a string to the set and returns an indication of whether the string was already present.

Syntax

filter:add(string)

Parameters

	string The string to be added to the filter set.

Returns

true if the string was already present in the filter. false otherwise.

Example

 if filter:add("apple") then
 print ("Seen an apple before!")
 else
 print ("Noted that the first apple has been seen")
 end

filter:check()

Checks to see if a string is present in the filter set.

Syntax

present = filter:check(string)

Parameters

	string The string to be checked for membership in the set.

Returns

true if the string was already present in the filter. false otherwise.

Example

 if filter:check("apple") then
 print ("Seen an apple before!")
 end

filter:reset()

Empties the filter.

Syntax

filter:reset()

Returns

Nothing

Example

filter:reset()

filter:info()

Get some status information on the filter.

Syntax

bits, fns, occupancy, fprate = filter:info()

Returns

	bits The number of bits in the filter.

	fns The number of hash functions in use.

	occupancy The number of bits set in the filter.

	fprate The approximate chance that the next check will return true when it should return false. This is represented as the inverse of the probability -- i.e. as the n in 1-in-n chance. This value is limited to 1,000,000.

Example

bits, fns, occupancy, fprate = filter:info()

 BME280 module

BME280 module

Since	Origin / Contributor	Maintainer	Source
2016-02-21	vsky279 [https://github.com/vsky279]	vsky279 [https://github.com/vsky279]	bme280.c

This module provides a simple interface to BME280/BMP280 temperature/air presssure/humidity sensors [http://www.bosch-sensortec.com/bst/products/all_products/bme280] (Bosch Sensortec).

!!! caution

Note that you must call [`setup()`](#bme280setup) before you can start reading values! Furthermore, there has to be a variable delay between some tens to hundreds of milliseconds between `setup()` and reading measurements. Instead of using a fixed delay you might also poll the sensor until data is delivered e.g. `humi()` not returning `nil` anymore.

bme280.altitude()

For given air pressure and sea level air pressure returns the altitude in meters as an integer multiplied with 100, i.e. altimeter function.

Syntax

bme280.altitude(P, QNH)

Parameters

	P measured pressure

	QNH current sea level pressure

Returns

altitude in meters of measurement point

bme280.baro()

Reads the sensor and returns the air pressure in hectopascals as an integer multiplied with 1000 or nil when readout is not successful.
Current temperature is needed to calculate the air pressure so temperature reading is performed prior reading pressure data. Second returned variable is therefore current air temperature.

Syntax

bme280.baro()

Parameters

none

Returns

	P air pressure in hectopascals multiplied by 1000

	T temperature in celsius as an integer multiplied with 100

bme280.dewpoint()

For given temperature and relative humidity returns the dew point in celsius as an integer multiplied with 100.

Syntax

bme280.dewpoint(H, T)

Parameters

	H relative humidity in percent multiplied by 1000.

	T temperate in celsius multiplied by 100.

Returns

dew point in celsisus

bme280.humi()

Reads the sensor and returns the air relative humidity in percents as an integer multiplied with 100 or nil when readout is not successful.
Current temperature is needed to calculate the relative humidity so temperature reading is performed prior reading pressure data. Second returned variable is therefore current temperature.

Syntax

bme280.humi()

Parameters

none

Returns

	H last relative humidity reading in % times 1000

	T temperature in celsius as an integer multiplied with 100

bme280.qfe2qnh()

For given altitude converts the air pressure to sea level air pressure.

Syntax

bme280.qfe2qnh(P, altitude)

Parameters

	P measured pressure

	altitude altitude in meters of measurement point

Returns

sea level pressure

bme280.read()

Reads the sensor and returns the temperature, the air pressure, the air relative humidity and

Syntax

bme280.read([altitude])

Parameters

	(optional) altitude- altitude in meters of measurement point. If provided also the air pressure converted to sea level air pressure is returned.

Returns

	T temperature in celsius as an integer multiplied with 100

	P air pressure in hectopascals multiplied by 1000

	H relative humidity in percent multiplied by 1000

	QNH air pressure in hectopascals multiplied by 1000 converted to sea level

Any of these variables is nil if the readout of given measure was not successful.

bme280.startreadout()

Starts readout (turns the sensor into forced mode). After the readout the sensor turns to sleep mode.

Syntax

bme280.startreadout(delay, callback)

Parameters

	delay sets sensor to forced mode and calls the callback (if provided) after given number of milliseconds. For 0 the default delay is set to 113ms (sufficient time to perform reading for oversampling settings 16x). For different oversampling setting please refer to BME280 Final Datasheet - Appendix B: Measurement time and current calculation [http://ae-bst.resource.bosch.com/media/_tech/media/datasheets/BST-BME280_DS001-11.pdf#page=51].

	callback if provided it will be invoked after given delay. The sensor reading should be finalized by then so.

Returns

nil

bme280.setup()

Initializes module. Initialization is mandatory before read values.

Syntax

bme280.setup([temp_oss, press_oss, humi_oss, power_mode, inactive_duration, IIR_filter])

Parameters

	(optional) temp_oss - Controls oversampling of temperature data. Default oversampling is 16x.

	(optional) press_oss - Controls oversampling of pressure data. Default oversampling is 16x.

	(optional) humi_oss - Controls oversampling of humidity data. Default oversampling is 16x

	(optional) sensor_mode - Controls the sensor mode of the device. Default sensor more is normal.

	(optional) inactive_duration - Controls inactive duration in normal mode. Default inactive duration is 20ms.

	(optional) IIR_filter - Controls the time constant of the IIR filter. Default fitler coefficient is 16.

	(optional) cold_start - If 0 then the BME280 chip is not initialised. Usefull in a battery operated setup when the ESP deep sleeps and on wakeup needs to initialise the driver (the module) but not the chip itself. The chip was kept powered (sleeping too) and is holding the latest reading that should be fetched quickly before another reading starts (bme280.startreadout()). By default the chip is initialised.

temp_oss, press_oss, humi_oss	Data oversampling
0	Skipped (output set to 0x80000)
1	oversampling ×1
2	oversampling ×2
3	oversampling ×4
4	oversampling ×8
5	oversampling ×16

sensor_mode	Sensor mode
0	Sleep mode
1 and 2	Forced mode
3	Normal mode

Using forced mode is recommended for applications which require low sampling rate or hostbased synchronization. The sensor enters into sleep mode after a forced readout. Please refer to BME280 Final Datasheet for more details.

inactive_duration	t standby (ms)
0	0.5
1	62.5
2	125
3	250
4	500
5	1000
6	10
7	20

IIR_filter	Filter coefficient
0	Filter off
1	2
2	4
3	8
4	16

Returns

nil if initialization has failed (no sensor connected?), 2 if sensor is BME280, 1 if sensor is BMP280

Example

alt=320 -- altitude of the measurement place

sda, scl = 3, 4
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
bme280.setup()

P, T = bme280.baro()
print(string.format("QFE=%d.%03d", P/1000, P%1000))

-- convert measure air pressure to sea level pressure
QNH = bme280.qfe2qnh(P, alt)
print(string.format("QNH=%d.%03d", QNH/1000, QNH%1000))

H, T = bme280.humi()

local Tsgn = (T < 0 and -1 or 1); T = Tsgn*T
print(string.format("T=%s%d.%02d", Tsgn<0 and "-" or "", T/100, T%100))
print(string.format("humidity=%d.%03d%%", H/1000, H%1000))

D = bme280.dewpoint(H, T)
local Dsgn = (D < 0 and -1 or 1); D = Dsgn*D
print(string.format("dew_point=%s%d.%02d", Dsgn<0 and "-" or "", D/100, D%100))

-- altimeter function - calculate altitude based on current sea level pressure (QNH) and measure pressure
P = bme280.baro()
curAlt = bme280.altitude(P, QNH)
local curAltsgn = (curAlt < 0 and -1 or 1); curAlt = curAltsgn*curAlt
print(string.format("altitude=%s%d.%02d", curAltsgn<0 and "-" or "", curAlt/100, curAlt%100))

Or simpler and more efficient

alt=320 -- altitude of the measurement place

sda, scl = 3, 4
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
bme280.setup()

T, P, H, QNH = bme280.read(alt)
local Tsgn = (T < 0 and -1 or 1); T = Tsgn*T
print(string.format("T=%s%d.%02d", Tsgn<0 and "-" or "", T/100, T%100))
print(string.format("QFE=%d.%03d", P/1000, P%1000))
print(string.format("QNH=%d.%03d", QNH/1000, QNH%1000))
print(string.format("humidity=%d.%03d%%", H/1000, H%1000))
D = bme280.dewpoint(H, T)
local Dsgn = (D < 0 and -1 or 1); D = Dsgn*D
print(string.format("dew_point=%s%d.%02d", Dsgn<0 and "-" or "", D/100, D%100))

-- altimeter function - calculate altitude based on current sea level pressure (QNH) and measure pressure
P = bme280.baro()
curAlt = bme280.altitude(P, QNH)
local curAltsgn = (curAlt < 0 and -1 or 1); curAlt = curAltsgn*curAlt
print(string.format("altitude=%s%d.%02d", curAltsgn<0 and "-" or "", curAlt/100, curAlt%100))

Use bme280.setup(1, 3, 0, 3, 0, 4) for "game mode" - Oversampling settings pressure ×4, temperature ×1, humidity ×0, sensor mode: normal mode, inactive duration = 0.5 ms, IIR filter settings filter coefficient 16.

Example of readout in forced mode (asynchronous)

sda, scl = 3, 4
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
bme280.setup(nil, nil, nil, 0) -- initialize to sleep mode
bme280.startreadout(0, function ()
 T, P = bme280.read()
 local Tsgn = (T < 0 and -1 or 1); T = Tsgn*T
 print(string.format("T=%s%d.%02d", Tsgn<0 and "-" or "", T/100, T%100))
end)

bme280.temp()

Reads the sensor and returns the temperature in celsius as an integer multiplied with 100.

Syntax

bme280.temp()

Parameters

none

Returns

	T temperature in celsius as an integer multiplied with 100 or nil when readout is not successful

	t_fine temperature measure used in pressure and humidity compensation formulas (generally no need to use this value)

 BME680 module

BME680 module

Since	Origin / Contributor	Maintainer	Source
2017-10-28	vsky279 [https://github.com/vsky279]	vsky279 [https://github.com/vsky279]	bme680.c

This module provides a simple interface to BME680 [https://www.bosch-sensortec.com/bst/products/all_products/bme680] temperature/air presssure/humidity sensors/air quality sensor (Bosch Sensortec). Compared to the BME280 module the sensor does not support automatic mode which means that it can be setup to perform regular measurements. Every measurement has to be triggered manually.

In order to measure the air quality the sensor needs to be heated first. In the example provided by the manufacturer the sensor is heated to 300 degrees centigrade for a period of 200 ms and then the measurement is taken. These values are taken as default values in this implementation. I have not tested the impact of different temperatures and heating times on the measurement.

This module is able to measure the gas resistance (see Bosch's datasheet). The gas resistance is not the IAQ (Indoor Air Quality) Index. But apparently it can be used as some proxy. The value still should somehow reflect the air quality. It seems that the higher value the air quality is better.

The algorithm for IAQ calculation from the gas restistances (probably measured at different temperatures) is not publicly available. Bosch says that at this point of time the calculations for the Indoor Air Quality index are offered only as a pre-compiled library (see discussion here: BoschSensortec/BME680_driver#6 [https://github.com/BoschSensortec/BME680_driver/issues/6]). It is available as the BSEC Library [https://www.bosch-sensortec.com/bst/products/all_products/bsec].
The algorithm is implemented in the library bsec/algo/bin/ESP8266/libalgobsec.a. Unfortunately I did not even manage to run the Bosch BSEC example on ESP8266 using this library.

bme680.altitude()

For given air pressure and sea level air pressure returns the altitude in meters as an integer multiplied with 100, i.e. altimeter function.

Syntax

bme680.altitude(P, QNH)

Parameters

	P measured pressure

	QNH current sea level pressure

Returns

altitude in meters of measurement point

bme680.dewpoint()

For given temperature and relative humidity returns the dew point in Celsius as an integer multiplied with 100.

Syntax

bme680.dewpoint(H, T)

Parameters

	H relative humidity in percent multiplied by 1000.

	T temperate in Celsius multiplied by 100.

Returns

dew point in Celsius

bme680.qfe2qnh()

For given altitude converts the air pressure to sea level air pressure.

Syntax

bme680.qfe2qnh(P, altitude)

Parameters

	P measured pressure

	altitude altitude in meters of measurement point

Returns

sea level pressure

bme680.read()

Reads the sensor and returns the temperature, the air pressure, the air relative humidity and

Syntax

bme680.read([altitude])

Parameters

	(optional) altitude- altitude in meters of measurement point. If provided also the air pressure converted to sea level air pressure is returned.

Returns

	T temperature in Celsius as an integer multiplied with 100

	P air pressure in hectopascals multiplied by 100

	H relative humidity in percent multiplied by 1000

	G gas resistance

	QNH air pressure in hectopascals multiplied by 100 converted to sea level

Any of these variables is nil if the readout of given measure was not successful.

The measured values can be read only once. Following attempts to read values will return nil. A new startreadout() needs to be called first before next read().

bme680.startreadout()

Starts readout (turns the sensor into forced mode). After the readout the sensor turns to sleep mode.

Syntax

bme680.startreadout(delay, callback)

Parameters

	delay sets sensor to forced mode and calls the callback (if provided) after given number of milliseconds. For 0 the default delay is calculated by the formula provided by Bosch [https://github.com/BoschSensortec/BME680_driver/blob/2a51b9c0c1899f28e561e6701caa22cb23201cfc/bme680.c#L586]. Apparently for certain combinations of oversamplings setup the the delay returned by the formula is not sufficient and the readout is not ready (make sure you are not reading the previous measurement). For default parameters (2x, 16x, 1x) the calculated delay is 121 ms while in reality 150 ms are needed to get the result.

	callback if provided it will be invoked after given delay. The sensor reading should be finalized by then so.

Returns

nil

bme680.setup()

Initializes module. Initialization is mandatory before read values.

Syntax

bme680.setup([temp_oss, press_oss, humi_oss, heater_temp, heater_duration, IIR_filter, cold_start])

Parameters

	(optional) temp_oss - Controls oversampling of temperature data. Default oversampling is 2x.

	(optional) press_oss - Controls oversampling of pressure data. Default oversampling is 16x.

	(optional) humi_oss - Controls oversampling of humidity data. Default oversampling is 1x

	(optional) heater_temp -

	(optional) heater_duration -

	(optional) IIR_filter - Controls the time constant of the IIR filter. Default fitler coefficient is 31.

	(optional) cold_start - If 0 then the bme680 chip is not initialised. Usefull in a battery operated setup when the ESP deep sleeps and on wakeup needs to initialise the driver (the module) but not the chip itself. The chip was kept powered (sleeping too) and is holding the latest reading that should be fetched quickly before another reading starts (bme680.startreadout()). By default the chip is initialised.

temp_oss, press_oss, humi_oss	Data oversampling
0	Skipped (output set to 0x80000)
1	oversampling ×1
2	oversampling ×2
3	oversampling ×4
4	oversampling ×8
5	oversampling ×16

IIR_filter	Filter coefficient
0	Filter off
1	1
2	3
3	7
4	15
5	31
6	63
7	127

Returns

nil if initialization has failed (no sensor connected?)

Example

alt=320 -- altitude of the measurement place

sda, scl = 3, 4
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once

bme680.setup()

-- delay calculated by formula provided by Bosch: 121 ms, minimum working (empirical): 150 ms
bme680.startreadout(150, function ()
 T, P, H, G, QNH = bme680.read(alt)
 if T then
 local Tsgn = (T < 0 and -1 or 1); T = Tsgn*T
 print(string.format("T=%s%d.%02d", Tsgn<0 and "-" or "", T/100, T%100))
 print(string.format("QFE=%d.%03d", P/100, P%100))
 print(string.format("QNH=%d.%03d", QNH/100, QNH%100))
 print(string.format("humidity=%d.%03d%%", H/1000, H%1000))
 print(string.format("gas resistance=%d", G))
 D = bme680.dewpoint(H, T)
 local Dsgn = (D < 0 and -1 or 1); D = Dsgn*D
 print(string.format("dew_point=%s%d.%02d", Dsgn<0 and "-" or "", D/100, D%100))
 end
end)

 BMP085 Module

BMP085 Module

Since	Origin / Contributor	Maintainer	Source
2015-08-03	Konrad Beckmann [https://github.com/kbeckmann]	Konrad Beckmann [https://github.com/kbeckmann]	bmp085.c

This module provides access to the BMP085 [https://www.sparkfun.com/tutorials/253] temperature and pressure sensor. The module also works with BMP180.

bmp085.setup()

Initializes the module.

Syntax

bmp085.setup()

Parameters

None

Returns

nil

bmp085.temperature()

Samples the sensor and returns the temperature in celsius as an integer multiplied with 10.

Syntax

bmp085.temperature()

Returns

temperature multiplied with 10 (integer)

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW)
bmp085.setup()
local t = bmp085.temperature()
print(string.format("Temperature: %s.%s degrees C", t / 10, t % 10))

bmp085.pressure()

Samples the sensor and returns the pressure in pascal as an integer.

The optional oversampling_setting parameter determines for how long time the sensor samples data.
The default is 3 which is the longest sampling setting. Possible values are 0, 1, 2, 3.
See the data sheet for more information.

Syntax

bmp085.pressure(oversampling_setting)

Parameters

oversampling_setting integer that can be 0, 1, 2 or 3

Returns

pressure in pascals (integer)

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
bmp085.setup()
local p = bmp085.pressure()
print(string.format("Pressure: %s.%s mbar", p / 100, p % 100))

bmp085.pressure_raw()

Samples the sensor and returns the raw pressure in internal units. Might be useful if you need higher precision.

Syntax

bmp085.pressure_raw(oversampling_setting)

Parameters

oversampling_setting integer that can be 0, 1, 2 or 3

Returns

raw pressure sampling value (integer)

 CJSON Module

CJSON Module

This module has been replaced by sjson. It provides a superset of functionality. All references to cjson can be replaced by sjson.

 CoAP Module

CoAP Module

Since	Origin / Contributor	Maintainer	Source
2015-02-04	Toby Jaffey toby@1248.io, Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	coap.c

The CoAP module provides a simple implementation according to CoAP [http://tools.ietf.org/html/rfc7252] protocol.
The basic endpoint server part is based on microcoap [https://github.com/1248/microcoap], and many other code reference libcoap [https://github.com/obgm/libcoap].

This module implements both the client and the server side. GET/PUT/POST/DELETE is partially supported by the client. Server can register Lua functions and variables. No observe or discover supported yet.

!!! caution

This module is only in the very early stages and not complete yet.

Constants

Constants for various functions.

coap.CON, coap.NON represent the request types.

coap.TEXT_PLAIN, coap.LINKFORMAT, coap.XML, coap.OCTET_STREAM, coap.EXI, coap.JSON represent content types.

coap.Client()

Creates a CoAP client.

Syntax

coap.Client()

Parameters

none

Returns

CoAP client

Example

cc = coap.Client()
-- assume there is a coap server at ip 192.168.100
cc:get(coap.CON, "coap://192.168.18.100:5683/.well-known/core")
-- GET is not complete, the result/payload only print out in console.
cc:post(coap.NON, "coap://192.168.18.100:5683/", "Hello")

coap.Server()

Creates a CoAP server.

Syntax

coap.Server()

Parameters

none

Returns

CoAP server

Example

-- use copper addon for firefox
cs=coap.Server()
cs:listen(5683)

myvar=1
cs:var("myvar") -- get coap://192.168.18.103:5683/v1/v/myvar will return the value of myvar: 1

all='[1,2,3]'
cs:var("all", coap.JSON) -- sets content type to json

-- function should tack one string, return one string.
function myfun(payload)
 print("myfun called")
 respond = "hello"
 return respond
end
cs:func("myfun") -- post coap://192.168.18.103:5683/v1/f/myfun will call myfun

CoAP Client

coap.client:get()

Issues a GET request to the server.

Syntax

coap.client:get(type, uri[, payload])

Parameters

	type coap.CON, coap.NON, defaults to CON. If the type is CON and request fails, the library retries four more times before giving up.

	uri the URI such as "coap://192.168.18.103:5683/v1/v/myvar", only IP addresses are supported i.e. no hostname resoltion.

	payload optional, the payload will be put in the payload section of the request.

Returns

nil

coap.client:put()

Issues a PUT request to the server.

Syntax

coap.client:put(type, uri[, payload])

Parameters

	type coap.CON, coap.NON, defaults to CON. If the type is CON and request fails, the library retries four more times before giving up.

	uri the URI such as "coap://192.168.18.103:5683/v1/v/myvar", only IP addresses are supported i.e. no hostname resoltion.

	payload optional, the payload will be put in the payload section of the request.

Returns

nil

coap.client:post()

Issues a POST request to the server.

Syntax

coap.client:post(type, uri[, payload])

Parameters

	type coap.CON, coap.NON, defaults to CON. when type is CON, and request failed, the request will retry another 4 times before giving up.

	uri the uri such as coap://192.168.18.103:5683/v1/v/myvar, only IP is supported.

	payload optional, the payload will be put in the payload section of the request.

Returns

nil

coap.client:delete()

Issues a DELETE request to the server.

Syntax

coap.client:delete(type, uri[, payload])

Parameters

	type coap.CON, coap.NON, defaults to CON. If the type is CON and request fails, the library retries four more times before giving up.

	uri the URI such as "coap://192.168.18.103:5683/v1/v/myvar", only IP addresses are supported i.e. no hostname resoltion.

	payload optional, the payload will be put in the payload section of the request.

Returns

nil

CoAP Server

coap.server:listen()

Starts the CoAP server on the given port.

Syntax

coap.server:listen(port[, ip])

Parameters

	port server port (number)

	ip optional IP address

Returns

nil

coap.server:close()

Closes the CoAP server.

Syntax

coap.server:close()

Parameters

none

Returns

nil

coap.server:var()

Registers a Lua variable as an endpoint in the server. the variable value then can be retrieved by a client via GET method, represented as an URI [http://tools.ietf.org/html/rfc7252#section-6] to the client. The endpoint path for varialble is '/v1/v/'.

Syntax

coap.server:var(name[, content_type])

Parameters

	name the Lua variable's name

	content_type optional, defaults to coap.TEXT_PLAIN, see Content Negotiation [http://tools.ietf.org/html/rfc7252#section-5.5.4]

Returns

nil

Example

-- use copper addon for firefox
cs=coap.Server()
cs:listen(5683)

myvar=1
cs:var("myvar") -- get coap://192.168.18.103:5683/v1/v/myvar will return the value of myvar: 1
-- cs:var(myvar), WRONG, this api accept the name string of the varialbe. but not the variable itself.
all='[1,2,3]'
cs:var("all", coap.JSON) -- sets content type to json

coap.server:func()

Registers a Lua function as an endpoint in the server. The function then can be called by a client via POST method. represented as an URI [http://tools.ietf.org/html/rfc7252#section-6] to the client. The endpoint path for function is '/v1/f/'.

When the client issues a POST request to this URI, the payload will be passed to the function as parameter. The function's return value will be the payload in the message to the client.

The function registered SHOULD accept ONLY ONE string type parameter, and return ONE string value or return nothing.

Syntax

coap.server:func(name[, content_type])

Parameters

	name the Lua function's name

	content_type optional, defaults to coap.TEXT_PLAIN, see Content Negotiation [http://tools.ietf.org/html/rfc7252#section-5.5.4]

Returns

nil

Example

-- use copper addon for firefox
cs=coap.Server()
cs:listen(5683)

-- function should take only one string, return one string.
function myfun(payload)
 print("myfun called")
 respond = "hello"
 return respond
end
cs:func("myfun") -- post coap://192.168.18.103:5683/v1/f/myfun will call myfun
-- cs:func(myfun), WRONG, this api accept the name string of the function. but not the function itself.

 color utils Module

color utils Module

Since	Origin / Contributor	Maintainer	Source
2017-12-30	Konrad Huebner [https://github.com/skycoders]	Konrad Huebner [https://github.com/skycoders]	color_utils.c

This module provides basic color transformations useful for color LEDs.

color_utils.hsv2grb()

Convert HSV color to GRB color.

Syntax

color_utils.hsv2grb(hue, saturation, value)

Parameters

	hue is the hue value, between 0 and 360

	saturation is the saturation value, between 0 and 255

	value is the value value, between 0 and 255

Returns

green, red, blue as values between 0 and 255

color_utils.hsv2grbw()

Convert HSV color to GRB color and explicitly return a white value. This can be useful for RGB+W LED strips. The white value is simply calculated as min(g, r, b) and then removed from the colors. This does NOT take into account if the white chip used later creates an appropriate color.

Syntax

color_utils.hsv2grbw(hue, saturation, value)

Parameters

	hue is the hue value, between 0 and 360

	saturation is the saturation value, between 0 and 255

	value is the value value, between 0 and 255

Returns

green, red, blue, white as values between 0 and 255

color_utils.grb2hsv()

Convert GRB color to HSV color.

Syntax

color_utils.grb2hsv(green, red, blue)

Parameters

	green is the green value, between 0 and 255

	red is the red value, between 0 and 255

	blue is the blue value, between 0 and 255

Returns

hue, saturation, value as values between 0 and 360, respective 0 and 255

color_utils.colorWheel()

The color wheel function makes use of the HSV color space and calculates colors based on the color circle. The colors are created with full saturation and value. This function is a convenience function of the hsv2grb function and can be used to create rainbow colors.

Syntax

color_utils.colorWheel(angle)

Parameters

	angle is the angle on the color circle, between 0 and 359

Returns

green, red, blue as values between 0 and 255

 Cron Module

Cron Module

Since	Origin / Contributor	Maintainer	Source
2016-12-18	PhoeniX [https://github.com/djphoenix]	PhoeniX [https://github.com/djphoenix]	cron.c

Cron [https://en.wikipedia.org/wiki/Cron]-like scheduler module.

!!! important
This module needs RTC time to operate correctly. Do not forget to include the rtctime module and initialize it properly.

!!! important
The cron expression has to be in GMT/UTC!

cron.schedule()

Creates a new schedule entry.

Syntax

cron.schedule(mask, callback)

Parameters

	mask - crontab [https://en.wikipedia.org/wiki/Cron#Overview]-like string mask for schedule

	callback - callback function(entry) that is executed at the scheduled time

Returns

cron.entry sub module

Example

cron.schedule("* * * * *", function(e)
 print("Every minute")
end)

cron.schedule("*/5 * * * *", function(e)
 print("Every 5 minutes")
end)

cron.schedule("0 */2 * * *", function(e)
 print("Every 2 hours")
end)

cron.reset()

Removes all scheduled entries.

Syntax

cron.reset()

Parameters

none

Returns

nil

cron.entry Module

cron.entry:handler()

Sets a new handler for entry.

Syntax

handler(callback)

Parameters

	callback - callback function(entry) that is executed at the scheduled time

Returns

nil

Example

ent = cron.schedule("* * * * *", function(e)
 print("Every minute")
end)

ent:handler(function(e)
 print("New handler: Every minute")
end)

cron.entry:schedule()

Sets a new schedule mask.

Syntax

schedule(mask)

Parameters

	mask - crontab [https://en.wikipedia.org/wiki/Cron#Overview]-like string mask for schedule

Returns

none

Example

ent = cron.schedule("* * * * *", function(e)
 print("Tick")
end)

-- Every 5 minutes is really better!
ent:schedule("*/5 * * * *")

cron.entry:unschedule()

Disables schedule.

Disabled schedules may be enabled again by calling :schedule(mask).

Syntax

unschedule()

Parameters

none

Returns

nil

Example

ent = cron.schedule("* * * * *", function(e)
 print("Tick")
end)

-- We don't need this anymore
ent:unschedule()

 crypto Module

crypto Module

Since	Origin / Contributor	Maintainer	Source
2015-06-02	DiUS [https://github.com/DiUS], Johny Mattsson [https://github.com/jmattsson]	Johny Mattsson [https://github.com/jmattsson]	crypto.c

The crypto modules provides various functions for working with cryptographic algorithms.

The following encryption/decryption algorithms/modes are supported:

	"AES-ECB" for 128-bit AES in ECB mode (NOT recommended)

	"AES-CBC" for 128-bit AES in CBC mode

The following hash algorithms are supported:

	MD2 (not available by default, has to be explicitly enabled in app/include/user_config.h)

	MD5

	SHA1

	SHA256, SHA384, SHA512 (unless disabled in app/include/user_config.h)

crypto.encrypt()

Encrypts Lua strings.

Syntax

crypto.encrypt(algo, key, plain [, iv])

Parameters

	algo the name of a supported encryption algorithm to use

	key the encryption key as a string; for AES encryption this MUST be 16 bytes long

	plain the string to encrypt; it will be automatically zero-padded to a 16-byte boundary if necessary

	iv the initilization vector, if using AES-CBC; defaults to all-zero if not given

Returns

The encrypted data as a binary string. For AES this is always a multiple of 16 bytes in length.

Example

print(crypto.toHex(crypto.encrypt("AES-ECB", "1234567890abcdef", "Hi, I'm secret!")))

See also

	crypto.decrypt()

crypto.decrypt()

Decrypts previously encrypted data.

Syntax

crypto.decrypt(algo, key, cipher [, iv])

Parameters

	algo the name of a supported encryption algorithm to use

	key the encryption key as a string; for AES encryption this MUST be 16 bytes long

	cipher the cipher text to decrypt (as obtained from crypto.encrypt())

	iv the initilization vector, if using AES-CBC; defaults to all-zero if not given

Returns

The decrypted string.

Note that the decrypted string may contain extra zero-bytes of padding at the end. One way of stripping such padding is to use :match("(.-)%z*$") on the decrypted string. Additional care needs to be taken if working on binary data, in which case the real length likely needs to be encoded with the data, and at which point :sub(1, n) can be used to strip the padding.

Example

key = "1234567890abcdef"
cipher = crypto.encrypt("AES-ECB", key, "Hi, I'm secret!")
print(crypto.toHex(cipher))
print(crypto.decrypt("AES-ECB", key, cipher))

See also

	crypto.encrypt()

crypto.fhash()

Compute a cryptographic hash of a a file.

Syntax

hash = crypto.fhash(algo, filename)

Parameters

	algo the hash algorithm to use, case insensitive string

	filename the path to the file to hash

Returns

A binary string containing the message digest. To obtain the textual version (ASCII hex characters), please use crypto.toHex().

Example

print(crypto.toHex(crypto.fhash("sha1","myfile.lua")))

crypto.hash()

Compute a cryptographic hash of a Lua string.

Syntax

hash = crypto.hash(algo, str)

Parameters

algo the hash algorithm to use, case insensitive string
str string to hash contents of

Returns

A binary string containing the message digest. To obtain the textual version (ASCII hex characters), please use crypto.toHex().

Example

print(crypto.toHex(crypto.hash("sha1","abc")))

crypto.new_hash()

Create a digest/hash object that can have any number of strings added to it. Object has update and finalize functions.

Syntax

hashobj = crypto.new_hash(algo)

Parameters

algo the hash algorithm to use, case insensitive string

Returns

Userdata object with update and finalize functions available.

Example

hashobj = crypto.new_hash("SHA1")
hashobj:update("FirstString"))
hashobj:update("SecondString"))
digest = hashobj:finalize()
print(crypto.toHex(digest))

crypto.hmac()

Compute a HMAC [https://en.wikipedia.org/wiki/Hash-based_message_authentication_code] (Hashed Message Authentication Code) signature for a Lua string.

Syntax

signature = crypto.hmac(algo, str, key)

Parameters

	algo hash algorithm to use, case insensitive string

	str data to calculate the hash for

	key key to use for signing, may be a binary string

Returns

A binary string containing the HMAC signature. Use crypto.toHex() to obtain the textual version.

Example

print(crypto.toHex(crypto.hmac("sha1","abc","mysecret")))

crypto.new_hmac()

Create a hmac object that can have any number of strings added to it. Object has update and finalize functions.

Syntax

hmacobj = crypto.new_hmac(algo, key)

Parameters

	algo the hash algorithm to use, case insensitive string

	key the key to use (may be a binary string)

Returns

Userdata object with update and finalize functions available.

Example

hmacobj = crypto.new_hmac("SHA1", "s3kr3t")
hmacobj:update("FirstString"))
hmacobj:update("SecondString"))
digest = hmacobj:finalize()
print(crypto.toHex(digest))

crypto.mask()

Applies an XOR mask to a Lua string. Note that this is not a proper cryptographic mechanism, but some protocols may use it nevertheless.

Syntax

crypto.mask(message, mask)

Parameters

	message message to mask

	mask the mask to apply, repeated if shorter than the message

Returns

The masked message, as a binary string. Use crypto.toHex() to get a textual representation of it.

Example

print(crypto.toHex(crypto.mask("some message to obscure","X0Y7")))

crypto.toBase64()

Provides a Base64 representation of a (binary) Lua string.

Syntax

b64 = crypto.toBase64(binary)

Parameters

binary input string to Base64 encode

Return

A Base64 encoded string.

Example

print(crypto.toBase64(crypto.hash("sha1","abc")))

crypto.toHex()

Provides an ASCII hex representation of a (binary) Lua string. Each byte in the input string is represented as two hex characters in the output.

Syntax

hexstr = crypto.toHex(binary)

Parameters

binary input string to get hex representation for

Returns

An ASCII hex string.

Example

print(crypto.toHex(crypto.hash("sha1","abc")))

 DHT Module

DHT Module

Since	Origin / Contributor	Maintainer	Source
2015-06-17	RobTillaart [https://github.com/RobTillaart/Arduino/tree/master/libraries/DHTlib]	Vowstar [https://github.com/vowstar]	dhtlib

Constants

Constants for various functions.

dht.OK, dht.ERROR_CHECKSUM, dht.ERROR_TIMEOUT represent the potential values for the DHT read status

dht.read()

Read all kinds of DHT sensors, including DHT11, 21, 22, 33, 44 humidity temperature combo sensor.

Syntax

dht.read(pin)

Parameters

pin pin number of DHT sensor (can't be 0), type is number

Returns

	status as defined in Constants

	temp temperature (see note below)

	humi humidity (see note below)

	temp_dec temperature decimal

	humi_dec humidity decimal

!!! note

If using float firmware then `temp` and `humi` are floating point numbers. On an integer firmware, the final values have to be concatenated from `temp` and `temp_dec` / `humi` and `hum_dec`.

Example

pin = 5
status, temp, humi, temp_dec, humi_dec = dht.read(pin)
if status == dht.OK then
 -- Integer firmware using this example
 print(string.format("DHT Temperature:%d.%03d;Humidity:%d.%03d\r\n",
 math.floor(temp),
 temp_dec,
 math.floor(humi),
 humi_dec
))

 -- Float firmware using this example
 print("DHT Temperature:"..temp..";".."Humidity:"..humi)

elseif status == dht.ERROR_CHECKSUM then
 print("DHT Checksum error.")
elseif status == dht.ERROR_TIMEOUT then
 print("DHT timed out.")
end

dht.read11()

Read DHT11 humidity temperature combo sensor.

Syntax

dht.read11(pin)

Parameters

pin pin number of DHT11 sensor (can't be 0), type is number

Returns

	status as defined in Constants

	temp temperature (see note below)

	humi humidity (see note below)

	temp_dec temperature decimal

	humi_dec humidity decimal

!!! note

If using float firmware then `temp` and `humi` are floating point numbers. On an integer firmware, the final values have to be concatenated from `temp` and `temp_dec` / `humi` and `hum_dec`.

See also

dht.read()

dht.readxx()

Read all kinds of DHT sensors, except DHT11.

####Syntax
dht.readxx(pin)

Parameters

pin pin number of DHT sensor (can't be 0), type is number

Returns

	status as defined in Constants

	temp temperature (see note below)

	humi humidity (see note below)

	temp_dec temperature decimal

	humi_dec humidity decimal

!!! note

If using float firmware then `temp` and `humi` are floating point numbers. On an integer firmware, the final values have to be concatenated from `temp` and `temp_dec` / `humi` and `hum_dec`.

See also

dht.read()

 DS18B20 Module

DS18B20 Module

Since	Origin / Contributor	Maintainer	Source
2017-06-11	fetchbot [https://github.com/fetchbot]	fetchbot [https://github.com/fetchbot]	ds18b20.c

This module provides access to the DS18B20 1-Wire digital thermometer.

Deprecation Notice

Note that NodeMCU offers both a C module (this one) and a Lua module for this
sensor [https://github.com/nodemcu/nodemcu-firmware/tree/dev/lua_modules/ds18b20].
The C implementation is deprecated and will be removed soon; please transition
to Lua code.

ds18b20.read()

Issues a temperature conversion of all connected sensors on the onewire bus and returns the measurment results after a conversion delay in a callback function.
The returned measurements can be filtered through the ROM addresses passed as a table or by the family type.
The callback function gets invoked for every specified sensor.

Syntax

ds18b20.read(CALLBACK, ROM[, FAMILY_ADDRESS])

Parameters

	CALLBACK callback function executed for each sensor

	e.g. function(INDEX, ROM, RES, TEMP, TEMP_DEC, PAR) print(INDEX, ROM, RES, TEMP, TEMP_DEC, PAR) end

	ROM table which contains the addresses for the specified sensors, or left empty to perform a onewire bus search for all sensors

	e.g. {"28:FF:FF:FF:FF:FF:FF:FF","28:FF:FF:FF:FF:FF:FF:FF"}, {}

	FAMILY_ADDRESS optional to limit the search for devices to a specific family type

	e.g 0x28

Returns

nil

Callback function parameters

	INDEX index of the sensor on the bus

	ROM sensors 64-bit lasered rom code

	28:FF:FF:FF:FF:FF:FF:FF LSB, 8-bit family code, 48-bit serial number, MSB 8-bit crc

	RES temperature resolution

	TEMP temperature

	TEMP_DEC temperature decimals for integer firmware

	PAR sensor parasitic flag

!!! note

If using float firmware then `temp` is a floating point number. On an integer firmware, the final value has to be concatenated from `temp` and `temp_dec`.

Example

local ow_pin = 3
ds18b20.setup(ow_pin)

-- read all sensors and print all measurement results
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end,{});

-- read only sensors with family type 0x28 and print all measurement results
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end,{},0x28);

-- save device roms in a variable
local addr = {}
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 addr[ind] = {string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)"))}
 end,{});

-- read only sensors listed in the variable addr
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end,addr);

-- print only parasitic sensors
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 if (par == 1) then
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end
 end,{});

-- print if temperature is greater or less than a defined value
ds18b20.read(
 function(ind,rom,res,temp,tdec,par)
 if (t > 25) then
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end
 if (t < 20) then
 print(ind,string.format("%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X",string.match(rom,"(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+):(%d+)")),res,temp,tdec,par)
 end
 end,{});

ds18b20.setting()

Configuration of the temperature resolution settings.

Syntax

ds18b20.setting(ROM, RES)

Parameters

	ROM table which contains the addresses for the specified sensors, or empty for all sensors

	e.g. {"28:FF:FF:FF:FF:FF:FF:FF","28:FF:FF:FF:FF:FF:FF:FF"}, {}

	RES temperature bit resolution

	9 - 12

Returns

nil

Example

local ow_pin = 3
ds18b20.setup(ow_pin)

ds18b20.setting({"28:FF:FF:FF:FF:FF:FF:FF","28:FF:FF:FF:FF:FF:FF:FF"}, 9)

ds18b20.setup()

Initializes the onewire bus on the selected pin.

Syntax

ds18b20.setup(OW_BUS_PIN)

Parameters

	OW_BUS_PIN

	1 - 12

Returns

nil

Example

local ow_pin = 3
ds18b20.setup(ow_pin)

 encoder Module

encoder Module

Since	Origin / Contributor	Maintainer	Source
2016-02-26	Terry Ellison [https://github.com/TerryE]	Terry Ellison [https://github.com/TerryE]	encoder.c

The encoder modules provides various functions for encoding and decoding byte data.

encoder.toBase64()

Provides a Base64 representation of a (binary) Lua string.

Syntax

b64 = encoder.toBase64(binary)

Parameters

binary input string to Base64 encode

Return

A Base64 encoded string.

Example

print(encoder.toBase64(crypto.hash("sha1","abc")))

encoder.fromBase64()

Decodes a Base64 representation of a (binary) Lua string back into the original string. An error is
thrown if the string is not a valid base64 encoding.

Syntax

binary_string = encoder.toBase64(b64)

Parameters

b64 Base64 encoded input string

Return

The decoded Lua (binary) string.

Example

print(encoder.fromBase64(encoder.toBase64("hello world")))

encoder.toHex()

Provides an ASCII hex representation of a (binary) Lua string. Each byte in the input string is
represented as two hex characters in the output.

Syntax

hexstr = encoder.toHex(binary)

Parameters

binary input string to get hex representation for

Returns

An ASCII hex string.

Example

print(encoder.toHex(crypto.hash("sha1","abc")))

encoder.fromHex()

Returns the Lua binary string decode of a ASCII hex string. Each byte in the output string is
represented as two hex characters in the input. An error is thrown if the string is not a
valid base64 encoding.

Syntax

binary = encoder.fromHex(hexstr)

Parameters

hexstr An ASCII hex string.

Returns

Decoded string of hex representation.

Example

print(encoder.fromHex("6a6a6a")))

 enduser setup Module

enduser setup Module

Since	Origin / Contributor	Maintainer	Source
2015-09-02	Robert Foss [https://github.com/robertfoss]	Robert Foss [https://github.com/robertfoss]	enduser_setup.c

This module provides a simple way of configuring ESP8266 chips without using a serial interface or pre-programming WiFi credentials onto the chip.

[image: enduser setup config dialog]

After running enduser_setup.start(), a wireless network named "SetupGadget_XXXXXX" will start (this prefix can be overridden in user_config.h by defining
ENDUSER_SETUP_AP_SSID). Connect to that SSID and then navigate to the root
of any website (e.g., http://example.com/ will work, but do not use .local domains because it will fail on iOS). A web page similar to the picture above will load, allowing the
end user to provide their Wi-Fi information.

After an IP address has been successfully obtained, then this module will stop as if enduser_setup.stop() had been called. There is a 10-second delay before
teardown to allow connected clients to obtain a last status message while the SoftAP is still active.

Alternative HTML can be served by placing a file called enduser_setup.html on the filesystem. Everything needed by the web page must be included in this one file. This file will be kept
in RAM, so keep it as small as possible. The file can be gzip'd ahead of time to reduce the size (i.e., using gzip -n or zopfli), and when served, the End User Setup module will add
the appropriate Content-Encoding header to the response.

Note: If gzipped, the file can also be named enduser_setup.html.gz for semantic purposes. Gzip encoding is determined by the file's contents, not the filename.

The following HTTP endpoints exist:

Endpoint	Description
/	Returns HTML for the web page. Will return the contents of enduser_setup.html if it exists on the filesystem, otherwise will return a page embedded into the firmware image.
/aplist	Forces the ESP8266 to perform a site survey across all channels, reporting access points that it can find. Return payload is a JSON array: [{"ssid":"foobar","rssi":-36,"chan":3}]
/generate_204	Returns a HTTP 204 status (expected by certain Android clients during Wi-Fi connectivity checks)
/status	Returns plaintext status description, used by the web page
/status.json	Returns a JSON payload containing the ESP8266's chip id in hexadecimal format and the status code: 0=Idle, 1=Connecting, 2=Wrong Password, 3=Network not Found, 4=Failed, 5=Success
/setwifi	Endpoint intended for services to use for setting the wifi credentials. Identical to /update except returns the same payload as /status.json instead of redirecting to /.
/update	Form submission target. Example: http://example.com/update?wifi_ssid=foobar&wifi_password=CorrectHorseBatteryStaple. Must be a GET request. Will redirect to / when complete.

enduser_setup.manual()

Controls whether manual AP configuration is used.

By default the enduser_setup module automatically configures an open access point when starting, and stops it when the device has been successfully joined to a WiFi network. If manual mode has been enabled, neither of this is done. The device must be manually configured for wifi.SOFTAP mode prior to calling enduser_setup.start(). Additionally, the portal is not stopped after the device has successfully joined to a WiFi network.

Syntax

enduser_setup.manual([on_off])

Parameters

	on_off a boolean value indicating whether to use manual mode; if not given, the function only returns the current setting.

Returns

The current setting, true if manual mode is enabled, false if it is not.

Example

wifi.setmode(wifi.STATIONAP)
wifi.ap.config({ssid="MyPersonalSSID", auth=wifi.OPEN})
enduser_setup.manual(true)
enduser_setup.start(
 function()
 print("Connected to wifi as:" .. wifi.sta.getip())
 end,
 function(err, str)
 print("enduser_setup: Err #" .. err .. ": " .. str)
 end
);

enduser_setup.start()

Starts the captive portal.

Note: Calling start() while EUS is already running is an error, and will result in stop() to be invoked to shut down EUS.

Syntax

enduser_setup.start([onConnected()], [onError(err_num, string)], [onDebug(string)])

Parameters

	onConnected() callback will be fired when an IP-address has been obtained, just before the enduser_setup module will terminate itself

	onError() callback will be fired if an error is encountered. err_num is a number describing the error, and string contains a description of the error.

	onDebug() callback is disabled by default (controlled by #define ENDUSER_SETUP_DEBUG_ENABLE in enduser_setup.c). It is intended to be used to find internal issues in the module. string contains a description of what is going on.

Returns

nil

Example

enduser_setup.start(
 function()
 print("Connected to wifi as:" .. wifi.sta.getip())
 end,
 function(err, str)
 print("enduser_setup: Err #" .. err .. ": " .. str)
 end,
 print -- Lua print function can serve as the debug callback
);

enduser_setup.stop()

Stops the captive portal.

Syntax

enduser_setup.stop()

Parameters

none

Returns

nil

 file Module

file Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	file.c

The file module provides access to the file system and its individual files.

The file system is a flat file system, with no notion of subdirectories/folders.

Besides the SPIFFS file system on internal flash, this module can also access FAT partitions on an external SD card if FatFS is enabled.

-- open file in flash:
if file.open("init.lua") then
 print(file.read())
 file.close()
end

-- or with full pathspec
file.open("/FLASH/init.lua")

-- open file on SD card
if file.open("/SD0/somefile.txt") then
 print(file.read())
 file.close()
end

file.chdir()

Change current directory (and drive). This will be used when no drive/directory is prepended to filenames.

Current directory defaults to the root of internal SPIFFS (/FLASH) after system start.

!!! note

Function is only available when [FatFS support](../sdcard.md#enabling-fatfs) is compiled into the firmware.

Syntax

file.chdir(dir)

Parameters

dir directory name - /FLASH, /SD0, /SD1, etc.

Returns

true on success, false otherwise

file.exists()

Determines whether the specified file exists.

Syntax

file.exists(filename)

Parameters

	filename file to check

Returns

true of the file exists (even if 0 bytes in size), and false if it does not exist

Example

files = file.list()
if files["device.config"] then
 print("Config file exists")
end

if file.exists("device.config") then
 print("Config file exists")
end

See also

file.list()

file.format()

Format the file system. Completely erases any existing file system and writes a new one. Depending on the size of the flash chip in the ESP, this may take several seconds.

!!! note

Function is not supported for SD cards.

Syntax

file.format()

Parameters

none

Returns

nil

See also

file.remove()

file.fscfg ()

Returns the flash address and physical size of the file system area, in bytes.

!!! note

Function is not supported for SD cards.

Syntax

file.fscfg()

Parameters

none

Returns

	flash address (number)

	size (number)

Example

print(string.format("0x%x", file.fscfg()))

file.fsinfo()

Return size information for the file system. The unit is Byte for SPIFFS and kByte for FatFS.

Syntax

file.fsinfo()

Parameters

none

Returns

	remaining (number)

	used (number)

	total (number)

Example

-- get file system info
remaining, used, total=file.fsinfo()
print("\nFile system info:\nTotal : "..total.." (k)Bytes\nUsed : "..used.." (k)Bytes\nRemain: "..remaining.." (k)Bytes\n")

file.list()

Lists all files in the file system.

Syntax

file.list([pattern])

Parameters

none

Returns

a Lua table which contains all {file name: file size} pairs, if no pattern
given. If a pattern is given, only those file names matching the pattern
(interpreted as a traditional Lua pattern [https://www.lua.org/pil/20.2.html],
not, say, a UNIX shell glob) will be included in the resulting table.
file.list will throw any errors encountered during pattern matching.

Example

l = file.list();
for k,v in pairs(l) do
 print("name:"..k..", size:"..v)
end

file.mount()

Mounts a FatFs volume on SD card.

!!! note

Function is only available when [FatFS support](../sdcard.md#enabling-fatfs) is compiled into the firmware and it is not supported for internal flash.

Syntax

file.mount(ldrv[, pin])

Parameters

	ldrv name of the logical drive, /SD0, /SD1, etc.

	pin 1~12, IO index for SS/CS, defaults to 8 if omitted.

Returns

Volume object

Example

vol = file.mount("/SD0")
vol:umount()

file.on()

Registers callback functions.

Trigger events are:

	rtc deliver current date & time to the file system. Function is expected to return a table containing the fields year, mon, day, hour, min, sec of current date and time. Not supported for internal flash.

Syntax

file.on(event[, function()])

Parameters

	event string

	function() callback function. Unregisters the callback if function() is omitted.

Returns

nil

Example

sntp.sync(server_ip,
 function()
 print("sntp time sync ok")
 file.on("rtc",
 function()
 return rtctime.epoch2cal(rtctime.get())
 end)
 end)

See also

rtctime.epoch2cal()

file.open()

Opens a file for access, potentially creating it (for write modes).

When done with the file, it must be closed using file.close().

Syntax

file.open(filename, mode)

Parameters

	filename file to be opened

	mode:

	"r": read mode (the default)

	"w": write mode

	"a": append mode

	"r+": update mode, all previous data is preserved

	"w+": update mode, all previous data is erased

	"a+": append update mode, previous data is preserved, writing is only allowed at the end of file

Returns

file object if file opened ok. nil if file not opened, or not exists (read modes).

Example (basic model)

-- open 'init.lua', print the first line.
if file.open("init.lua", "r") then
 print(file.readline())
 file.close()
end

Example (object model)

-- open 'init.lua', print the first line.
fd = file.open("init.lua", "r")
if fd then
 print(fd:readline())
 fd:close(); fd = nil
end

See also

	file.close()

	file.readline()

file.remove()

Remove a file from the file system. The file must not be currently open.

###Syntax
file.remove(filename)

Parameters

filename file to remove

Returns

nil

Example

-- remove "foo.lua" from file system.
file.remove("foo.lua")

See also

file.open()

file.rename()

Renames a file. If a file is currently open, it will be closed first.

Syntax

file.rename(oldname, newname)

Parameters

	oldname old file name

	newname new file name

Returns

true on success, false on error.

Example

-- rename file 'temp.lua' to 'init.lua'.
file.rename("temp.lua","init.lua")

file.stat()

Get attribtues of a file or directory in a table. Elements of the table are:

	size file size in bytes

	name file name

	time table with time stamp information. Default is 1970-01-01 00:00:00 in case time stamps are not supported (on SPIFFS).

	year

	mon

	day

	hour

	min

	sec

	is_dir flag true if item is a directory, otherwise false

	is_rdonly flag true if item is read-only, otherwise false

	is_hidden flag true if item is hidden, otherwise false

	is_sys flag true if item is system, otherwise false

	is_arch flag true if item is archive, otherwise false

Syntax

file.stat(filename)

Parameters

filename file name

Returns

table containing file attributes

Example

s = file.stat("/SD0/myfile")
print("name: " .. s.name)
print("size: " .. s.size)

t = s.time
print(string.format("%02d:%02d:%02d", t.hour, t.min, t.sec))
print(string.format("%04d-%02d-%02d", t.year, t.mon, t.day))

if s.is_dir then print("is directory") else print("is file") end
if s.is_rdonly then print("is read-only") else print("is writable") end
if s.is_hidden then print("is hidden") else print("is not hidden") end
if s.is_sys then print("is system") else print("is not system") end
if s.is_arch then print("is archive") else print("is not archive") end

s = nil
t = nil

File access functions

The file module provides several functions to access the content of a file after it has been opened with file.open(). They can be used as part of a basic model or an object model:

Basic model

In the basic model there is max one file opened at a time. The file access functions operate on this file per default. If another file is opened, the previous default file needs to be closed beforehand.

-- open 'init.lua', print the first line.
if file.open("init.lua", "r") then
 print(file.readline())
 file.close()
end

Object model

Files are represented by file objects which are created by file.open(). File access functions are available as methods of this object, and multiple file objects can coexist.

src = file.open("init.lua", "r")
if src then
 dest = file.open("copy.lua", "w")
 if dest then
 local line
 repeat
 line = src:read()
 if line then
 dest:write(line)
 end
 until line == nil
 dest:close(); dest = nil
 end
 src:close(); dest = nil
end

!!! Attention

It is recommended to use only one single model within the application. Concurrent use of both models can yield unpredictable behavior: Closing the default file from basic model will also close the correspoding file object. Closing a file from object model will also close the default file if they are the same file.

!!! Note

The maximum number of open files on SPIFFS is determined at compile time by `SPIFFS_MAX_OPEN_FILES` in `user_config.h`.

file.close(), file.obj:close()

Closes the open file, if any.

Syntax

file.close()

fd:close()

Parameters

none

Returns

nil

See also

file.open()

file.flush(), file.obj:flush()

Flushes any pending writes to the file system, ensuring no data is lost on a restart. Closing the open file using file.close() / fd:close() performs an implicit flush as well.

Syntax

file.flush()

fd:flush()

Parameters

none

Returns

nil

Example (basic model)

-- open 'init.lua' in 'a+' mode
if file.open("init.lua", "a+") then
 -- write 'foo bar' to the end of the file
 file.write('foo bar')
 file.flush()
 -- write 'baz' too
 file.write('baz')
 file.close()
end

See also

file.close() / file.obj:close()

file.read(), file.obj:read()

Read content from the open file.

!!! note

The function temporarily allocates 2 * (number of requested bytes) on the heap for buffering and processing the read data. Default chunk size (`FILE_READ_CHUNK`) is 1024 bytes and is regarded to be safe. Pushing this by 4x or more can cause heap overflows depending on the application. Consider this when selecting a value for parameter `n_or_char`.

Syntax

file.read([n_or_char])

fd:read([n_or_char])

Parameters

	n_or_char:

	if nothing passed in, then read up to FILE_READ_CHUNK bytes or the entire file (whichever is smaller).

	if passed a number n, then read up to n bytes or the entire file (whichever is smaller).

	if passed a string containing the single character char, then read until char appears next in the file, FILE_READ_CHUNK bytes have been read, or EOF is reached.

Returns

File content as a string, or nil when EOF

Example (basic model)

-- print the first line of 'init.lua'
if file.open("init.lua", "r") then
 print(file.read('\n'))
 file.close()
end

Example (object model)

-- print the first 5 bytes of 'init.lua'
fd = file.open("init.lua", "r")
if fd then
 print(fd:read(5))
 fd:close(); fd = nil
end

See also

	file.open()

	file.readline() / file.obj:readline()

file.readline(), file.obj:readline()

Read the next line from the open file. Lines are defined as zero or more bytes ending with a EOL ('\n') byte. If the next line is longer than 1024, this function only returns the first 1024 bytes.

Syntax

file.readline()

fd:readline()

Parameters

none

Returns

File content in string, line by line, including EOL('\n'). Return nil when EOF.

Example (basic model)

-- print the first line of 'init.lua'
if file.open("init.lua", "r") then
 print(file.readline())
 file.close()
end

See also

	file.open()

	file.close() / file.obj:close()

	file.read() / file.obj:read()

file.seek(), file.obj:seek()

Sets and gets the file position, measured from the beginning of the file, to the position given by offset plus a base specified by the string whence.

Syntax

file.seek([whence [, offset]])

fd:seek([whence [, offset]])

Parameters

	whence

	"set": base is position 0 (beginning of the file)

	"cur": base is current position (default value)

	"end": base is end of file

	offset default 0

If no parameters are given, the function simply returns the current file offset.

Returns

the resulting file position, or nil on error

Example (basic model)

if file.open("init.lua", "r") then
 -- skip the first 5 bytes of the file
 file.seek("set", 5)
 print(file.readline())
 file.close()
end

See also

file.open()

file.write(), file.obj:write()

Write a string to the open file.

Syntax

file.write(string)

fd:write(string)

Parameters

string content to be write to file

Returns

true if the write is ok, nil on error

Example (basic model)

-- open 'init.lua' in 'a+' mode
if file.open("init.lua", "a+") then
 -- write 'foo bar' to the end of the file
 file.write('foo bar')
 file.close()
end

Example (object model)

-- open 'init.lua' in 'a+' mode
fd = file.open("init.lua", "a+")
if fd then
 -- write 'foo bar' to the end of the file
 fd:write('foo bar')
 fd:close()
end

See also

	file.open()

	file.writeline() / file.obj:writeline()

file.writeline(), file.obj:writeline()

Write a string to the open file and append '\n' at the end.

Syntax

file.writeline(string)

fd:writeline(string)

Parameters

string content to be write to file

Returns

true if write ok, nil on error

Example (basic model)

-- open 'init.lua' in 'a+' mode
if file.open("init.lua", "a+") then
 -- write 'foo bar' to the end of the file
 file.writeline('foo bar')
 file.close()
end

See also

	file.open()

	file.readline() / file.obj:readline()

 gdbstub Module

gdbstub Module

Since	Origin / Contributor	Maintainer	Source
2016-09-18	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	gdbstub.c

This module provides basic source code debugging of the firmware when used in conjunction with a version of gdb built for the lx106. If you enable this module, then fatal errors (like invalid memory reads) will trap into the gdbstub. This uses UART0 to talk to GDB. If this happens while the UART0 is connected to a terminal (or some IDE like esplorer) then you will see a string starting with $T and a few more characters after that. This is the signal that a trap has happened, and control should be passed to gdb.

GDB can then be started at connected to the NodeMCU platform. If this is connected to the host system via a serial port, then the following (or close variant) ought to work:

gdb bin/firmwarefile.bin
target remote /dev/ttyUSB0

At this point, you can just poke around and see what happened, but you cannot continue execution.

In order to do interactive debugging, add a call to gdbstub.brk() in your Lua code. This will trigger a break instruction and will trap into gdb as above. However, continuation is supported from a break instruction and so you can single step, set breakpoints, etc. Note that the lx106 processor as configured by Espressif only supports a single hardware breakpoint. This means that you can only put a single breakpoint in flash code. You can single step as much as you like.

gdbstub.open()

Runs gdbstub initialization routine. It has to be run only once in code.

Syntax

gdbstub.open()

gdbstub.brk()

Enters gdb by executing a break 0,0 instruction.

Syntax

gdbstub.brk()

gdbstub.gdboutput()

Controls whether system output is encapsulated in gdb remote debugging protocol. This turns out not to be as useful as you would hope - mostly because you can't send input to the NodeMCU board. Also because you really only should make this call after you get gdb running and connected to the NodeMCU. The example below first does the break and then switches to redirect the output. This works (but you are unable to send any more console input).

Syntax

gdbstub.gdboutput(enable)

Parameters

enable If true, then output is wrapped in gdb remote debugging protocol. If false, then it is sent straight to the UART.

Example

function entergdb()
 gdbstub.brk()
 gdbstub.gdboutput(1)
 print("Active")
end

gdbstub.open()
entergdb()

Notes

Once you attach gdb to the NodeMCU, then any further output from the NodeMCU will be discarded (as it does not match the gdb remote debugging protocol). This may (or may not) be a problem. If you want to run under gdb and see the output from the NodeMCU, then call gdbstub.gdboutput(1) and then output will be wrapped in the gdb protocol and display on the gdb console. You don't want to do this until gdb is attached as each packet requires an explicit ack in order to continue.

 GPIO Module

GPIO Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	gpio.c

This module provides access to the GPIO [https://en.wikipedia.org/wiki/General-purpose_input/output] (General Purpose Input/Output) subsystem.

All access is based on the I/O index number on the NodeMCU dev kits, not the internal GPIO pin. For example, the D0 pin on the dev kit is mapped to the internal GPIO pin 16.

If not using a NodeMCU dev kit, please refer to the below GPIO pin maps for the index↔gpio mapping.

IO index	ESP8266 pin	IO index	ESP8266 pin
0 [*]	GPIO16	7	GPIO13
1	GPIO5	8	GPIO15
2	GPIO4	9	GPIO3
3	GPIO0	10	GPIO1
4	GPIO2	11	GPIO9
5	GPIO14	12	GPIO10
6	GPIO12		

** [*] D0(GPIO16) can only be used as gpio read/write. No support for open-drain/interrupt/pwm/i2c/ow. **

gpio.mode()

Initialize pin to GPIO mode, set the pin in/out direction, and optional internal weak pull-up.

Syntax

gpio.mode(pin, mode [, pullup])

Parameters

	pin pin to configure, IO index

	mode one of gpio.OUTPUT, gpio.OPENDRAIN, gpio.INPUT, or gpio.INT (interrupt mode)

	pullup gpio.PULLUP enables the weak pull-up resistor; default is gpio.FLOAT

Returns

nil

Example

gpio.mode(0, gpio.OUTPUT)

See also

	gpio.read()

	gpio.write()

gpio.read()

Read digital GPIO pin value.

Syntax

gpio.read(pin)

Parameters

pin pin to read, IO index

Returns

a number, 0 = low, 1 = high

Example

-- read value of gpio 0.
gpio.read(0)

See also

gpio.mode()

gpio.serout()

Serialize output based on a sequence of delay-times in µs. After each delay, the pin is toggled. After the last cycle and last delay the pin is not toggled.

The function works in two modes:

	synchronous - for sub-50 µs resolution, restricted to max. overall duration,

	asynchrounous - synchronous operation with less granularity but virtually unrestricted duration.

Whether the asynchronous mode is chosen is defined by presence of the callback parameter. If present and is of function type the function goes asynchronous and the callback function is invoked when sequence finishes. If the parameter is numeric the function still goes asynchronous but no callback is invoked when done.

For the asynchronous version, the minimum delay time should not be shorter than 50 μs and maximum delay time is 0x7fffff μs (~8.3 seconds).
In this mode the function does not block the stack and returns immediately before the output sequence is finalized. HW timer FRC1_SOURCE mode is used to change the states. As there is only a single hardware timer, there
are restrictions on which modules can be used at the same time. An error will be raised if the timer is already in use.

Note that the synchronous variant (no or nil callback parameter) function blocks the stack and as such any use of it must adhere to the SDK guidelines (also explained here). Failure to do so may lead to WiFi issues or outright to crashes/reboots. In short it means that the sum of all delay times multiplied by the number of cycles should not exceed 15 ms.

Syntax

gpio.serout(pin, start_level, delay_times [, cycle_num[, callback]])

Parameters

	pin pin to use, IO index

	start_level level to start on, either gpio.HIGH or gpio.LOW

	delay_times an array of delay times in µs between each toggle of the gpio pin.

	cycle_num an optional number of times to run through the sequence. (default is 1)

	callback an optional callback function or number, if present the function returns immediately and goes asynchronous.

Returns

nil

Example

gpio.mode(1,gpio.OUTPUT,gpio.PULLUP)
gpio.serout(1,gpio.HIGH,{30,30,60,60,30,30}) -- serial one byte, b10110010
gpio.serout(1,gpio.HIGH,{30,70},8) -- serial 30% pwm 10k, lasts 8 cycles
gpio.serout(1,gpio.HIGH,{3,7},8) -- serial 30% pwm 100k, lasts 8 cycles
gpio.serout(1,gpio.HIGH,{0,0},8) -- serial 50% pwm as fast as possible, lasts 8 cycles
gpio.serout(1,gpio.LOW,{20,10,10,20,10,10,10,100}) -- sim uart one byte 0x5A at about 100kbps
gpio.serout(1,gpio.HIGH,{8,18},8) -- serial 30% pwm 38k, lasts 8 cycles

gpio.serout(1,gpio.HIGH,{5000,995000},100, function() print("done") end) -- asynchronous 100 flashes 5 ms long every second with a callback function when done
gpio.serout(1,gpio.HIGH,{5000,995000},100, 1) -- asynchronous 100 flashes 5 ms long, no callback

gpio.trig()

Establish or clear a callback function to run on interrupt for a pin.

This function is not available if GPIO_INTERRUPT_ENABLE was undefined at compile time.

Syntax

gpio.trig(pin, [type [, callback_function]])

Parameters

	pin 1-12, pin to trigger on, IO index. Note that pin 0 does not support interrupts.

	type "up", "down", "both", "low", "high", which represent rising edge, falling edge, both
edges, low level, and high level trigger modes respectivey. If the type is "none" or omitted
then the callback function is removed and the interrupt is disabled.

	callback_function(level, when, eventcount) callback function when trigger occurs. The level of the specified pin
at the interrupt passed as the first parameter to the callback. The timestamp of the event is passed
as the second parameter. This is in microseconds and has the same base as for tmr.now(). This timestamp
is grabbed at interrupt level and is more consistent than getting the time in the callback function.
This timestamp is normally of the first interrupt detected, but, under overload conditions, might be a later one.
The eventcount is the number of interrupts that were elided for this callback. This works best for edge triggered
interrupts and enables counting of edges. However, beware
of switch bounces -- you can get multiple pulses for a single switch closure. Counting
works best when the edges are digitally generated.
The previous callback function will be used if the function is omitted.

Returns

nil

Example

do
 -- use pin 1 as the input pulse width counter
 local pin, pulse1, du, now, trig = 1, 0, 0, tmr.now, gpio.trig
 gpio.mode(pin,gpio.INT)
 local function pin1cb(level, pulse2)
 print(level, pulse2 - pulse1)
 pulse1 = pulse2
 trig(pin, level == gpio.HIGH and "down" or "up")
 end
 trig(pin, "down", pin1cb)
end

See also

gpio.mode()

gpio.write()

Set digital GPIO pin value.

Syntax

gpio.write(pin, level)

Parameters

	pin pin to write, IO index

	level gpio.HIGH or gpio.LOW

Returns

nil

Example

-- set pin index 1 to GPIO mode, and set the pin to high.
pin=1
gpio.mode(pin, gpio.OUTPUT)
gpio.write(pin, gpio.HIGH)

See also

	gpio.mode()

	gpio.read()

gpio.pulse

This covers a set of APIs that allow generation of pulse trains with accurate timing on
multiple pins. It is similar to the serout API, but can handle multiple pins and has better
timing control.

The basic idea is to build a gpio.pulse object and then control it with methods on that object. Only one gpio.pulse
object can be active at a time. The object is built from an array of tables where each inner table represents
an action to take and the time to delay before moving to the next action.

One of the uses for this is to generate bipolar impulse for driving clock movements where you want (say) a pulse on Pin 1 on the even
second, and a pulse on Pin 2 on the odd second. :getstate and :adjust can be used to keep the pulse synchronized to the
RTC clock (that is itself synchronized with NTP).

!!! Attention

This sub module is disabled by default. Uncomment `LUA_USE_MODULES_GPIO_PULSE` in `app/include/user_modules.h` before building the firmware to enable it.

To make use of this feature, decide on the sort of pulse train that you need to generate -- hopefully it repeats a number of times.
Decide on the number of GPIO pins that you will be using. Then draw up a chart of what you want to happen, and in what order. Then
you can construct the table struct that you pass into gpio.pulse.build. For example, for the two out of phase square waves, you might do:

Step | Pin 1 | Pin 2 | Duration (μ

S) | Next Step
---:|---|---|---:| --:
1 | High | Low | 100,000 | 2
2 | Low | High | 100,000 | 1

This would (when built and started) just runs step 1 (by setting the output pins as specified), and then after 100,000μ

S, it changes to step 2i. This
alters the output pins
and then waits for 100,000μ

S before going back to step 1. This has the effect of outputting to Pin 1 and Pin 2 a 5Hz square wave with the pins being out of phase. The frequency will be
slightly lower than 5Hz as this is software generated and interrupt masking can delay the move to the next step. To get much closer to 5Hz,
you want to allow the duration of each step to vary slightly. This will then adjust the length of each step so that, overall, the output is
at 5Hz.

Step | Pin 1 | Pin 2 | Duration (μ

S) | Range | Next Step
---:|---|---|---:|:---:| --:
1 | High | Low | 100,000 | 90,000 - 110,000 | 2
2 | Low | High | 100,000 | 90,000 - 110,000 | 1

When turning this into the table structure as described below, you don't need to specify anything
special when the number of the next step is one more than the current step. When specifying an out of order
step, you must specify how often you want this to be performed. The number of iterations can be up to around 4,000,000,000 (actually any value that fits into
an unisgned 32 bit integer). If this isn't enough repeats, then loops can be nested as below:

{
 { [1] = gpio.HIGH, [2] = gpio.LOW, delay=500 },
 { [1] = gpio.LOW, [2] = gpio.HIGH, delay=500, loop=1, count=1000000000, min=400, max=600 },
 { loop=1, count=1000000000 }
}

The loop/count in step 2 will cause 1,000,000,000 pulses to be output (at 1kHz). This is around 11 days. At this point, it will continue onto step 3 which triggers the
11 days of 1kHz. THis process will repeat for 1,000,000,000 times (which is roughly 30 Million years).

The looping model is that associated with each loop there is a hidden variable which starts at the count value and decrements on each iteration until it gets to zero
when it then proceeds to the next step. If control reaches that loop again, then the hidden variable is reset to the value of count again.

gpio.pulse.build

This builds the gpio.pulse object from the supplied argument (a table as described below).

Syntax

gpio.pulse.build(table)

Parameter

table this is view as an array of instructions. Each instruction is represented by a table as follows:

	All numeric keys are considered to be pin numbers. The values of each are the value to be set onto the respective GPIO line.
For example { [1] = gpio.HIGH } would set pin 1 to be high.
Note this that is the NodeMCU pin number and not the ESP8266 GPIO number. Multiple pins can be
set at the same time. Note that any valid GPIO pin can be used, including pin 0.

	delay specifies the number of microseconds after setting the pin values to wait until moving to the next state. The actual delay may be longer than this value depending on whether interrupts are enabled at the end time. The maximum value is 64,000,000 -- i.e. a bit more than a minute.

	min and max can be used to specify (along with delay) that this time can be varied. If one time interval overruns, then the extra time will be deducted from a time period which has a min or max specified. The actual time can also be adjusted with the :adjust API below.

	count and loop allow simple looping. When a state with count and loop is completed, the next state is at loop (provided that count has not decremented to zero). The count is implemented as an unsigned 32 bit integer -- i.e. it has a range up to around 4,000,000,000. The first state is state 1. The loop is rather like a goto instruction as it specifies the next instruction to be executed.

Returns

gpio.pulse object.

Example

gpio.mode(1, gpio.OUTPUT)
gpio.mode(2, gpio.OUTPUT)

pulser = gpio.pulse.build({
 { [1] = gpio.HIGH, [2] = gpio.LOW, delay=250000 },
 { [1] = gpio.LOW, [2] = gpio.HIGH, delay=250000, loop=1, count=20, min=240000, max=260000 }
})

pulser:start(function() print ('done') end)

This will generate a square wave on pins 1 and 2, but they will be exactly out of phase. After 10 seconds, the sequence will end, with pin 2 being high.

Note that you must set the pins into output mode (either gpio.OUTPUT or gpio.OPENDRAIN) before starting the output sequence, otherwise
nothing will appear to happen.

gpio.pulse:start

This starts the output operations.

Syntax

pulser:start([adjust,] callback)

Parameter

	adjust This is the number of microseconds to add to the next adjustable period. If this value is so large that
it would push the delay past the min or max, then the remainder is held over until the next adjustable period.

	callback This callback is executed when the pulses are complete. The callback is invoked with the same four
parameters that are described as the return values of gpio.pulse:getstate.

Returns

nil

Example

pulser:start(function(pos, steps, offset, now)
 print (pos, steps, offset, now)
 end)

gpio.pulse:getstate

This returns the current state. These four values are also passed into the callback functions.

Syntax

pulser:getstate()

Returns

	position is the index of the currently active state. The first state is state 1. This is nil if the output operation is complete.

	steps is the number of states that have been executed (including the current one). This allows monitoring of progress when there are
loops.

	offset is the time (in microseconds) until the next state transition. This will be negative once the output operation is complete.

	now is the value of the tmr.now() function at the instant when the offset was calculated.

Example

pos, steps, offset, now = pulser:getstate()
print (pos, steps, offset, now)

gpio.pulse:stop

This stops the output operation at some future time.

Syntax

pulser:stop([position ,] callback)

Parameters

	position is the index to stop at. The stopping happens on entry to this state. If not specified, then stops on the next state transition.

	callback is invoked (with the same arguments as are returned by :getstate) when the operation has been stopped.

Returns

true if the stop will happen.

Example

pulser:stop(function(pos, steps, offset, now)
 print (pos, steps, offset, now)
 end)

gpio.pulse:cancel

This stops the output operation immediately.

Syntax

pulser:cancel()

Returns

	position is the index of the currently active state. The first state is state 1. This is nil if the output operation is complete.

	steps is the number of states that have been executed (including the current one). This allows monitoring of progress when there are
loops.

	offset is the time (in microseconds) until the next state transition. This will be negative once the output operation is complete.

	now is the value of the tmr.now() function at the instant when the offset was calculated.

Example

pulser:cancel(function(pos, steps, offset, now)
 print (pos, steps, offset, now)
 end)

gpio.pulse:adjust

This adds (or subtracts) time that will get used in the min / max delay case. This is useful if you are trying to
synchronize a particular state to a particular time or external event.

Syntax

pulser:adjust(offset)

Parameters

	offset is the number of microseconds to be used in subsequent min / max delays. This overwrites any pending offset.

Returns

	position is the index of the currently active state. The first state is state 1. This is nil if the output operation is complete.

	steps is the number of states that have been executed (including the current one). This allows monitoring of progress when there are
loops.

	offset is the time (in microseconds) until the next state transition. This will be negative once the output operation is complete.

	now is the value of the tmr.now() function at the instant when the offset was calculated.

Example

pulser:adjust(177)

gpio.pulse:update

This can change the contents of a particular step in the output program. This can be used to adjust the delay times, or even the pin changes. This cannot
be used to remove entries or add new entries. Changing the count will change the initial value, but not change the current decrementing value;

Syntax

pulser:update(entrynum, entrytable)

Parameters

	entrynum is the number of the entry in the original pulse sequence definition. The first entry is numbered 1.

	entrytable is a table containing the same keys as for gpio.pulse.build

Returns

Nothing

Example

pulser:update(1, { delay=1000 })

 HDC1080 Module

HDC1080 Module

Since	Origin / Contributor	Maintainer	Source
2017-04-01	Metin KOC [https://github.com/saucompeng]	Metin KOC [https://github.com/saucompeng]	hdc1080.c

This module provides access to the HDC1080 [http://www.ti.com/product/HDC1080] low power, high accuracy digital humidity sensor with temperature sensor.

hdc1080.read()

Samples the sensor then returns temperature and humidity value.

Syntax

hdc1080.read()

Returns

Temperature data in centigrade and humidity data in percentage (0-100) (integer/float)

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
hdc1080.setup()
local temperature,humidity = hdc1080.read()
print(temperature)
print(humidity)

hdc1080.setup()

Initializes the module.

Syntax

hdc1080.setup()

Parameters

	None

Returns

nil

 HMC5883L Module

HMC5883L Module

Since	Origin / Contributor	Maintainer	Source
2016-04-09	Jason Schmidlapp [https://github.com/jschmidlapp]	Jason Schmidlapp [https://github.com/jschmidlapp]	hmc5883l.c

This module provides access to the HMC5883L [https://www.sparkfun.com/products/10530] three axis digital compass.

hmc5883l.read()

Samples the sensor and returns X,Y and Z data.

Syntax

hmc5883l.read()

Returns

x,y,z measurements (integers)
temperature multiplied with 10 (integer)

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
hmc5883l.setup()
local x,y,z = hmc5883l.read()
print(string.format("x = %d, y = %d, z = %d", x, y, z))

hmc5883l.setup()

Initializes the module.

Syntax

hmc5883l.setup()

Parameters

None

Returns

nil

 HTTP Module

HTTP Module

Since	Origin / Contributor	Maintainer	Source
2016-01-15	esphttpclient [https://github.com/Caerbannog/esphttpclient] / Vowstar [https://github.com/vowstar]	Vowstar [https://github.com/vowstar]	http.c

Basic HTTP client module that provides an interface to do GET/POST/PUT/DELETE over HTTP(S), as well as customized requests. Due to the memory constraints on ESP8266, the supported page/body size is limited by available memory. Attempting to receive pages larger than this will fail. If larger page/body sizes are necessary, consider using net.createConnection() and stream in the data.

!!! attention

It is **not** possible to execute concurrent HTTP requests using this module.

Each request method takes a callback which is invoked when the response has been received from the server. The first argument is the status code, which is either a regular HTTP status code, or -1 to denote a DNS, connection or out-of-memory failure, or a timeout (currently at 10 seconds).

For each operation it is possible to provide custom HTTP headers or override standard headers. By default the Host header is deduced from the URL and User-Agent is ESP8266. Note, however, that the Connection header can not be overridden! It is always set to close.

HTTP redirects (HTTP status 300-308) are followed automatically up to a limit of 20 to avoid the dreaded redirect loops.

When the callback is invoked, it is passed the HTTP status code, the body as it was received, and a table of the response headers. All the header names have been lower cased
to make it easy to access. If there are multiple headers of the same name, then only the last one is returned.

SSL/TLS support

Take note of constraints documented in the net module.

http.delete()

Executes a HTTP DELETE request. Note that concurrent requests are not supported.

Syntax

http.delete(url, headers, body, callback)

Parameters

	url The URL to fetch, including the http:// or https:// prefix

	headers Optional additional headers to append, including \r\n; may be nil

	body The body to post; must already be encoded in the appropriate format, but may be empty

	callback The callback function to be invoked when the response has been received or an error occurred; it is invoked with the arguments status_code, body and headers. In case of an error status_code is set to -1.

Returns

nil

Example

http.delete('http://httpbin.org/delete',
 "",
 "",
 function(code, data)
 if (code < 0) then
 print("HTTP request failed")
 else
 print(code, data)
 end
 end)

http.get()

Executes a HTTP GET request. Note that concurrent requests are not supported.

Syntax

http.get(url, headers, callback)

Parameters

	url The URL to fetch, including the http:// or https:// prefix

	headers Optional additional headers to append, including \r\n; may be nil

	callback The callback function to be invoked when the response has been received or an error occurred; it is invoked with the arguments status_code, body and headers. In case of an error status_code is set to -1.

Returns

nil

Example

http.get("http://httpbin.org/ip", nil, function(code, data)
 if (code < 0) then
 print("HTTP request failed")
 else
 print(code, data)
 end
 end)

http.post()

Executes a HTTP POST request. Note that concurrent requests are not supported.

Syntax

http.post(url, headers, body, callback)

Parameters

	url The URL to fetch, including the http:// or https:// prefix

	headers Optional additional headers to append, including \r\n; may be nil

	body The body to post; must already be encoded in the appropriate format, but may be empty

	callback The callback function to be invoked when the response has been received or an error occurred; it is invoked with the arguments status_code, body and headers. In case of an error status_code is set to -1.

Returns

nil

Example

http.post('http://httpbin.org/post',
 'Content-Type: application/json\r\n',
 '{"hello":"world"}',
 function(code, data)
 if (code < 0) then
 print("HTTP request failed")
 else
 print(code, data)
 end
 end)

http.put()

Executes a HTTP PUT request. Note that concurrent requests are not supported.

Syntax

http.put(url, headers, body, callback)

Parameters

	url The URL to fetch, including the http:// or https:// prefix

	headers Optional additional headers to append, including \r\n; may be nil

	body The body to post; must already be encoded in the appropriate format, but may be empty

	callback The callback function to be invoked when the response has been received or an error occurred; it is invoked with the arguments status_code, body and headers. In case of an error status_code is set to -1.

Returns

nil

Example

http.put('http://httpbin.org/put',
 'Content-Type: text/plain\r\n',
 'Hello!\nStay a while, and listen...\n',
 function(code, data)
 if (code < 0) then
 print("HTTP request failed")
 else
 print(code, data)
 end
 end)

http.request()

Execute a custom HTTP request for any HTTP method. Note that concurrent requests are not supported.

Syntax

http.request(url, method, headers, body, callback)

Parameters

	url The URL to fetch, including the http:// or https:// prefix

	method The HTTP method to use, e.g. "GET", "HEAD", "OPTIONS" etc

	headers Optional additional headers to append, including \r\n; may be nil

	body The body to post; must already be encoded in the appropriate format, but may be empty

	callback The callback function to be invoked when the response has been received or an error occurred; it is invoked with the arguments status_code, body and headers. In case of an error status_code is set to -1.

Returns

nil

Example

http.request("http://httpbin.org", "HEAD", "", "",
 function(code, data)
 if (code < 0) then
 print("HTTP request failed")
 else
 print(code, data)
 end
 end)

 HX711 Module

HX711 Module

Since	Origin / Contributor	Maintainer	Source
2015-10-09	Chris Takahashi [https://github.com/christakahashi]	Chris Takahashi [https://github.com/christakahashi]	hx711.c

This module provides access to an HX711 load cell amplifier/ADC [https://learn.sparkfun.com/tutorials/load-cell-amplifier-hx711-breakout-hookup-guide]. The HX711 is an inexpensive 24bit ADC with programmable 128x, 64x, and 32x gain. Currently only channel A at 128x gain is supported.

Note: To save ROM image space, this module is not compiled into the firmware by default.

hx711.init()

Initialize io pins for hx711 clock and data.

Syntax

hx711.init(clk, data)

Parameters

	clk pin the hx711 clock signal is connected to

	data pin the hx711 data signal is connected to

Returns

nil

Example

-- Initialize the hx711 with clk on pin 5 and data on pin 6
hx711.init(5,6)

hx711.read()

Read digital loadcell ADC value.

Syntax

hx711.read(mode)

Parameters

mode ADC mode. This parameter is currently ignored and reserved to ensure backward compatability if support for additional modes is added. Currently only channel A @ 128 gain is supported.

mode	channel	gain
0	A	128

Returns

a number (24 bit signed ADC value extended to the machine int size)

Example

-- Read ch A with 128 gain.
raw_data = hx711.read(0)

 I²C Module

I²C Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	i2c.c

i2c.address()

Setup I²C address and read/write mode for the next transfer.

Syntax

i2c.address(id, device_addr, direction)

Parameters

	id always 0

	device_addr 7-bit device address, remember that in I²C device_addr represents the upper 7 bits [http://www.nxp.com/documents/user_manual/UM10204.pdf#page=13] followed by a single direction bit

	direction i2c.TRANSMITTER for writing mode , i2c. RECEIVER for reading mode

Returns

true if ack received, false if no ack received.

See also

i2c.read()

i2c.read()

Read data for variable number of bytes.

Syntax

i2c.read(id, len)

Parameters

	id always 0

	len number of data bytes

Returns

string of received data

Example

id = 0
sda = 1
scl = 2

-- initialize i2c, set pin1 as sda, set pin2 as scl
i2c.setup(id, sda, scl, i2c.SLOW)

-- user defined function: read from reg_addr content of dev_addr
function read_reg(dev_addr, reg_addr)
 i2c.start(id)
 i2c.address(id, dev_addr, i2c.TRANSMITTER)
 i2c.write(id, reg_addr)
 i2c.stop(id)
 i2c.start(id)
 i2c.address(id, dev_addr, i2c.RECEIVER)
 c = i2c.read(id, 1)
 i2c.stop(id)
 return c
end

-- get content of register 0xAA of device 0x77
reg = read_reg(0x77, 0xAA)
print(string.byte(reg))

####See also
i2c.write()

i2c.setup()

Initialize the I²C module.

Syntax

i2c.setup(id, pinSDA, pinSCL, speed)

####Parameters

	id always 0

	pinSDA 1~12, IO index

	pinSCL 1~12, IO index

	speed only i2c.SLOW supported

Returns

speed the selected speed

####See also
i2c.read()

i2c.start()

Send an I²C start condition.

Syntax

i2c.start(id)

Parameters

id always 0

Returns

nil

####See also
i2c.read()

i2c.stop()

Send an I²C stop condition.

Syntax

i2c.stop(id)

####Parameters
id always 0

Returns

nil

####See also
i2c.read()

i2c.write()

Write data to I²C bus. Data items can be multiple numbers, strings or Lua tables.

####Syntax
i2c.write(id, data1[, data2[, ..., datan]])

####Parameters

	id always 0

	data data can be numbers, string or Lua table.

Returns

number number of bytes written

Example

i2c.write(0, "hello", "world")

See also

i2c.read()

 L3G4200D Module

L3G4200D Module

Since	Origin / Contributor	Maintainer	Source
2015-04-09	Jason Schmidlapp [https://github.com/jschmidlapp]	Jason Schmidlapp [https://github.com/jschmidlapp]	l3g4200d.c

This module provides access to the L3G4200D [https://www.sparkfun.com/products/10612] three axis digital gyroscope.

l3g4200d.read()

Samples the sensor and returns the gyroscope output.

Syntax

l3g4200d.read()

Returns

X,Y,Z gyroscope output

Example

local sda, scl = 1, 2
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
l3g4200d.setup()
local x,y,z = l3g4200d.read()
print(string.format("X = %d, Y = %d, Z = %d", x, y, z)

l3g4200d.setup()

Initializes the module.

Syntax

l3g4200d.setup()

Parameters

None

Returns

nil

 MCP4725 Module

MCP4725 Module

Since	Origin / Contributor	Maintainer	Source
2017-05-10	dnc40085 [https://github.com/dnc40085]	dnc40085 [https://github.com/dnc40085]	mcp4725.c

This module provides access to the MCP4725 12-bit Digital to Analog Converter [http://ww1.microchip.com/downloads/en/DeviceDoc/22039d.pdf].

!!!important:
VDD is the power supply pin for the device. The voltage at the VDD pin is used as the supply input as well as the DAC reference input. The power supply at the VDD pin should be clean as possible for good DAC performance.

!!!note:
The MCP4725 device address contains four fixed bits (1100 = device code) and three address bits (A2, A1, A0). The A2 and A1 bits are hard-wired during manufacturing, and A0 bit is determined by the logic state of A0 pin. The A0 pin can be connected to VDD or VSS , or actively driven by digital logic levels. The address pin(A0) can be actively driven by a GPIO to act as a chip select, allowing more than 2 devices to be used on the same bus.

mcp4725.read()

Gets contents of the dac register and EEPROM.

Syntax

mcp4725.read({[a0], [a1], [a2]})

Parameters

	A0 Address bit 0. This bit is user configurable via MCP4725 pin 6(A0). (valid states: 0 or 1) (default: 0)

	A1 Address bit 1. This bit is hard-wired during manufacture. (valid states: 0 or 1) (default: 0)

	Note: Modules purchased from Adafruit have this bit(A1) set high(1).

	A2 Address bit 2. This bit is hard-wired during manufacture. (valid states: 0 or 1) (default: 0)

Returns

	cur_pwrdn Current power down configuration value.

	cur_val Current value stored in dac register.

	eeprom_pwrdn Power down configuration stored in EEPROM.

	eeprom_val DAC value stored in EEPROM.

	eeprom_state EEPROM write status

	0 EEPROM write is incomplete.

	1 EEPROM write has completed

	por_state Power-On-Reset status;

	0 The MCP4725 is performing reset and is not ready.

	1 The MCP4725 has sucessfully performed reset.

Example

-- Get current configuration using default i2c address 0x60(A0=0, A1=0, A2=0).
do
local ID = 0
local SDA = 6
local SCL = 5

i2c.setup(ID, SDA, SCL, i2c.SLOW)

local cur_pwrdn, cur_val, eeprom_pwrdn, eeprom_val, eeprom_state, por_state = mcp4725.read()

print("\n Current configuration:\n\tpower down value: "..cur_pwrdn.."\n\tdac value: "..cur_val)
print(" Configuration stored in EEPROM:\n\tpower down value: "..eeprom_pwrdn.."\n\tdac value: "..eeprom_val)
print(" EEPROM write state: "..(eeprom_state==1 and "Completed" or "incomplete"))
print(" Power-On-Reset state: "..(por_state==1 and "Completed" or "incomplete"))
end

-- Get current configuration using default i2c address 0x60(A0=0, A1=0, A2=0).
-- The MCP4725's address pin(A0) is being driven with gpio 4(pin 2).
do
local ID = 0
local SDA = 6
local SCL = 5
local mcp4725_chip_sel = 2

i2c.setup(ID, SDA, SCL, i2c.SLOW)
gpio.mode(mcp4725_chip_sel, gpio.OUTPUT, gpio.PULLUP)

gpio.write(mcp4725_chip_sel, 1)
local cur_pwrdn, cur_val, eeprom_pwrdn, eeprom_val, eeprom_state, por_state = mcp4725.read({A0=1})
gpio.write(mcp4725_chip_sel, 0)

print("\n Current configuration:\n\tpower down value: "..cur_pwrdn.."\n\tdac value: "..cur_val)
print(" Configuration stored in EEPROM:\n\tpower down value: "..eeprom_pwrdn.."\n\tdac value: "..eeprom_val)
print(" EEPROM write state: "..(eeprom_state==1 and "Completed" or "incomplete"))
print(" Power-On-Reset state: "..(por_state==1 and "Completed" or "incomplete"))
end

See also

	i2c.setup()

mcp4725.write()

Write configuration to dac register or dac register and eeprom.

Syntax

mcp4725.write({[a0], [a1], [a2], value, [pwrdn], [save]})

Parameters

	A0 Address bit 0. This bit is user configurable via MCP4725 pin 6(A0). (valid states: 0 or 1) (default: 0)

	A1 Address bit 1. This bit is hard-wired during manufacture. (valid states: 0 or 1) (default: 0)

	Note: Modules purchased from Adafruit have this bit(A1) set high(1).

	A2 Address bit 2. This bit is hard-wired during manufacture. (valid states: 0 or 1) (default: 0)

	value The value to be used to configure DAC (and EEPROM). (Range: 0 - 4095)

	pwrdn Set power down bits.

	mcp4725.PWRDN_NONE MCP4725 output enabled. (Default)

	mcp4725.PWRDN_1K MCP4725 output disabled, output pulled to ground via 1K restistor.

	mcp4725.PWRDN_100K MCP4725 output disabled, output pulled to ground via 100K restistor.

	mcp4725.PWRDN_500K MCP4725 output disabled, output pulled to ground via 500K restistor.

	save Save pwrdn and dac values to EEPROM. (Values are loaded on power-up or during reset.)

	true Save configuration to EEPROM.

	false Do not save configuration to EEPROM. (Default)

Returns

nil

Example

-- Set current configuration using default i2c address 0x60(A0=0, A1=0, A2=0).
do
 local ID = 0
 local SDA = 6
 local SCL = 5

 i2c.setup(ID, SDA, SCL, i2c.SLOW)
 mcp4725.write({value=2048})
end

-- Set current configuration and save to EEPROM using default i2c address 0x60(A0=0, A1=0, A2=0).
do
 local ID = 0
 local SDA = 6
 local SCL = 5

 i2c.setup(ID, SDA, SCL, i2c.SLOW)
 mcp4725.write({value=2048, save=true})
end

-- Set current configuration using default i2c address 0x60(A0=0, A1=0, A2=0).
-- The MCP4725's address pin(A0) is being driven with gpio 4(pin 2).
do
 local ID = 0
 local SDA = 6
 local SCL = 5
 local mcp4725_chip_sel = 2

 i2c.setup(ID, SDA, SCL, i2c.SLOW)
 gpio.mode(mcp4725_chip_sel, gpio.OUTPUT, gpio.PULLUP)

 gpio.write(mcp4725_chip_sel, 1)
 mcp4725.read({A0=1, value})
 gpio.write(mcp4725_chip_sel, 0)
end

See also

	i2c.setup()

 mDNS Module

mDNS Module

Since	Origin / Contributor	Maintainer	Source
2016-02-24	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	mdns.c

Multicast DNS [https://en.wikipedia.org/wiki/Multicast_DNS] is used as part of Bonjour / Zeroconf. This allows systems to identify themselves and the services that they provide on a local area network. Clients are then able to discover these systems and connect to them.

!!! note

This is a mDNS *server* module. If you are looking for a mDNS *client* for NodeMCU (i.e. to query mDNS) then [udaygin/nodemcu-mdns-client](https://github.com/udaygin/nodemcu-mdns-client) may be an option.

mdns.register()

Register a hostname and start the mDNS service. If the service is already running, then it will be restarted with the new parameters.

Syntax

mdns.register(hostname [, attributes])

Parameters

	hostname The hostname for this device. Alphanumeric characters are best.

	attributes A optional table of options. The keys must all be strings.

The attributes contains two sorts of attributes — those with specific names, and those that are service specific. RFC 6763 [https://tools.ietf.org/html/rfc6763#page-13]
defines how extra, service specific, attributes are encoded into the DNS. One example is that if the device supports printing, then the queue name can
be specified as an additional attribute. This module supports up to 10 such attributes.

The specific names are:

	port The port number for the service. Default value is 80.

	service The name of the service. Default value is 'http'.

	description A short phrase (under 63 characters) describing the service. Default is the hostname.

Returns

nil

Errors

Various errors can be generated during argument validation. The NodeMCU must have an IP address at the time of the call, otherwise an error is thrown.

Example

mdns.register("fishtank", {hardware='NodeMCU'})

Using dns-sd on macOS, you can see fishtank.local as providing the _http._tcp service. You can also browse directly to fishtank.local. In Safari you can get all the mDNS web pages as part of your bookmarks menu.

mdns.register("fishtank", { description="Top Fishtank", service="http", port=80, location='Living Room' })

mdns.close()

Shut down the mDNS service. This is not normally needed.

Syntax

mdns.close()

Parameters

none

Returns

nil

 MQTT Module

MQTT Module

Since	Origin / Contributor	Maintainer	Source
2015-01-23	Stephen Robinson [https://github.com/esar/contiki-mqtt], Tuan PM [https://github.com/tuanpmt/esp_mqtt]	Vowstar [https://github.com/vowstar]	mqtt.c

The client adheres to version 3.1.1 of the MQTT [https://en.wikipedia.org/wiki/MQTT] protocol. Make sure that your broker supports and is correctly configured for version 3.1.1. The client is backwards incompatible with brokers running MQTT 3.1.

mqtt.Client()

Creates a MQTT client.

Syntax

mqtt.Client(clientid, keepalive[, username, password, cleansession, max_message_length])

Parameters

	clientid client ID

	keepalive keepalive seconds

	username user name

	password user password

	cleansession 0/1 for false/true. Default is 1 (true).

	max_message_length, how large messages to accept. Default is 1024.

Returns

MQTT client

Notes

According to MQTT specification the max PUBLISH length is 256Mb. This is too large for NodeMCU to realistically handle. To avoid
an out-of-memory situation, there is a limit on how big messages to accept. This is controlled by the max_message_length parameter.
In practice, this only affects incoming PUBLISH messages since all regular control packets are small.
The default 1024 was chosen as this was the implicit limit in NodeMCU 2.2.1 and older (where this was not handled at all).

Note that "message length" refers to the full MQTT message size, including fixed & variable headers, topic name, packet ID (if applicable),
and payload. For exact details, please see the MQTT specification [http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718037].

Any message larger than max_message_length will be (partially) delivered to the overflow callback, if defined. The rest
of the message will be discarded. Any subsequent messages should be handled as expected.
Discarded messages will still be ACK'ed if QoS level 1 or 2 was requested, even if the application stack cannot handle them.

Heap memory will be used to buffer any message which spans more than a single TCP packet. A single allocation for the full
message will be performed when the message header is first seen, to avoid heap fragmentation.
If allocation fails, the MQTT session will be disconnected.
Naturally, messages larger than max_message_length will not be stored.

Note that heap allocation may occur even if the individual messages are not larger than the configured max! For example,
the broker may send multiple smaller messages in quick succession, which could go into the same TCP packet. If the last message
in the TCP packet did not fit fully, a heap buffer will be allocated to hold the incomplete message while waiting for the next TCP packet.

The typical maximum size for a message to fit into a single TCP packet is 1460 bytes, but this depends on the network's MTU
configuration, any packet fragmentation, and as described above, multiple messages in the same TCP packet.

Example

-- init mqtt client without logins, keepalive timer 120s
m = mqtt.Client("clientid", 120)

-- init mqtt client with logins, keepalive timer 120sec
m = mqtt.Client("clientid", 120, "user", "password")

-- setup Last Will and Testament (optional)
-- Broker will publish a message with qos = 0, retain = 0, data = "offline"
-- to topic "/lwt" if client don't send keepalive packet
m:lwt("/lwt", "offline", 0, 0)

m:on("connect", function(client) print ("connected") end)
m:on("offline", function(client) print ("offline") end)

-- on publish message receive event
m:on("message", function(client, topic, data)
 print(topic .. ":")
 if data ~= nil then
 print(data)
 end
end)

-- on publish overflow receive event
m:on("overflow", function(client, topic, data)
 print(topic .. " partial overflowed message: " .. data)
end)

-- for TLS: m:connect("192.168.11.118", secure-port, 1)
m:connect("192.168.11.118", 1883, 0, function(client)
 print("connected")
 -- Calling subscribe/publish only makes sense once the connection
 -- was successfully established. You can do that either here in the
 -- 'connect' callback or you need to otherwise make sure the
 -- connection was established (e.g. tracking connection status or in
 -- m:on("connect", function)).

 -- subscribe topic with qos = 0
 client:subscribe("/topic", 0, function(client) print("subscribe success") end)
 -- publish a message with data = hello, QoS = 0, retain = 0
 client:publish("/topic", "hello", 0, 0, function(client) print("sent") end)
end,
function(client, reason)
 print("failed reason: " .. reason)
end)

m:close();
-- you can call m:connect again

MQTT Client

mqtt.client:close()

Closes connection to the broker.

Syntax

mqtt:close()

Parameters

none

Returns

true on success, false otherwise

mqtt.client:connect()

Connects to the broker specified by the given host, port, and secure options.

Syntax

mqtt:connect(host[, port[, secure[, autoreconnect]]][, function(client)[, function(client, reason)]])

Parameters

	host host, domain or IP (string)

	port broker port (number), default 1883

	secure 0/1 for false/true, default 0. Take note of constraints documented in the net module.

	autoreconnect 0/1 for false/true, default 0. This option is deprecated.

	function(client) callback function for when the connection was established

	function(client, reason) callback function for when the connection could not be established. No further callbacks should be called.

Returns

true on success, false otherwise

Notes

Don't use autoreconnect. Let me repeat that, don't use autoreconnect. You should handle the errors explicitly and appropriately for
your application. In particular, the default for cleansession above is true, so all subscriptions are destroyed when the connection
is lost for any reason.

In order to acheive a consistent connection, handle errors in the error callback. For example:

function handle_mqtt_error(client, reason)
 tmr.create():alarm(10 * 1000, tmr.ALARM_SINGLE, do_mqtt_connect)
end

function do_mqtt_connect()
 mqtt:connect("server", function(client) print("connected") end, handle_mqtt_error)
end

In reality, the connected function should do something useful!

This is the description of how the autoreconnect functionality may (or may not) work.

When autoreconnect is set, then the connection will be re-established when it breaks. No error indication will be given (but all the
subscriptions may be lost if cleansession is true). However, if the
very first connection fails, then no reconnect attempt is made, and the error is signalled through the callback (if any). The first connection
is considered a success if the client connects to a server and gets back a good response packet in response to its MQTT connection request.
This implies (for example) that the username and password are correct.

Connection failure callback reason codes:

Constant	Value	Description
mqtt.CONN_FAIL_SERVER_NOT_FOUND	-5	There is no broker listening at the specified IP Address and Port
mqtt.CONN_FAIL_NOT_A_CONNACK_MSG	-4	The response from the broker was not a CONNACK as required by the protocol
mqtt.CONN_FAIL_DNS	-3	DNS Lookup failed
mqtt.CONN_FAIL_TIMEOUT_RECEIVING	-2	Timeout waiting for a CONNACK from the broker
mqtt.CONN_FAIL_TIMEOUT_SENDING	-1	Timeout trying to send the Connect message
mqtt.CONNACK_ACCEPTED	0	No errors. Note: This will not trigger a failure callback.
mqtt.CONNACK_REFUSED_PROTOCOL_VER	1	The broker is not a 3.1.1 MQTT broker.
mqtt.CONNACK_REFUSED_ID_REJECTED	2	The specified ClientID was rejected by the broker. (See mqtt.Client())
mqtt.CONNACK_REFUSED_SERVER_UNAVAILABLE	3	The server is unavailable.
mqtt.CONNACK_REFUSED_BAD_USER_OR_PASS	4	The broker refused the specified username or password.
mqtt.CONNACK_REFUSED_NOT_AUTHORIZED	5	The username is not authorized.

mqtt.client:lwt()

Setup Last Will and Testament [http://www.hivemq.com/blog/mqtt-essentials-part-9-last-will-and-testament] (optional). A broker will publish a message with qos = 0, retain = 0, data = "offline" to topic "/lwt" if client does not send keepalive packet.

As the last will is sent to the broker when connecting, lwt() must be called BEFORE calling connect().

The broker will publish a client's last will message once he NOTICES that the connection to the client is broken. The broker will notice this when:
 - The client fails to send a keepalive packet for as long as specified in mqtt.Client()
 - The tcp-connection is properly closed (without closing the mqtt-connection before)

	The broker tries to send data to the client and fails to do so, because the tcp-connection is not longer open.

This means if you specified 120 as keepalive timer, just turn off the client device and the broker does not send any data to the client, the last will message will be published 120s after turning off the device.

Syntax

mqtt:lwt(topic, message[, qos[, retain]])

Parameters

	topic the topic to publish to (string)

	message the message to publish, (buffer or string)

	qos QoS level, default 0

	retain retain flag, default 0

Returns

nil

mqtt.client:on()

Registers a callback function for an event.

Syntax

mqtt:on(event, function(client[, topic[, message]]))

Parameters

	event can be "connect", "message", "offline" or "overflow"

	function(client[, topic[, message]]) callback function. The first parameter is the client. If event is "message", the 2nd and 3rd param are received topic and message (strings).

Returns

nil

mqtt.client:publish()

Publishes a message.

Syntax

mqtt:publish(topic, payload, qos, retain[, function(client)])

Parameters

	topic the topic to publish to (topic string [http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices])

	message the message to publish, (buffer or string)

	qos QoS level

	retain retain flag

	function(client) optional callback fired when PUBACK received. NOTE: When calling publish() more than once, the last callback function defined will be called for ALL publish commands.

Returns

true on success, false otherwise

mqtt.client:subscribe()

Subscribes to one or several topics.

Syntax

mqtt:subscribe(topic, qos[, function(client)])
mqtt:subscribe(table[, function(client)])

Parameters

	topic a topic string [http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices]

	qos QoS subscription level, default 0

	table array of 'topic, qos' pairs to subscribe to

	function(client) optional callback fired when subscription(s) succeeded. NOTE: When calling subscribe() more than once, the last callback function defined will be called for ALL subscribe commands.

Returns

true on success, false otherwise

Example

-- subscribe topic with qos = 0
m:subscribe("/topic",0, function(conn) print("subscribe success") end)

-- or subscribe multiple topic (topic/0, qos = 0; topic/1, qos = 1; topic2 , qos = 2)
m:subscribe({["topic/0"]=0,["topic/1"]=1,topic2=2}, function(conn) print("subscribe success") end)

!!! caution

Rather than calling `subscribe` multiple times you should use the multiple topics syntax shown in the above example if you want to subscribe to more than one topic at once.

mqtt.client:unsubscribe()

Unsubscribes from one or several topics.

Syntax

mqtt:unsubscribe(topic[, function(client)])
mqtt:unsubscribe(table[, function(client)])

Parameters

	topic a topic string [http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices]

	table array of 'topic, anything' pairs to unsubscribe from

	function(client) optional callback fired when unsubscription(s) succeeded. NOTE: When calling unsubscribe() more than once, the last callback function defined will be called for ALL unsubscribe commands.

Returns

true on success, false otherwise

Example

-- unsubscribe topic
m:unsubscribe("/topic", function(conn) print("unsubscribe success") end)

-- or unsubscribe multiple topic (topic/0; topic/1; topic2)
m:unsubscribe({["topic/0"]=0,["topic/1"]=0,topic2="anything"}, function(conn) print("unsubscribe success") end)

 net Module

net Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	PhoeniX [https://github.com/djphoenix]	net.c

** TLS operations was moved to the TLS module **

Constants

Constants to be used in other functions: net.TCP, net.UDP

net.createConnection()

Creates a client.

Syntax

net.createConnection([type[, secure]])

Parameters

	type net.TCP (default) or net.UDP

	secure 1 for encrypted, 0 for plain (default)

!!! attention
This will change in upcoming releases so that net.createConnection will always create an unencrypted TCP connection.

There's no such thing as a UDP _connection_ because UDP is connection*less*. Thus no connection `type` parameter should be required. For UDP use [net.createUDPSocket()](#netcreateudpsocket) instead. To create *secure* connections use [tls.createConnection()](tls.md#tlscreateconnection) instead.

Returns

	for net.TCP - net.socket sub module

	for net.UDP - net.udpsocket sub module

	for net.TCP with secure - tls.socket sub module

Example

net.createConnection(net.TCP, 0)

See also

net.createServer(), net.createUDPSocket(), tls.createConnection()

net.createServer()

Creates a server.

Syntax

net.createServer([type[, timeout]])

Parameters

	type net.TCP (default) or net.UDP

	timeout for a TCP server timeout is 1~28'800 seconds, 30 sec by default (for an inactive client to be disconnected)

!!! attention
The type parameter will be removed in upcoming releases so that net.createServer will always create a TCP-based server. For UDP use net.createUDPSocket() instead.

Returns

	for net.TCP - net.server sub module

	for net.UDP - net.udpsocket sub module

Example

net.createServer(net.TCP, 30) -- 30s timeout

See also

net.createConnection(), net.createUDPSocket()

net.createUDPSocket()

Creates an UDP socket.

Syntax

net.createUDPSocket()

Parameters

none

Returns

net.udpsocket sub module

See also

net.createConnection()

net.multicastJoin()

Join multicast group.

Syntax

net.multicastJoin(if_ip, multicast_ip)

Parameters

	if_ip string containing the interface ip to join the multicast group. "any" or "" affects all interfaces.

	multicast_ip of the group to join

Returns

nil

net.multicastLeave()

Leave multicast group.

Syntax

net.multicastLeave(if_ip, multicast_ip)

Parameters

	if_ip string containing the interface ip to leave the multicast group. "any" or "" affects all interfaces.

	multicast_ip of the group to leave

Returns

nil

net.server Module

net.server:close()

Closes the server.

Syntax

net.server.close()

Parameters

none

Returns

nil

Example

-- creates a server
sv = net.createServer(net.TCP, 30)
-- closes the server
sv:close()

See also

net.createServer()

net.server:listen()

Listen on port from IP address.

Syntax

net.server.listen([port],[ip],function(net.socket))

Parameters

	port port number, can be omitted (random port will be chosen)

	ip IP address string, can be omitted

	function(net.socket) callback function, pass to caller function as param if a connection is created successfully

Returns

nil

Example

-- server listens on 80, if data received, print data to console and send "hello world" back to caller
-- 30s time out for a inactive client
sv = net.createServer(net.TCP, 30)

function receiver(sck, data)
 print(data)
 sck:close()
end

if sv then
 sv:listen(80, function(conn)
 conn:on("receive", receiver)
 conn:send("hello world")
 end)
end

See also

net.createServer()

net.server:getaddr()

Returns server local address/port.

Syntax

net.server.getaddr()

Parameters

none

Returns

port, ip (or nil, nil if not listening)

See also

net.server:listen()

net.socket Module

net.socket:close()

Closes socket.

Syntax

close()

Parameters

none

Returns

nil

See also

net.createServer()

net.socket:connect()

Connect to a remote server.

Syntax

connect(port, ip|domain)

Parameters

	port port number

	ip IP address or domain name string

Returns

nil

See also

net.socket:on()

net.socket:dns()

Provides DNS resolution for a hostname.

Syntax

dns(domain, function(net.socket, ip))

Parameters

	domain domain name

	function(net.socket, ip) callback function. The first parameter is the socket, the second parameter is the IP address as a string.

Returns

nil

Example

sk = net.createConnection(net.TCP, 0)
sk:dns("www.nodemcu.com", function(conn, ip) print(ip) end)
sk = nil

See also

net.createServer()

net.socket:getpeer()

Retrieve port and ip of remote peer.

Syntax

getpeer()

Parameters

none

Returns

port, ip (or nil, nil if not connected)

net.socket:getaddr()

Retrieve local port and ip of socket.

Syntax

getaddr()

Parameters

none

Returns

port, ip (or nil, nil if not connected)

net.socket:hold()

Throttle data reception by placing a request to block the TCP receive function. This request is not effective immediately, Espressif recommends to call it while reserving 5*1460 bytes of memory.

Syntax

hold()

Parameters

none

Returns

nil

See also

net.socket:unhold()

net.socket:on()

Register callback functions for specific events.

Syntax

on(event, function())

Parameters

	event string, which can be "connection", "reconnection", "disconnection", "receive" or "sent"

	function(net.socket[, string]) callback function. Can be nil to remove callback.

The first parameter of callback is the socket.

	If event is "receive", the second parameter is the received data as string.

	If event is "disconnection" or "reconnection", the second parameter is error code.

If reconnection event is specified, disconnection receives only "normal close" events.

Otherwise, all connection errors (with normal close) passed to disconnection event.

Returns

nil

Example

srv = net.createConnection(net.TCP, 0)
srv:on("receive", function(sck, c) print(c) end)
-- Wait for connection before sending.
srv:on("connection", function(sck, c)
 -- 'Connection: close' rather than 'Connection: keep-alive' to have server
 -- initiate a close of the connection after final response (frees memory
 -- earlier here), https://tools.ietf.org/html/rfc7230#section-6.6
 sck:send("GET /get HTTP/1.1\r\nHost: httpbin.org\r\nConnection: close\r\nAccept: */*\r\n\r\n")
end)
srv:connect(80,"httpbin.org")

!!! note
The receive event is fired for every network frame! Hence, if the data sent to the device exceeds 1460 bytes (derived from Ethernet frame size [https://en.wikipedia.org/wiki/Ethernet_frame]) it will fire more than once. There may be other situations where incoming data is split across multiple frames (e.g. HTTP POST with multipart/form-data). You need to manually buffer the data and find means to determine if all data was received.

local buffer = nil

srv:on("receive", function(sck, c)
 if buffer == nil then
 buffer = c
 else
 buffer = buffer .. c
 end
end)
-- throttling could be implemented using socket:hold()
-- example: https://github.com/nodemcu/nodemcu-firmware/blob/master/lua_examples/pcm/play_network.lua#L83

See also

	net.createServer()

	net.socket:hold()

net.socket:send()

Sends data to remote peer.

Syntax

send(string[, function(sent)])

sck:send(data, fnA) is functionally equivalent to sck:send(data) sck:on("sent", fnA).

Parameters

	string data in string which will be sent to server

	function(sent) callback function for sending string

Returns

nil

Note

Multiple consecutive send() calls aren't guaranteed to work (and often don't) as network requests are treated as separate tasks by the SDK. Instead, subscribe to the "sent" event on the socket and send additional data (or close) in that callback. See #730 [https://github.com/nodemcu/nodemcu-firmware/issues/730#issuecomment-154241161] for details.

Example

srv = net.createServer(net.TCP)

function receiver(sck, data)
 local response = {}

 -- if you're sending back HTML over HTTP you'll want something like this instead
 -- local response = {"HTTP/1.0 200 OK\r\nServer: NodeMCU on ESP8266\r\nContent-Type: text/html\r\n\r\n"}

 response[#response + 1] = "lots of data"
 response[#response + 1] = "even more data"
 response[#response + 1] = "e.g. content read from a file"

 -- sends and removes the first element from the 'response' table
 local function send(localSocket)
 if #response > 0 then
 localSocket:send(table.remove(response, 1))
 else
 localSocket:close()
 response = nil
 end
 end

 -- triggers the send() function again once the first chunk of data was sent
 sck:on("sent", send)

 send(sck)
end

srv:listen(80, function(conn)
 conn:on("receive", receiver)
end)

If you do not or can not keep all the data you send back in memory at one time (remember that response is an aggregation) you may use explicit callbacks instead of building up a table like so:

sck:send(header, function()
 local data1 = "some large chunk of dynamically loaded data"
 sck:send(data1, function()
 local data2 = "even more dynamically loaded data"
 sck:send(data2, function(sk)
 sk:close()
 end)
 end)
end)

See also

net.socket:on()

net.socket:ttl()

Changes or retrieves Time-To-Live value on socket.

Syntax

ttl([ttl])

Parameters

	ttl (optional) new time-to-live value

Returns

current / new ttl value

Example

sk = net.createConnection(net.TCP, 0)
sk:connect(80, '192.168.1.1')
sk:ttl(1) -- restrict frames to single subnet

See also

net.createConnection()

net.socket:unhold()

Unblock TCP receiving data by revocation of a preceding hold().

Syntax

unhold()

Parameters

none

Returns

nil

See also

net.socket:hold()

net.udpsocket Module

Remember that in contrast to TCP UDP [https://en.wikipedia.org/wiki/User_Datagram_Protocol] is connectionless. Therefore, there is a minor but natural mismatch as for TCP/UDP functions in this module. While you would call net.createConnection() for TCP it is net.createUDPSocket() for UDP.

Other points worth noting:

	UDP sockets do not have a connection callback for the listen function.

	UDP sockets do not have a connect function. Remote IP and port thus need to be defined in send().

	UDP socket's receive callback receives port/ip after the data argument.

net.udpsocket:close()

Closes UDP socket.

The syntax and functional identical to net.socket:close().

net.udpsocket:listen()

Listen on port from IP address.

The syntax and functional similar to net.server:listen(), but callback parameter is not provided.

net.udpsocket:on()

Register callback functions for specific events.

The syntax and functional similar to net.socket:on(). However, only "receive", "sent" and "dns" are supported events.

!!! note
The receive callback receives port and ip after the data argument.

net.udpsocket:send()

Sends data to specific remote peer.

Syntax

send(port, ip, data)

Parameters

	port remote socket port

	ip remote socket IP

	data the payload to send

Returns

nil

Example

udpSocket = net.createUDPSocket()
udpSocket:listen(5000)
udpSocket:on("receive", function(s, data, port, ip)
 print(string.format("received '%s' from %s:%d", data, ip, port))
 s:send(port, ip, "echo: " .. data)
end)
port, ip = udpSocket:getaddr()
print(string.format("local UDP socket address / port: %s:%d", ip, port))

On *nix systems that can then be tested by issuing

echo -n "foo" | nc -w1 -u <device-IP-address> 5000

net.udpsocket:dns()

Provides DNS resolution for a hostname.

The syntax and functional identical to net.socket:dns().

net.udpsocket:getaddr()

Retrieve local port and ip of socket.

The syntax and functional identical to net.socket:getaddr().

net.udpsocket:ttl()

Changes or retrieves Time-To-Live value on socket.

The syntax and functional identical to net.socket:ttl().

net.dns Module

net.dns.getdnsserver()

Gets the IP address of the DNS server used to resolve hostnames.

Syntax

net.dns.getdnsserver(dns_index)

Parameters

dns_index which DNS server to get (range 0~1)

Returns

IP address (string) of DNS server

Example

print(net.dns.getdnsserver(0)) -- 208.67.222.222
print(net.dns.getdnsserver(1)) -- nil

net.dns.setdnsserver("8.8.8.8", 0)
net.dns.setdnsserver("192.168.1.252", 1)

print(net.dns.getdnsserver(0)) -- 8.8.8.8
print(net.dns.getdnsserver(1)) -- 192.168.1.252

See also

net.dns:setdnsserver()

net.dns.resolve()

Resolve a hostname to an IP address. Doesn't require a socket like net.socket.dns().

Syntax

net.dns.resolve(host, function(sk, ip))

Parameters

	host hostname to resolve

	function(sk, ip) callback called when the name was resolved. sk is always nil

Returns

nil

Example

net.dns.resolve("www.google.com", function(sk, ip)
 if (ip == nil) then print("DNS fail!") else print(ip) end
end)

See also

net.socket:dns()

net.dns.setdnsserver()

Sets the IP of the DNS server used to resolve hostnames. Default: resolver1.opendns.com (208.67.222.222). You can specify up to 2 DNS servers.

Syntax

net.dns.setdnsserver(dns_ip_addr, dns_index)

Parameters

	dns_ip_addr IP address of a DNS server

	dns_index which DNS server to set (range 0~1). Hence, it supports max. 2 servers.

Returns

nil

See also

net.dns:getdnsserver()

net.cert Module

This part gone to the TLS module, link kept for backward compatibility.

 node Module

node Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	node.c

The node module provides access to system-level features such as sleep, restart and various info and IDs.

node.bootreason()

Returns the boot reason and extended reset info.

The first value returned is the raw code, not the new "reset info" code which was introduced in recent SDKs. Values are:

	1, power-on

	2, reset (software?)

	3, hardware reset via reset pin

	4, WDT reset (watchdog timeout)

The second value returned is the extended reset cause. Values are:

	0, power-on

	1, hardware watchdog reset

	2, exception reset

	3, software watchdog reset

	4, software restart

	5, wake from deep sleep

	6, external reset

In general, the extended reset cause supercedes the raw code. The raw code is kept for backwards compatibility only. For new applications it is highly recommended to use the extended reset cause instead.

In case of extended reset cause 3 (exception reset), additional values are returned containing the crash information. These are, in order, EXCCAUSE [https://arduino-esp8266.readthedocs.io/en/latest/exception_causes.html], EPC1, EPC2, EPC3, EXCVADDR, and DEPC.

Syntax

node.bootreason()

Parameters

none

Returns

rawcode, reason [, exccause, epc1, epc2, epc3, excvaddr, depc]

Example

_, reset_reason = node.bootreason()
if reset_reason == 0 then print("Power UP!") end

node.chipid()

Returns the ESP chip ID.

Syntax

node.chipid()

Parameters

none

Returns

chip ID (number)

node.compile()

Compiles a Lua text file into Lua bytecode, and saves it as .lc file.

Syntax

node.compile("file.lua")

Parameters

filename name of Lua text file

Returns

nil

Example

file.open("hello.lua","w+")
file.writeline([[print("hello nodemcu")]])
file.writeline([[print(node.heap())]])
file.close()

node.compile("hello.lua")
dofile("hello.lua")
dofile("hello.lc")

node.dsleep()

Enters deep sleep mode, wakes up when timed out.

Theoretical maximum deep sleep duration can be found with node.dsleepMax(). "Max deep sleep for ESP8266" [https://thingpulse.com/max-deep-sleep-for-esp8266/] claims the realistic maximum be around 3.5h.

!!! caution

This function can only be used in the condition that esp8266 PIN32(RST) and PIN8(XPD_DCDC aka GPIO16) are connected together. Using sleep(0) will set no wake up timer, connect a GPIO to pin RST, the chip will wake up by a falling-edge on pin RST.

Syntax

node.dsleep(us, option, instant)

Parameters

	us number (integer) or nil, sleep time in micro second. If us == 0, it will sleep forever. If us == nil, will not set sleep time.

	option number (integer) or nil. If nil, it will use last alive setting as default option.

	0, init data byte 108 is valuable

	> 0, init data byte 108 is valueless

	0, RF_CAL or not after deep-sleep wake up, depends on init data byte 108

	1, RF_CAL after deep-sleep wake up, there will be large current

	2, no RF_CAL after deep-sleep wake up, there will only be small current

	4, disable RF after deep-sleep wake up, just like modem sleep, there will be the smallest current

	instant number (integer) or nil. If present and non-zero, the chip will enter Deep-sleep immediately and will not wait for the Wi-Fi core to be shutdown.

Returns

nil

Example

--do nothing
node.dsleep()
--sleep μs
node.dsleep(1000000)
--set sleep option, then sleep μs
node.dsleep(1000000, 4)
--set sleep option only
node.dsleep(nil,4)

See also

	wifi.suspend()

	wifi.resume()

	node.sleep()

	node.dsleepMax()

node.dsleepMax()

Returns the current theoretical maximum deep sleep duration.

!!! caution

While it is possible to specify a longer sleep time than the theoretical maximum sleep duration, it is not recommended to exceed this maximum. In tests documented at ["Max deep sleep for ESP8266"](https://thingpulse.com/max-deep-sleep-for-esp8266/) the device never woke up again if the specified sleep time was beyond `dsleepMax()`.

!!! note

This theoretical maximum is dependent on ambient temperature: lower temp = shorter sleep duration, higher temp = longer sleep duration

Syntax

node.dsleepMax()

Parameters

none

Returns

max_duration

Example

node.dsleep(node.dsleepMax())

See also

	node.dsleep()

node.flashid()

Returns the flash chip ID.

Syntax

node.flashid()

Parameters

none

Returns

flash ID (number)

node.flashindex()

Returns the function reference for a function in the LFS (Lua Flash Store).

Syntax

node.flashindex(modulename)

Parameters

modulename The name of the module to be loaded. If this is nil or invalid then an info list is returned

Returns

	In the case where the LFS in not loaded, node.flashindex evaluates to nil, followed by the flash and mapped base addresss of the LFS

	If the LFS is loaded and the function is called with the name of a valid module in the LFS, then the function is returned in the same way the load() and the other Lua load functions do.

	Otherwise an extended info list is returned: the Unix time of the LFS build, the flash and mapped base addresses of the LFS and its current length, and an array of the valid module names in the LFS.

Example

The node.flashindex() is a low level API call that is normally wrapped using standard Lua code to present a simpler application API. See the module _init.lua in the lua_examples/lfs directory for an example of how to do this.

node.flashreload()

Reload the LFS (Lua Flash Store) with the flash image provided. Flash images are generated on the host machine using the luac.crosscommnad.

Syntax

node.flashreload(imageName)

Parameters

imageName The name of a image file in the filesystem to be loaded into the LFS.

Returns

Error message LFS images are now gzip compressed. In the case of the imagename being a valid LFS image, this is expanded and loaded into flash. The ESP is then immediately rebooted, so control is not returned to the calling Lua application in the case of a successful reload. This reload process internally makes two passes through the LFS image file; and on the first it validates the file and header formats and detects any errors. If any is detected then an error string is returned.

node.flashsize()

Returns the flash chip size in bytes. On 4MB modules like ESP-12 the return value is 4194304 = 4096KB.

Syntax

node.flashsize()

Parameters

none

Returns

flash size in bytes (integer)

node.getcpufreq()

Get the current CPU Frequency.

Syntax

node.getcpufreq()

Parameters

none

Returns

Current CPU frequency (number)

Example

do
 local cpuFreq = node.getcpufreq()
 print("The current CPU frequency is " .. cpuFreq .. " MHz")
end

node.heap()

Returns the current available heap size in bytes. Note that due to fragmentation, actual allocations of this size may not be possible.

Syntax

node.heap()

Parameters

none

Returns

system heap size left in bytes (number)

node.info()

Returns NodeMCU version, chipid, flashid, flash size, flash mode, flash speed, and Lua File Store (LFS) usage statics.

Syntax

node.info()

Parameters

none

Returns

	majorVer (number)

	minorVer (number)

	devVer (number)

	chipid (number)

	flashid (number)

	flashsize (number)

	flashmode (number)

	flashspeed (number)

Example

majorVer, minorVer, devVer, chipid, flashid, flashsize, flashmode, flashspeed = node.info()
print("NodeMCU "..majorVer.."."..minorVer.."."..devVer)

node.input()

Submits a string to the Lua interpreter. Similar to pcall(loadstring(str)), but without the single-line limitation.

!!! attention

This function only has an effect when invoked from a callback. Using it directly on the console **does not work**.

Syntax

node.input(str)

Parameters

str Lua chunk

Returns

nil

Example

sk:on("receive", function(conn, payload) node.input(payload) end)

See also

node.output()

node.output()

Redirects the Lua interpreter output to a callback function. Optionally also prints it to the serial console.

!!! caution

Do **not** attempt to `print()` or otherwise induce the Lua interpreter to produce output from within the callback function. Doing so results in infinite recursion, and leads to a watchdog-triggered restart.

Syntax

node.output(function(str), serial_debug)

Parameters

	output_fn(str) a function accept every output as str, and can send the output to a socket (or maybe a file).

	serial_debug 1 output also show in serial. 0: no serial output.

Returns

nil

Example

function tonet(str)
 sk:send(str)
end
node.output(tonet, 1) -- serial also get the Lua output.

-- a simple telnet server
s=net.createServer(net.TCP)
s:listen(2323,function(c)
 con_std = c
 function s_output(str)
 if(con_std~=nil)
 then con_std:send(str)
 end
 end
 node.output(s_output, 0) -- re-direct output to function s_ouput.
 c:on("receive",function(c,l)
 node.input(l) -- works like pcall(loadstring(l)) but support multiple separate line
 end)
 c:on("disconnection",function(c)
 con_std = nil
 node.output(nil) -- un-regist the redirect output function, output goes to serial
 end)
end)

See also

node.input()

node.readvdd33() --deprecated

Moved to adc.readvdd33().

node.restart()

Restarts the chip.

Syntax

node.restart()

Parameters

none

Returns

nil

node.restore()

Restores system configuration to defaults using the SDK function system_restore(), which is described in the documentation as:

Reset default settings of following APIs: wifi_station_set_auto_connect, wifi_set_phy_mode, wifi_softap_set_config related, wifi_station_set_config related, wifi_set_opmode, and APs’ information recorded by #define AP_CACHE.

Syntax

node.restore()

Parameters

none

Returns

nil

Example

node.restore()
node.restart() -- ensure the restored settings take effect

node.setcpufreq()

Change the working CPU Frequency.

Syntax

node.setcpufreq(speed)

Parameters

speed constant 'node.CPU80MHZ' or 'node.CPU160MHZ'

Returns

target CPU frequency (number)

Example

node.setcpufreq(node.CPU80MHZ)

node.sleep()

Put NodeMCU in light sleep mode to reduce current consumption.

	NodeMCU can not enter light sleep mode if wifi is suspended.

	All active timers will be suspended and then resumed when NodeMCU wakes from sleep.

!!! attention
This is disabled by default. Modify PMSLEEP_ENABLE in app/include/user_config.h to enable it.

Syntax

 1-Wire Module

1-Wire Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	ow.c

This module provides functions to work with the 1-Wire [https://en.wikipedia.org/wiki/1-Wire] device communications bus system.

ow.check_crc16()

Computes the 1-Wire CRC16 and compare it against the received CRC.

Syntax

ow.check_crc16(buf, inverted_crc0, inverted_crc1[, crc])

Parameters

	buf string value, data to be calculated check sum in string

	inverted_crc0 LSB of received CRC

	inverted_crc1 MSB of received CRC

	crc CRC starting value (optional)

Returns

true if the CRC matches, false otherwise

ow.crc16()

Computes a Dallas Semiconductor 16 bit CRC. This is required to check the integrity of data received from many 1-Wire devices. Note that the CRC computed here is not what you'll get from the 1-Wire network, for two reasons:

	The CRC is transmitted bitwise inverted.

	Depending on the endian-ness of your processor, the binary representation of the two-byte return value may have a different byte order than the two bytes you get from 1-Wire.

Syntax

ow.crc16(buf[, crc])

Parameters

	buf string value, data to be calculated check sum in string

	crc CRC starting value (optional)

Returns

the CRC16 as defined by Dallas Semiconductor

ow.crc8()

Computes a Dallas Semiconductor 8 bit CRC, these are used in the ROM and scratchpad registers.

Syntax

ow.crc8(buf)

Parameters

buf string value, data to be calculated check sum in string

Returns

CRC result as byte

ow.depower()

Stops forcing power onto the bus. You only need to do this if you used the 'power' flag to ow.write() or used a ow.write_bytes() and aren't about to do another read or write.

Syntax

ow.depower(pin)

Parameters

pin 1~12, I/O index

Returns

nil

####See also

	ow.write()

	ow.write_bytes()

ow.read()

Reads a byte.

####Syntax
ow.read(pin)

Parameters

pin 1~12, I/O index

Returns

byte read from slave device

ow.read_bytes()

Reads multi bytes.

Syntax

ow.read_bytes(pin, size)

Parameters

	pin 1~12, I/O index

	size number of bytes to be read from slave device (up to 256)

Returns

string bytes read from slave device

ow.reset()

Performs a 1-Wire reset cycle.

Syntax

ow.reset(pin)

Parameters

pin 1~12, I/O index

Returns

	1 if a device responds with a presence pulse

	0 if there is no device or the bus is shorted or otherwise held low for more than 250 µS

ow.reset_search()

Clears the search state so that it will start from the beginning again.

Syntax

ow.reset_search(pin)

Parameters

pin 1~12, I/O index

Returns

nil

ow.search()

Looks for the next device.

Syntax

ow.search(pin)

Parameters

pin 1~12, I/O index

Returns

rom_code string with length of 8 upon success. It contains the rom code of slave device. Returns nil if search was unsuccessful.

See also

ow.target_search()

ow.select()

Issues a 1-Wire rom select command. Make sure you do the ow.reset(pin) first.

Syntax

ow.select(pin, rom)

Parameters

	pin 1~12, I/O index

	rom string value, len 8, rom code of the slave device

Returns

nil

Example

-- 18b20 Example
pin = 9
ow.setup(pin)
count = 0
repeat
 count = count + 1
 addr = ow.reset_search(pin)
 addr = ow.search(pin)
 tmr.wdclr()
until (addr ~= nil) or (count > 100)
if addr == nil then
 print("No more addresses.")
else
 print(addr:byte(1,8))
 crc = ow.crc8(string.sub(addr,1,7))
 if crc == addr:byte(8) then
 if (addr:byte(1) == 0x10) or (addr:byte(1) == 0x28) then
 print("Device is a DS18S20 family device.")
 repeat
 ow.reset(pin)
 ow.select(pin, addr)
 ow.write(pin, 0x44, 1)
 tmr.delay(1000000)
 present = ow.reset(pin)
 ow.select(pin, addr)
 ow.write(pin,0xBE,1)
 print("P="..present)
 data = nil
 data = string.char(ow.read(pin))
 for i = 1, 8 do
 data = data .. string.char(ow.read(pin))
 end
 print(data:byte(1,9))
 crc = ow.crc8(string.sub(data,1,8))
 print("CRC="..crc)
 if crc == data:byte(9) then
 t = (data:byte(1) + data:byte(2) * 256) * 625
 t1 = t / 10000
 t2 = t % 10000
 print("Temperature="..t1.."."..t2.."Centigrade")
 end
 tmr.wdclr()
 until false
 else
 print("Device family is not recognized.")
 end
 else
 print("CRC is not valid!")
 end
end

####See also
ow.reset()

ow.setup()

Sets a pin in onewire mode.

Syntax

ow.setup(pin)

Parameters

pin 1~12, I/O index

Returns

nil

ow.skip()

Issues a 1-Wire rom skip command, to address all on bus.

Syntax

ow.skip(pin)

Parameters

pin 1~12, I/O index

Returns

nil

ow.target_search()

Sets up the search to find the device type family_code. The search itself has to be initiated with a subsequent call to ow.search().

Syntax

ow.target_search(pin, family_code)

Parameters

	pin 1~12, I/O index

	family_code byte for family code

Returns

nil

####See also
ow.search()

ow.write()

Writes a byte. If power is 1 then the wire is held high at the end for parasitically powered devices. You are responsible for eventually depowering it by calling ow.depower() or doing another read or write.

Syntax

ow.write(pin, v, power)

Parameters

	pin 1~12, I/O index

	v byte to be written to slave device

	power 1 for wire being held high for parasitically powered devices

Returns

nil

####See also
ow.depower()

ow.write_bytes()

Writes multi bytes. If power is 1 then the wire is held high at the end for parasitically powered devices. You are responsible for eventually depowering it by calling ow.depower() or doing another read or write.

Syntax

ow.write_bytes(pin, buf, power)

Parameters

	pin 1~12, IO index

	buf string to be written to slave device

	power 1 for wire being held high for parasitically powered devices

Returns

nil

####See also
ow.depower()

 pcm module

pcm module

Since	Origin / Contributor	Maintainer	Source
2016-06-05	Arnim Läuger [https://github.com/devsaurus]	Arnim Läuger [https://github.com/devsaurus]	pcm.c

Play sounds through various back-ends.

Sigma-Delta hardware

The ESP contains a sigma-delta generator that can be used to synthesize audio with the help of an external low-pass filter. All regular GPIOs (except GPIO0) are able to output the digital waveform, though there is only one single generator.

The external filter circuit is shown in the following schematic. Note that the voltage divider resistors limit the output voltage to 1

VPP. This should match most amplifier boards, but cross-checking against your specific configuration is required.

[image: low-pass filter]

!!! important

This driver shares hardware resources with other modules. Thus you can't operate it in parallel to the `sigma delta`, `perf`, or `pwm` modules. They require the sigma-delta generator and the hw_timer, respectively.

Audio format

Audio is expected as a mono raw unsigned 8

bit stream at sample rates between 1

k and 16

k samples per second. Regular WAV files can be converted with OSS tools like Audacity [http://www.audacityteam.org/] or SoX [http://sox.sourceforge.net/]. Adjust the volume before the conversion.

sox jump.wav -r 8000 -b 8 -c 1 jump_8k.u8

Also see play_file.lua in the examples folder.

pcm.new()

Initializes the audio driver.

Sigma-Delta driver

Syntax

pcm.new(pcm.SD, pin)

Parameters

pcm.SD use sigma-delta hardware

	pin 1~10, IO index

Returns

Audio driver object.

Audio driver sub-module

Each audio driver exhibits the same control methods for playing sounds.

pcm.drv:close()

Stops playback and releases the audio hardware.

Syntax

drv:close()

Parameters

none

Returns

nil

pcm.drv:on()

Register callback functions for events.

Syntax

drv:on(event[, cb_fn[, freq]])

Parameters

	event identifier, one of:

	data callback function is supposed to return a string containing the next chunk of data.

	drained playback was stopped due to lack of data. The last 2 invocations of the data callback didn't provide new chunks in time (intentionally or unintentionally) and the internal buffers were fully consumed.

	paused playback was paused by pcm.drv:pause().

	stopped playback was stopped by pcm.drv:stop().

	vu new peak data, cb_fn is triggered freq times per second (1 to 200 Hz).

	cb_fn callback function for the specified event. Unregisters previous function if omitted. First parameter is drv, followed by peak data for vu callback.

Returns

nil

pcm.drv:play()

Starts playback.

Syntax

drv:play(rate)

Parameters

rate sample rate. Supported are pcm.RATE_1K, pcm.RATE_2K, pcm.RATE_4K, pcm.RATE_5K, pcm.RATE_8K, pcm.RATE_10K, pcm.RATE_12K, pcm.RATE_16K and defaults to RATE_8K if omitted.

Returns

nil

pcm.drv:pause()

Pauses playback. A call to drv:play() will resume from the last position.

Syntax

drv:pause()

Parameters

none

Returns

nil

pcm.drv:stop()

Stops playback and releases buffered chunks.

Syntax

drv:stop()

Parameters

none

Returns

nil

 perf Module

perf Module

Since	Origin / Contributor	Maintainer	Source
2016-02-26	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	perf.c

This module provides simple performance measurement for an application. It samples the program counter roughly every 50 microseconds and builds a histogram of the values that it finds. Since there is only a small amount
of memory to store the histogram, the user can specify which area of code is of interest. The default is the entire flash which contains code. Once the hotspots are identified, then the run can then be repeated with different areas and at different resolutions to get as much information as required.

perf.start()

Starts a performance monitoring session.

Syntax

perf.start([start[, end[, nbins]]])

Parameters

	start (optional) The lowest PC address for the histogram. Default is 0x40000000.

	end (optional) The highest address for the histogram. Default is the end of the used space in the flash memory.

	nbins (optional) The number of bins in the histogram. Keep this reasonable otherwise
you will run out of memory. Default is 1024.

Note that the number of bins is an upper limit. The size of each bin is set to be the smallest power of two
such that the number of bins required is less than or equal to the provided number of bins.

Returns

Nothing

perf.stop()

Terminates a performance monitoring session and returns the histogram.

Syntax

total, outside, histogram, binsize = perf.stop()

Returns

	total The total number of samples captured in this run

	outside The number of samples that were outside the histogram range

	histogram The histogram represented as a table indexed by address where the value is the number of samples. The address is the lowest address for the bin.

	binsize The number of bytes per histogram bin.

Example

perf.start()

for j = 0, 100 do
 str = "str"..j
end

tot, out, tbl, binsize = perf.stop()

print(tot, out)
local keyset = {}
local n = 0
for k,v in pairs(tbl) do
 n=n+1
 keyset[n]=k
end
table.sort(keyset)
for kk,k in ipairs(keyset) do print(string.format("%x - %x",k, k + binsize - 1),tbl[k]) end

This runs a loop creating strings 100 times and then prints out the histogram (after sorting it).
This takes around 2,500 samples and provides a good indication of where all the CPU time is
being spent.

 PWM Module

PWM Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	pwm.c

pwm.close()

Quit PWM mode for the specified GPIO pin.

Syntax

pwm.close(pin)

Parameters

pin 1~12, IO index

Returns

nil

See also

pwm.start()

pwm.getclock()

Get selected PWM frequency of pin.

Syntax

pwm.getclock(pin)

Parameters

pin 1~12, IO index

Returns

number PWM frequency of pin

See also

pwm.setclock()

See also

pwm.getduty()

pwm.getduty()

Get selected duty cycle of pin.

Syntax

pwm.getduty(pin)

Parameters

pin 1~12, IO index

Returns

number duty cycle, max 1023

See also

pwm.setduty()

pwm.setclock()

Set PWM frequency.
Note: Setup of the PWM frequency will synchronously change other setups as well if there are any. Only one PWM frequency can be allowed for the system.

Syntax

pwm.setclock(pin, clock)

Parameters

	pin 1~12, IO index

	clock 1~1000, PWM frequency

Returns

nil

See also

pwm.getclock()

pwm.setduty()

Set duty cycle for a pin.

Syntax

pwm.setduty(pin, duty)

Parameters

	pin 1~12, IO index

	duty 0~1023, pwm duty cycle, max 1023 (10bit)

Returns

nil

Example

-- D1 is connected to green led
-- D2 is connected to blue led
-- D3 is connected to red led
pwm.setup(1, 500, 512)
pwm.setup(2, 500, 512)
pwm.setup(3, 500, 512)
pwm.start(1)
pwm.start(2)
pwm.start(3)
function led(r, g, b)
 pwm.setduty(1, g)
 pwm.setduty(2, b)
 pwm.setduty(3, r)
end
led(512, 0, 0) -- set led to red
led(0, 0, 512) -- set led to blue.

pwm.setup()

Set pin to PWM mode. Only 6 pins can be set to PWM mode at the most.

Syntax

pwm.setup(pin, clock, duty)

Parameters

	pin 1~12, IO index

	clock 1~1000, pwm frequency

	duty 0~1023, pwm duty cycle, max 1023 (10bit)

Returns

nil

Example

-- set pin index 1 as pwm output, frequency is 100Hz, duty cycle is half.
pwm.setup(1, 100, 512)

See also

pwm.start()

pwm.start()

PWM starts, the waveform is applied to the GPIO pin.

Syntax

pwm.start(pin)

####Parameters
pin 1~12, IO index

Returns

nil

See also

pwm.stop()

pwm.stop()

Pause the output of the PWM waveform.

Syntax

pwm.stop(pin)

Parameters

pin 1~12, IO index

Returns

nil

See also

pwm.start()

 RC Module

RC Module

Since	Origin / Contributor	Maintainer	Source
2015-06-12	Mike Wen [https://github.com/mikewen]	-	rc.c

Module to generate series of impulses for remote control via 433/315Mhz radio transmitter.
Superseded by rfswitch module which have same functionality, and supports more transmission protocols.

For more detailed description see rfswitch module documentation.

rc.send()

Sends series of impulses

Syntax

rc.send(pin, value, length, pulse_length, protocol_id, repeat)

which is similar to:
rfswitch.send(protocol_id, pulse_length, repeat, pin, value, length)

Parameters

	pin 0~12, I/O index of pin, example 6 is for GPIO12, see details

	value positive integer value, this is the primary data which will be sent

	length bit length of value, if value length is 3 bytes, then length is 24

	pulse_length length of one pulse in microseconds, usually from 100 to 650

	protocol_id positive integer value, from 1-3

	repeat repeat value, usually from 1 to 5. This is a synchronous task. Setting the repeat count to a large value will cause problems.
The recommended limit is about 1-4.

Returns

1 always 1

Example

-- Lua transmit radio code using protocol #1
-- pulse_length 300 microseconds
-- repeat 5 times
-- use pin #7 (GPIO13)
-- value to send is 560777
-- value length is 24 bits (3 bytes)
rc.send(7, 560777, 24, 300, 1, 5)

which is similar to:

rfswitch.send(1, 300, 5, 7, 560777, 24)

 rfswitch Module

rfswitch Module

Since	Origin / Contributor	Maintainer	Source
2016-12-01	Roman Fedorov [https://github.com/ffedoroff]	Roman Fedorov [https://github.com/ffedoroff]	rfswitch.c

Module to operate 433/315Mhz devices like power outlet sockets, relays, etc. This will most likely work with all popular low cost power outlet sockets with a SC5262 / SC5272, HX2262 / HX2272, PT2262 / PT2272, EV1527, RT1527, FP1527 or HS1527 chipset.

This module uses some code from the original rc-switch Arduino lib [https://github.com/sui77/rc-switch/] but NodeMCU and Arduino are not fully compatible. This required that rc-switch was rewritten into rfswitch NodeMCU with Lua support.

Connection of transmitter

Transmitter	ESP8266	comments
vin or +	3V3	3.3 - 5 volts on ESP8266 or other power source
ground or -	GND	ground should be connected to ESP8266 and to power source
data pin	6	almost any pin on ESP8266

You can read more about connection here [https://alexbloggt.com/wp-content/uploads/2015/10/nodemcu_433_transmitter.png].

Selecting proper protocol

This module supports transmitting data using 6 different protocols
and you should use one most suitable for your needs. Receiving data is not supported yet. So, you cannot listen radio air and get protocol details using Lua.

The easiest way to get the correct protocol is to connect the radio receiver to your ESP8266 or Arduino [https://github.com/sui77/rc-switch/wiki/HowTo_Receive],
then run ReceiveDemo_Advanced.ino [https://github.com/sui77/rc-switch/blob/master/examples/ReceiveDemo_Advanced/ReceiveDemo_Advanced.ino]
and view output in serial console (example1 [http://www.instructables.com/id/Control-CoTech-Remote-Switch-With-Arduino-433Mhz/?ALLSTEPS],
example2 [http://randomnerdtutorials.com/esp8266-remote-controlled-sockets/]).

You should get something like this:

Decimal: 11001351 (24Bit)
Binary: 101001111101111000000111
Tri-State: not applicable
PulseLength: 517 microseconds
Protocol: 5

Raw data: 7200,1004,528,504,1048,980,336,1176,356,1176,352,1180,1108,412,356,1172,364,1168,356,1160,1176,1124,412,336,1180,1116,440,328,1188,340,1228,1060,416,1160,380,1160,1108,464,1068,436,328,1232,1060,412,1116,440,1088,428,3024,

More detailed about low level protocol specifications could be found here [https://github.com/sui77/rc-switch/wiki/KnowHow_LineCoding]
You can visualize a telegram copy the raw data by paste it into http://test.sui.li/oszi/

rfswitch.send()

Transmit data using the radio module.

Syntax

rfswitch.send(protocol_id, pulse_length, repeat, pin, value, length)

Parameters

	protocol_id positive integer value, from 1-6

	pulse_length length of one pulse in microseconds, usually from 100 to 650

	repeat repeat value, usually from 1 to 5. This is a synchronous task. Setting the repeat count to a large value will cause problems.
The recommended limit is about 1-4. If you need more,
then call it asynchronously a few more times (e.g. using node.task.post)

	pin I/O index of pin, example 6 is for GPIO12, see details

	value positive integer value, this is the primary data which will be sent

	length bit length of value, if value length is 3 bytes, then length is 24

Returns

nil

Example

-- Lua transmit radio code using protocol #1
-- pulse_length 300 microseconds
-- repeat 5 times
-- use pin #7 (GPIO13)
-- value to send is 560777
-- value length is 24 bits (3 bytes)
rfswitch.send(1, 300, 5, 7, 560777, 24)

 rotary Module

rotary Module

Since	Origin / Contributor	Maintainer	Source
2016-03-01	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	rotary.c

This module can read the state of cheap rotary encoder switches. These are available at all the standard places for a dollar or two. They are five pin devices where three are used for a gray code encoder for rotation, and two are used for the push switch. These switches are commonly used in car audio systems.

These switches do not have absolute positioning, but only encode the number of positions rotated clockwise / anti-clockwise. To make use of this module, connect the common pin on the quadrature encoder to ground and the A and B phases to the NodeMCU. One pin of the push switch should also be grounded and the other pin connected to the NodeMCU.

Sources for parts

	Amazon: This search [http://www.amazon.com/s/ref=nb_sb_noss_1?url=search-alias%3Dindustrial&field-keywords=rotary+encoder+push+button&rh=n%3A16310091%2Ck%3Arotary+encoder+push+button] shows a variety.

	Ebay: Somewhat cheaper in this search [http://www.ebay.com/sch/i.html?_from=R40&_trksid=p2050601.m570.l1313.TR0.TRC0.H0.Xrotary+encoder+push+button.TRS0&_nkw=rotary+encoder+push+button&_sacat=0]

	Adafruit: rotary encoder [https://www.adafruit.com/products/377]

	Aliexpress: This search [http://www.aliexpress.com/wholesale?catId=0&initiative_id=SB_20160217173657&SearchText=rotary+encoder+push+button] reveals all sorts of shapes and sizes.

There is also a switch mounted on a board with standard 0.1" pins.
This is the KY-040, and can also be found at lots of places [https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=ky-040%20rotary%20encoder].
Note that the pins are named somewhat eccentrically, and I suspect that it really does need the VCC connected.

Constants

	rotary.PRESS = 1 The eventtype for the switch press.

	rotary.LONGPRESS = 2 The eventtype for a long press.

	rotary.RELEASE = 4 The eventtype for the switch release.

	rotary.TURN = 8 The eventtype for the switch rotation.

	rotary.CLICK = 16 The eventtype for a single click (after release)

	rotary.DBLCLICK = 32 The eventtype for a double click (after second release)

	rotary.ALL = 63 All event types.

rotary.setup()

Initialize the nodemcu to talk to a rotary encoder switch.

Syntax

rotary.setup(channel, pina, pinb[, pinpress[, longpress_time_ms[, dblclick_time_ms]]])

Parameters

	channel The rotary module supports three switches. The channel is either 0, 1 or 2.

	pina This is a GPIO number (excluding 0) and connects to pin phase A on the rotary switch.

	pinb This is a GPIO number (excluding 0) and connects to pin phase B on the rotary switch.

	pinpress (optional) This is a GPIO number (excluding 0) and connects to the press switch.

	longpress_time_ms (optional) The number of milliseconds (default 500) of press to be considered a long press.

	dblclick_time_ms (optional) The number of milliseconds (default 500) between a release and a press for the next release to be considered a double click.

Returns

Nothing. If the arguments are in error, or the operation cannot be completed, then an error is thrown.

For all API calls, if the channel number is out of range, then an error will be thrown.

Example

rotary.setup(0, 5,6, 7)

rotary.on()

Sets a callback on specific events.

Syntax

rotary.on(channel, eventtype[, callback])

Parameters

	channel The rotary module supports three switches. The channel is either 0, 1 or 2.

	eventtype This defines the type of event being registered. This is the logical or of one or more of PRESS, LONGPRESS, RELEASE, TURN, CLICK or DBLCLICK.

	callback This is a function that will be invoked when the specified event happens.

If the callback is None or omitted, then the registration is cancelled.

The callback will be invoked with three arguments when the event happens. The first argument is the eventtype,
the second is the current position of the rotary switch, and the third is the time when the event happened.

The position is tracked
and is represented as a signed 32-bit integer. Increasing values indicate clockwise motion. The time is the number of microseconds represented
in a 32-bit integer. Note that this wraps every hour or so.

Example

rotary.on(0, rotary.ALL, function (type, pos, when)
 print "Position=" .. pos .. " event type=" .. type .. " time=" .. when
end)

Notes

Events will be delivered in order, but there may be missing TURN events. If there is a long
queue of events, then PRESS and RELEASE events may also be missed. Multiple pending TURN events
are typically dispatched as one TURN callback with the final position as its parameter.

Some switches have 4 steps per detent. This means that, in practice, the application
should divide the position by 4 and use that to determine the number of clicks. It is
unlikely that a switch will ever reach 30 bits of rotation in either direction -- some
are rated for under 50,000 revolutions.

The CLICK and LONGPRESS events are delivered on a timeout. The DBLCLICK event is delivered after a PRESS, RELEASE, PRESS, RELEASE sequence
where this is a short time gap between the middle RELEASE and PRESS.

Errors

If an invalid eventtype is supplied, then an error will be thrown.

rotary.getpos()

Gets the current position and press status of the switch

Syntax

pos, press, queue = rotary.getpos(channel)

Parameters

	channel The rotary module supports three switches. The channel is either 0, 1 or 2.

Returns

	pos The current position of the switch.

	press A boolean indicating if the switch is currently pressed.

	queue The number of undelivered callbacks (normally 0).

Example

print rotary.getpos(0)

rotary.close()

Releases the resources associated with the rotary switch.

Syntax

rotary.close(channel)

Parameters

	channel The rotary module supports three switches. The channel is either 0, 1 or 2.

Example

rotary.close(0)

 RTC FIFO Module

RTC FIFO Module

Since	Origin / Contributor	Maintainer	Source
2015-06-26	DiUS [https://github.com/DiUS], Johny Mattsson [https://github.com/jmattsson], Bernd Meyer bmeyer@dius.com.au	Johny Mattsson [https://github.com/jmattsson]	rtcfifo.c

The rtcfifo module implements a first-in,first-out storage intended for sensor readings. As the name suggests, it is backed by the RTC [https://en.wikipedia.org/wiki/Real-time_clock] user memory and as such survives deep sleep cycles. Conceptually it can be thought of as a cyclic array of { timestamp, name, value } tuples. Internally it uses a space-optimized storage format to allow the greatest number of samples to be kept. This comes with several trade-offs, and as such is not a one-solution-fits-all. Notably:

	Timestamps are stored with second-precision.

	Sample frequency must be at least once every 8.5 minutes. This is a side-effect of delta-compression being used for the time stamps.

	Values are limited to 16 bits of precision, but have a separate field for storing an E-n multiplier. This allows for high fidelity even when working with very small values. The effective range is thus 1E-7 to 65535.

	Sensor names are limited to a maximum of 4 characters.

!!! important

This module uses two sets of RTC memory slots, 10-20 for its control block, and a variable number of slots for samples and sensor names. By default these span 32-127, but this is configurable. Slots are claimed when [`rtcfifo.prepare()`](#rtcfifoprepare) is called.

This is a companion module to the rtcmem and rtctime modules.

rtcfifo.dsleep_until_sample()

When the rtcfifo module is compiled in together with the rtctime module, this convenience function is available. It allows for some measure of separation of concerns, enabling writing of modularized Lua code where a sensor reading abstraction may not need to be aware of the sample frequency (which is largely a policy decision, rather than an intrinsic of the sensor). Use of this function is effectively equivalent to rtctime.dsleep_aligned(interval_us, minsleep_us) where interval_us is what was given to rtcfifo.prepare().

####Syntax
rtcfifo.dsleep_until_sample(minsleep_us)

####Parameter
minsleep_us minimum sleep time, in microseconds

####Example

-- deep sleep until it's time to take the next sample
rtcfifo.dsleep_until_sample(0)

####See also
rtctime.dsleep_aligned()

rtcfifo.peek()

Reads a sample from the rtcfifo. An offset into the rtcfifo may be specified, but by default it reads the first sample (offset 0).

####Syntax:
rtcfifo.peek([offset])

####Parameters
offset Peek at sample at position offset in the fifo. This is a relative offset, from the current head. Zero-based. Default value is 0.

####Returns
The values returned match the input arguments used to rtcfifo.put().

	timestamp timestamp in seconds

	value the value

	neg_e scaling factor

	name sensor name

If no sample is available (at the specified offset), nothing is returned.

####Example

local timestamp, value, neg_e, name = rtcfifo.peek()

rtcfifo.pop()

Reads the first sample from the rtcfifo, and removes it from there.

####Syntax:
rtcfifo.pop()

####Parameters
none

####Returns
The values returned match the input arguments used to rtcfifo.put().

	timestamp timestamp in seconds

	value the value

	neg_e scaling factor

	name sensor name

####Example

while rtcfifo.count() > 0 do
 local timestamp, value, neg_e, name = rtcfifo.pop()
 -- do something with the sample, e.g. upload to somewhere
end

rtcfifo.prepare()

Initializes the rtcfifo module for use.

Calling rtcfifo.prepare() unconditionally re-initializes the storage - any samples stored are discarded.

####Syntax
rtcfifo.prepare([table])

####Parameters
This function takes an optional configuration table as an argument. The following items may be configured:

	interval_us If wanting to make use of the rtcfifo.sleep_until_sample() function, this field sets the sample interval (in microseconds) to use. It is effectively the first argument of rtctime.dsleep_aligned().

	sensor_count Specifies the number of different sensors to allocate name space for. This directly corresponds to a number of slots reserved for names in the variable block. The default value is 5, minimum is 1, and maximum is 16.

	storage_begin Specifies the first RTC user memory slot to use for the variable block. Default is 32. Only takes effect if storage_end is also specified.

	storage_end Specified the end of the RTC user memory slots. This slot number will not be touched. Default is 128. Only takes effect if storage_begin is also specified.

####Returns
nil

####Example

-- Initialize with default values
rtcfifo.prepare()
-- Use RTC slots 19 and up for variable storage
rtcfifo.prepare({storage_begin=21, storage_end=128})

####See also

	rtcfifo.ready()

	rtcfifo.prepare()

rtcfifo.put()

Puts a sample into the rtcfifo.

If the rtcfifo has not been prepared, this function does nothing.

####Syntax
rtcfifo.put(timestamp, value, neg_e, name)

####Parameters

	timestamp Timestamp in seconds. The timestamp would typically come from rtctime.get().

	value The value to store.

	neg_e The effective value stored is valueEneg_e.

	name Name of the sensor. Only the first four (ASCII) characters of name are used.

Note that if the timestamp delta is too large compared to the previous sample stored, the rtcfifo evicts all earlier samples to store this one. Likewise, if name would mean there are more than the sensor_count (as specified to rtcfifo.prepare()) names in use, the rtcfifo evicts all earlier samples.

####Returns
nil

####Example

-- Obtain a sample value from somewhere
local sample = ...
-- Store sample with no scaling, under the name "foo"
rtcfifo.put(rtctime.get(), sample, 0, "foo")

rtcfifo.ready()

Returns non-zero if the rtcfifo has been prepared and is ready for use, zero if not.

####Syntax:
rtcfifo.ready()

####Parameters
none

####Returns
Non-zero if the rtcfifo has been prepared and is ready for use, zero if not.

####Example

-- Prepare the rtcfifo if not already done
if not rtcfifo.ready() then
 rtcfifo.prepare()
end

 RTC User Memory Module

RTC User Memory Module

Since	Origin / Contributor	Maintainer	Source
2015-06-25	DiUS [https://github.com/DiUS], Johny Mattsson [https://github.com/jmattsson]	Johny Mattsson [https://github.com/jmattsson]	rtcmem.c

The rtcmem module provides basic access to the RTC [https://en.wikipedia.org/wiki/Real-time_clock] (Real Time Clock) memory.

The RTC in the ESP8266 contains memory registers which survive a deep sleep, making them highly useful for keeping state across sleep cycles. Some of this memory is reserved for system use, but 128 slots (each 32bit wide) are available for application use. This module provides read and write access to these.

Due to the very limited amount of memory available, there is no mechanism for arbitrating use of particular slots. It is up to the end user to be aware of which memory is used for what, and avoid conflicts. Note that some Lua modules lay claim to certain slots.

This is a companion module to the rtctime and rtcfifo modules.

rtcmem.read32()

Reads one or more 32bit values from RTC user memory.

Syntax

rtcmem.read32(idx [, num])

Parameters

	idx zero-based index to start reading from

	num number of slots to read (default 1)

Returns

The value(s) read from RTC user memory.

If idx is outside the valid range [0,127] this function returns nothing.

If num results in overstepping the end of available memory, the function only returns the data from the valid slots.

Example

val = rtcmem.read32(0) -- Read the value in slot 0
val1, val2 = rtcmem.read32(42, 2) -- Read the values in slots 42 and 43

See also

rtcmem.write32()

rtcmem.write32()

Writes one or more values to RTC user memory, starting at index idx.

Writing to indices outside the valid range [0,127] has no effect.

Syntax

rtcmem.write32(idx, val [, val2, ...])

Parameters

	idx zero-based index to start writing to. Auto-increments if multiple values are given.

	val value to store (32bit)

	val2... additional values to store (optional)

Returns

nil

Example

rtcmem.write32(0, 53) -- Store the value 53 in slot 0
rtcmem.write32(42, 2, 5, 7) -- Store the values 2, 5 and 7 into slots 42, 43 and 44, respectively.

See also

rtcmem.read32()

 RTC Time Module

RTC Time Module

Since	Origin / Contributor	Maintainer	Source
2015-06-25	DiUS [https://github.com/DiUS], Johny Mattsson [https://github.com/jmattsson], Bernd Meyer bmeyer@dius.com.au	Johny Mattsson [https://github.com/jmattsson]	rtctime.c

The rtctime module provides advanced timekeeping support for NodeMCU, including keeping time across deep sleep cycles (provided rtctime.dsleep() is used instead of node.dsleep()). This can be used to significantly extend battery life on battery powered sensor nodes, as it is no longer necessary to fire up the RF module each wake-up in order to obtain an accurate timestamp.

This module is intended for use together with NTP [https://en.wikipedia.org/wiki/Network_Time_Protocol] (Network Time Protocol) for keeping highly accurate real time at all times. Timestamps are available with microsecond precision, based on the Unix Epoch (1970/01/01 00:00:00). However, the accuracy is (in practice) no better then 1ms, and often worse than that.

Time keeping on the ESP8266 is technically quite challenging. Despite being named RTC [https://en.wikipedia.org/wiki/Real-time_clock], the RTC is not really a Real Time Clock in the normal sense of the word. While it does keep a counter ticking while the module is sleeping, the accuracy with which it does so is highly dependent on the temperature of the chip. Said temperature changes significantly between when the chip is running and when it is sleeping, meaning that any calibration performed while the chip is active becomes useless mere moments after the chip has gone to sleep. As such, calibration values need to be deduced across sleep cycles in order to enable accurate time keeping. This is one of the things this module does.

Further complicating the matter of time keeping is that the ESP8266 operates on three different clock frequencies - 52MHz right at boot, 80MHz during regular operation, and 160MHz if boosted. This module goes to considerable length to take all of this into account to properly keep the time.

To enable this module, it needs to be given a reference time at least once (via rtctime.set()). For best accuracy it is recommended to provide reference
times at regular intervals. The sntp.sync() function has an easy way to do this. It is important that a reference time is provided at least twice, with the second time being after a deep sleep.

Note that while the rtctime module can keep time across deep sleeps, it will lose the time if the module is unexpectedly reset.

This module can compensate for the underlying clock not running at exactly the required rate. The adjustment is in steps of 1 part in 2^32 (i.e. around 0.25 ppb). This adjustment
is done automatically if the sntp.sync() is called with the autorepeat flag set. The rate is settable using the set() function below. When the platform
is booted, it defaults to 0 (i.e. nominal). A sample of modules shows that the actual clock rate is temperature dependant, but is normally within 5ppm of the nominal rate. This translates to around 15 seconds per month.

In the automatic update mode it can take a couple of hours for the clock rate to settle down to the correct value. After that, how well it tracks will depend on the amount
of variation in timestamps from the NTP servers. If they are close, then the time will track to within a millisecond or so. If they are further away (say 100ms round trip), then
time tracking is somewhat worse, but normally within 10ms.

!!! important

This module uses RTC memory slots 0-9, inclusive. As soon as [`rtctime.set()`](#rtctimeset) (or [`sntp.sync()`](sntp.md#sntpsync)) has been called these RTC memory slots will be used.

This is a companion module to the rtcmem and SNTP modules.

rtctime.dsleep()

Puts the ESP8266 into deep sleep mode, like node.dsleep(). It differs from node.dsleep() in the following ways:

	Time is kept across the deep sleep. I.e. rtctime.get() will keep working (provided time was available before the sleep).

	This call never returns. The module is put to sleep immediately. This is both to support accurate time keeping and to reduce power consumption.

	The time slept will generally be considerably more accurate than with node.dsleep().

	A sleep time of zero does not mean indefinite sleep, it is interpreted as a zero length sleep instead.

When the sleep timer expires, the platform is rebooted and the Lua code is started with the init.lua file. The clock is set reasonably accurately.

Syntax

rtctime.dsleep(microseconds [, option])

Parameters

	microseconds number of microseconds to sleep for. Maxmium value is 4294967295us, or ~71 minutes.

	option sleep option, see node.dsleep() for specifics.

Returns

This function does not return.

Example

-- sleep for a minute
rtctime.dsleep(60*1000000)

-- sleep for 5 seconds, do not start RF on wakeup
rtctime.dsleep(5000000, 4)

rtctime.dsleep_aligned()

For applications where it is necessary to take samples with high regularity, this function is useful. It provides an easy way to implement a "wake up on the next 5-minute boundary" scheme, without having to explicitly take into account how long the module has been active for etc before going back to sleep.

Syntax

rtctime.dsleep_aligned(aligned_us, minsleep_us [, option])

Parameters

	aligned_us boundary interval in microseconds

	minsleep_us minimum time that will be slept, if necessary skipping an interval. This is intended for sensors where a sample reading is started before putting the ESP8266 to sleep, and then fetched upon wake-up. Here minsleep_us should be the minimum time required for the sensor to take the sample.

	option as with dsleep(), the option sets the sleep option, if specified.

Example

-- sleep at least 3 seconds, then wake up on the next 5-second boundary
rtctime.dsleep_aligned(5*1000000, 3*1000000)

rtctime.epoch2cal()

Converts a Unix timestamp to calendar format. Neither timezone nor DST correction is performed - the result is UTC time.

Syntax

rtctime.epoch2cal(timestamp)

Parameters

timestamp seconds since Unix epoch

Returns

A table containing the fields:

	year 1970 ~ 2038

	mon month 1 ~ 12 in current year

	day day 1 ~ 31 in current month

	hour

	min

	sec

	yday day 1 ~ 366 in current year

	wday day 1 ~ 7 in current weak (Sunday is 1)

Example

tm = rtctime.epoch2cal(rtctime.get())
print(string.format("%04d/%02d/%02d %02d:%02d:%02d", tm["year"], tm["mon"], tm["day"], tm["hour"], tm["min"], tm["sec"]))

rtctime.get()

Returns the current time. If current time is not available, zero is returned.

Syntax

rtctime.get()

Parameters

none

Returns

A three-value timestamp containing:

	sec seconds since the Unix epoch

	usec the microseconds part

	rate the current clock rate offset. This is an offset of rate / 2^32 (where the nominal rate is 1). For example, a value of 4295 corresponds to 1 part per million.

Example

sec, usec, rate = rtctime.get()

See also

rtctime.set()

rtctime.set()

Sets the rtctime to a given timestamp in the Unix epoch (i.e. seconds from midnight 1970/01/01). If the module is not already keeping time, it starts now. If the module was already keeping time, it uses this time to help adjust its internal calibration values. Care is taken that timestamps returned from rtctime.get() never go backwards. If necessary, time is slewed and gradually allowed to catch up.

It is highly recommended that the timestamp is obtained via NTP (see SNTP module), GPS, or other highly accurate time source.

Values very close to the epoch are not supported. This is a side effect of keeping the memory requirements as low as possible. Considering that it's no longer 1970, this is not considered a problem.

Syntax

rtctime.set(seconds, microseconds, [rate])

Parameters

	seconds the seconds part, counted from the Unix epoch

	microseconds the microseconds part

	rate the rate in the same units as for rtctime.get(). The stored rate is not modified if not specified.

Returns

nil

Example

-- Set time to 2015 July 9, 18:29:49
rtctime.set(1436430589, 0)

See also

sntp.sync()

rtctime.adjust_delta()

This takes a time interval in 'system clock microseconds' based on the timestamps returned by tmr.now and returns
an adjusted time interval in 'wall clock microseconds'. The size of the adjustment is typically pretty small as it (roughly) the error in the
crystal clock rate. This function is useful in some precision timing applications.

Syntax

rtctime.adjust_delta(microseconds)

Parameters

	microseconds a time interval measured in system clock microseconds.

Returns

The same interval but measured in wall clock microseconds

Example

local start = tmr.now()
-- do something
local end = tmr.now()
print ('Duration', rtctime.adjust_delta(end - start))

-- You can also go in the other direction (roughly)
local one_second = 1000000
local ticks_in_one_second = one_second - (rtctime.adjust_delta(one_second) - one_second)

 Si7021 Module

Si7021 Module

Since	Origin / Contributor	Maintainer	Source
2017-04-19	fetchbot [https://github.com/fetchbot]	fetchbot [https://github.com/fetchbot]	si7021.c

This module provides access to the Si7021 humidity and temperature sensor.

si7021.firmware()

Read the internal firmware revision of the Si7021 sensor.

Syntax

si7021.firmware()

Parameters

none

Returns

fwrev Firmware version

	0xFF Firmware version 1.0

	0x20 Firmware version 2.0

Example

local sda, scl = 6, 5
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
si7021.setup()

fwrev = si7021.firmware()
print(string.format("FW: %X\r\n", fwrev))

si7021.read()

Syntax

si7021.read()

Parameters

none

Returns

	hum humidity (see note below)

	temp temperature (see note below)

	hum_dec humidity decimal

	temp_dec temperature decimal

!!! note

If using float firmware then `hum` and `temp` are floating point numbers. On an integer firmware, the final values have to be concatenated from `hum` and `hum_dec` / `temp` and `temp_dec`.

Example

local sda, scl = 6, 5
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
si7021.setup()

hum, temp, hum_dec, temp_dec = si7021.read()

-- Integer firmware using this example
print(string.format("Humidity:\t\t%d.%03d\nTemperature:\t%d.%03d\n", hum, hum_dec, temp, temp_dec))

-- Float firmware using this example
print("Humidity: "..hum.."\n".."Temperature: "..temp)

si7021.serial()

Read the individualized 64-bit electronic serial number of the Si7021 sensor.

Syntax

si7021.serial()

Parameters

none

Returns

	sna 32-bit serial number part a

	snb 32-bit serial number part b, upper byte contains the device identification

	0x00 or 0xFF engineering samples

	0x0D 13 Si7013

	0x14 20 Si7020

	0x15 21 Si7021

Example

local sda, scl = 6, 5
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
si7021.setup()

sna, snb = si7021.serial()
print(string.format("SN:\t\t%X%X\nDevice:\tSi70%d", sna, snb, bit.rshift(snb,24)))

si7021.setting()

Settings for the sensors configuration register to adjust measurement resolution, on-chip heater and read the supply voltage status.

Syntax

si7021.setting(RESOLUTION[, HEATER, HEATER_SETTING])

Parameters

	RESOLUTION

	si7021.RH12_TEMP14 Relative Humidity 12 bit - Temperature 14 bit (default)

	si7021.RH08_TEMP12 Relative Humidity 8 bit - Temperature 12 bit

	si7021.RH10_TEMP13 Relative Humidity 10 bit - Temperature 13 bit

	si7021.RH11_TEMP11 Relative Humidity 11 bit - Temperature 11 bit

	HEATER optional

	si7021.HEATER_ENABLE On-chip Heater Enable

	si7021.HEATER_DISABLE On-chip Heater Disable (default)

	HEATER_SETTING optional

	0x00 - 0x0F 3.09 mA - 94.20 mA

Returns

	resolution

	0 Relative Humidity 12 bit - Temperature 14 bit

	1 Relative Humidity 8 bit - Temperature 12 bit

	2 Relative Humidity 10 bit - Temperature 13 bit

	3 Relative Humidity 11 bit - Temperature 11 bit

	vdds

	0 VDD OK (1.9V - 3.6V)

	1 VDD LOW (1.8V - 1.9V)

	heater

	0 Disabled

	1 Enabled

	heater_setting

	0 - 15

Example

local id, sda, scl = 0, 6, 5
i2c.setup(id, sda, scl, i2c.SLOW) -- call i2c.setup() only once
si7021.setup()

res, vdds, heater, heater_set = si7021.setting(si7021.RH12_TEMP14)
res, vdds, heater, heater_set = si7021.setting(si7021.RH12_TEMP14, si7021.HEATER_ENABLE, 0x01)

si7021.setup()

Initializes the device on fixed I²C device address (0x40).

Syntax

si7021.setup()

Parameters

none

Returns

nil

Example

local sda, scl = 6, 5
i2c.setup(0, sda, scl, i2c.SLOW) -- call i2c.setup() only once
si7021.setup()

 Sigma-delta Module

Sigma-delta Module

Since	Origin / Contributor	Maintainer	Source
2016-02-20	Espressif example [http://bbs.espressif.com/viewtopic.php?t=49], Arnim Läuger [https://github.com/devsaurus]	Arnim Läuger [https://github.com/devsaurus]	sigma_delta.c

This module provides access to the sigma-delta [https://en.wikipedia.org/wiki/Delta-sigma_modulation] component. It's a hardware signal generator that can be routed to any of the GPIOs except pin 0.

The signal generation is controlled by the setprescale() and settarget() functions.

	0 < target <= 128

thigh = (prescale + 1) / 80 µs

tperiod = thigh * 256 / target

	128 < target < 256

tlow = (prescale + 1) / 80 µs

tperiod = tlow * 256 / (256 - target)

	target = 0

signal stopped at low

Fixed frequency PWM at ~312.5

kHz is availble with the setpwmduty() function.

sigma_delta.close()

Stops signal generation and reenables GPIO functionality at the specified pin.

Syntax

sigma_delta.close(pin)

Parameters

pin 1~12, IO index

Returns

nil

sigma_delta.setprescale()

Sets the prescale value.

Syntax

`sigma_delta.setprescale(value)

Parameters

value prescale 1 to 255

Returns

nil

See also

sigma_delta.settarget()

sigma_delta.setpwmduty()

Operate the sigma-delta module in PWM-like mode with fixed base frequency.

Syntax

sigma_delta.setpwmduty(ratio)

Parameters

ratio 0...255 for duty cycle 0...100%, 0 stops the signal at low

Returns

nil

Example

-- attach generator to pin 2
sigma_delta.setup(2)
-- set 50% duty cycle ratio (and implicitly start signal)
sigma_delta.setpwmduty(128)
-- stop
sigma_delta.setpwmduty(0)
-- resume with ~99.6% ratio
sigma_delta.setpwmduty(255)
-- stop and detach generator from pin 2
sigma_delta.close(2)

sigma_delta.settarget()

Sets the target value.

Syntax

sigma_delta.settarget(value)

Parameters

value target 0 to 255

Returns

nil

See also

sigma_delta.setprescale()

sigma_delta.setup()

Stops the signal generator and routes it to the specified pin.

Syntax

sigma_delta.setup(pin)

Parameters

pin 1~12, IO index

Returns

nil

 SJSON Module

SJSON Module

Since	Origin / Contributor	Maintainer	Source
2017-02-01	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	sjson

The JSON support module. Allows encoding and decoding to/from JSON.

Please note that nested tables can require a lot of memory to encode. To catch out-of-memory errors, use pcall().

This code using the streaming json library jsonsl [https://github.com/mnunberg/jsonsl] to do the parsing of the string.

This module can be used in two ways. The simpler way is to use it as a direct drop-in for cjson (you can just do _G.cjson = sjson).
The more advanced approach is to use the streaming interface. This allows encoding and decoding of significantly larger objects.

The handling of json null is as follows:

	By default, the decoder represents null as sjson.NULL (which is a userdata object). This is the behavior of cjson.

	The encoder always converts any userdata object into null.

	Optionally, a single string can be specified in both the encoder and decoder. This string will be used in encoding/decoding to represent json null values. This string should not be used
anywhere else in your data structures. A suitable value might be "\0".

When encoding a Lua object, if a function is found, then it is invoked (with no arguments) and the (single) returned value is encoded in the place of the function.

!!! note

All examples below use in-memory JSON or content read from the SPIFFS file system. However, where a streaming implementation really shines is in fetching large JSON structures from the remote resources and extracting values on-the-fly. An elaborate streaming example can be found in the [`/lua_examples`](../../../lua_examples/sjson-streaming.lua) folder.

sjson.encoder()

This creates an encoder object that can convert a Lua object into a JSON encoded string.

####Syntax
sjson.encoder(table [, opts])

####Parameters

	table data to encode

	opts an optional table of options. The possible entries are:

	depth the maximum encoding depth needed to encode the table. The default is 20 which should be enough for nearly all situations.

	null the string value to treat as null.

####Returns
A sjson.encoder object.

sjson.encoder:read

This gets a chunk of JSON encoded data.

####Syntax
encoder:read([size])

####Parameters

	size an optional value for the number of bytes to return. The default is 1024.

####Returns
A string of up to size bytes, or nil if the encoding is complete and all data has been returned.

Example

The following example prints out (in 64 byte chunks) a JSON encoded string containing the first 4k of every file in the file system. The total string
can be bigger than the total amount of memory on the NodeMCU.

function files()
 result = {}
 for k,v in pairs(file.list()) do
 result[k] = function() return file.open(k):read(4096) end
 end
 return result
end

local encoder = sjson.encoder(files())

while true do
 data = encoder:read(64)
 if not data then
 break
 end
 print(data)
end

sjson.encode()

Encode a Lua table to a JSON string. This is a convenience method provided for backwards compatibility with cjson.

####Syntax
sjson.encode(table [, opts])

####Parameters

	table data to encode

	opts an optional table of options. The possible entries are:

	depth the maximum encoding depth needed to encode the table. The default is 20 which should be enough for nearly all situations.

	null the string value to treat as null.

####Returns
JSON string

####Example

ok, json = pcall(sjson.encode, {key="value"})
if ok then
 print(json)
else
 print("failed to encode!")
end

sjson.decoder()

This makes a decoder object that can parse a JSON encoded string into a Lua object. A metatable can be specified for all the newly created Lua tables. This allows
you to handle each value as it is inserted into each table (by implementing the __newindex method).

####Syntax
sjson.decoder([opts])

Parameters

	opts an optional table of options. The possible entries are:

	depth the maximum encoding depth needed to encode the table. The default is 20 which should be enough for nearly all situations.

	null the string value to treat as null.

	metatable a table to use as the metatable for all the new tables in the returned object.

Returns

A sjson.decoder object

####Metatable

There are two principal methods that are invoked in the metatable (if it is present).

	__newindex this is the standard method invoked whenever a new table element is created.

	checkpath this is invoked (if defined) whenever a new table is created. It is invoked with two arguments:

	table this is the newly created table

	path this is a list of the keys from the root.
It must return true if this object is wanted in the result, or false otherwise.

For example, when decoding { "foo": [1, 2, []] } the checkpath will be invoked as follows:

	checkpath({}, {}) the table argument is the object that will correspond with the value of the JSON object.

	checkpath({}, {"foo"}) the table argument is the object that will correspond with the value of the outer JSON array.

	checkpath({}, {"foo", 3}) the table argument is the object that will correspond to the empty inner JSON array.

When the checkpath method is called, the metatable has already be associated with the new table. Thus the checkpath method can replace it
if desired. For example, if you are decoding { "foo": { "bar": [1,2,3,4], "cat": [5] } } and, for some reason, you did not want to capture the
value of the "bar" key, then there are various ways to do this:

	In the __newindex metamethod, just check for the value of the key and skip the rawset if the key is "bar". This only works if you want to skip all the
"bar" keys.

	In the checkpath method, if the path is ["foo"], then return false.

	Use the following checkpath: checkpath=function(tab, path) tab['__json_path'] = path return true end This will save the path in each constructed object. Now the __newindex method can perform more sophisticated filtering.

The reason for being able to filter is that it enables processing of very large JSON responses on a memory constrained platform. Many APIs return lots of information
which would exceed the memory budget of the platform. For example, https://api.github.com/repos/nodemcu/nodemcu-firmware/contents is over 13kB, and yet, if
you only need the download_url keys, then the total size is around 600B. This can be handled with a simple __newindex method.

sjson.decoder:write

This provides more data to be parsed into the Lua object.

####Syntax
decoder:write(string)

####Parameters

	string the next piece of JSON encoded data

####Returns
The constructed Lua object or nil if the decode is not yet complete.

####Errors
If a parse error occurrs during this decode, then an error is thrown and the parse is aborted. The object cannot be used again.

sjson.decoder:result

This gets the decoded Lua object, or raises an error if the decode is not yet complete. This can be called multiple times and will return the
same object each time.

####Syntax
decoder:result()

####Errors
If the decode is not complete, then an error is thrown.

####Example

local decoder = sjson.decoder()

decoder:write("[10, 1")
decoder:write("1")
decoder:write(", \"foo\"]")

for k,v in pairs(decoder:result()) do
 print (k, v)
end

The next example demonstrates the use of the metatable argument. In this case it just prints out the operations, but it could suppress the assignment
altogether if desired.

local decoder = sjson.decoder({metatable=
 {__newindex=function(t,k,v) print("Setting '" .. k .. "' = '" .. tostring(v) .."'")
 rawset(t,k,v) end}})

decoder:write('[1, 2, {"foo":"bar"}]')

sjson.decode()

Decode a JSON string to a Lua table. This is a convenience method provided for backwards compatibility with cjson.

####Syntax
sjson.decode(str[, opts])

####Parameters

	str JSON string to decode

	opts an optional table of options. The possible entries are:

	depth the maximum encoding depth needed to encode the table. The default is 20 which should be enough for nearly all situations.

	null the string value to treat as null.

	metatable a table to use as the metatable for all the new tables in the returned object. See the metatable section in the description of sjson.decoder() above.

####Returns
Lua table representation of the JSON data

####Errors
If the string is not valid JSON, then an error is thrown.

####Example

t = sjson.decode('{"key":"value"}')
for k,v in pairs(t) do print(k,v) end

##Constants

There is one constant, sjson.NULL, which is used in Lua structures to represent the presence of a JSON null.

 SNTP Module

SNTP Module

Since	Origin / Contributor	Maintainer	Source
2015-06-30	DiUS [https://github.com/DiUS], Johny Mattsson [https://github.com/jmattsson]	Johny Mattsson [https://github.com/jmattsson]	sntp.c

The SNTP module implements a Simple Network Time Procotol [https://en.wikipedia.org/wiki/Network_Time_Protocol#SNTP] client. This includes support for the "anycast" NTP [https://en.wikipedia.org/wiki/Network_Time_Protocol] mode where, if supported by the NTP server(s) in your network, it is not necessary to even know the IP address of the NTP server.
By default, this will use the servers 0.nodemcu.pool.ntp.org through 3.nodemcu.pool.ntp.org. These servers will be adequate for nearly all usages.

When compiled together with the rtctime module it also offers seamless integration with it, potentially reducing the process of obtaining NTP synchronization to a simple sntp.sync() call without any arguments.

sntp.sync()

Attempts to obtain time synchronization.

For best results you may want to to call this periodically in order to compensate for internal clock drift. As stated in the rtctime module documentation it's advisable to sync time after deep sleep and it's necessary to sync after module reset (add it to init.lua after WiFi initialization).
Note that either a single server can be provided as an argument (name or address), or a list (table) of servers can be provided.

If all of the supplied host names/addresses are invalid, then the error callback will be called with argument type 1. Otherwise, if
there is at least one valid name/address, then then sync will be performed.

If any sync operation fails (maybe the device is disconnected from the internet), then all the names will be looked up again.

Syntax

sntp.sync([server_ip], [callback], [errcallback], [autorepeat])
sntp.sync({ server1, server2, .. }, [callback], [errcallback], [autorepeat])

Parameters

	server_ip if non-nil, that server is used. If nil, then the last contacted server is used. If there is no previous server, then the pool ntp servers are used. If the anycast server was used, then the first responding server will be saved.

	server1, server2 these are either the ip address or dns name of one or more servers to try.

	callback if provided it will be invoked on a successful synchronization, with four parameters: seconds, microseconds, server and info. Note that when the rtctime module is available, there is no need to explicitly call rtctime.set() - this module takes care of doing so internally automatically, for best accuracy. The info parameter is a table of (semi) interesting values. These are described below.

	errcallback failure callback with two parameters. The first is an integer describing the type of error. The module automatically performs a number of retries before giving up and reporting the error. The second is a string containing supplementary information (if any). Error codes:

	1: DNS lookup failed (the second parameter is the failing DNS name)

	2: Memory allocation failure

	3: UDP send failed

	4: Timeout, no NTP response received

	autorepeat if this is non-nil, then the synchronization will happen every 1000 seconds and try and condition the clock if possible. The callbacks will be called after each sync operation.

Returns

nil

Info table

This is passed to the success callback and contains useful information about the time synch that just completed. The keys in this table are:

	offset_s This is an optional field and contains the number of seconds that the clock was adjusted. This is only present for large (many second) adjustments. Typically, this is only present on the initial sync call.

	offset_us This is an optional field (but one of offset_s and offset_us will always be present). This contains the number of microseconds that the clock was adjusted.

	delay_us This is the round trip delay to the server in microseconds. Thie setting uncertainty is somewhat less than this value.

	stratum This is the stratum of the server.

	leap This contains the leap bits from the NTP protocol. 0 means that no leap second is pending, 1 is a pending extra leap second at the end of the UTC month, and 2 is a pending leap second removal at the end of the UTC month.

Example

-- Use the nodemcu specific pool servers and keep the time synced forever (this has the autorepeat flag set).
sntp.sync(nil, nil, nil, 1)

-- Single shot sync time with a server on the local network.
sntp.sync("224.0.1.1",
 function(sec, usec, server, info)
 print('sync', sec, usec, server)
 end,
 function()
 print('failed!')
 end
)

See also

rtctime.set()

sntp.setoffset

Sets the offset between the rtc clock and the NTP time. Note that NTP time has leap seconds in it and hence it runs slow when a leap second is
inserted. The setoffset call enables explicit leap second tracking and causes the rtc clock to tick more evenly -- but it gets out of step
with wall clock time. The number of seconds is the offset.

Syntax

sntp.setoffset([offset])

Parameters

	offset The offset between NTP time and the rtc time. This can be omitted, and defaults to zero. This call enables the offset tracking.

Returns

nil

sntp.getoffset

Gets the offset between the rtc clock and the NTP time. This value should be subtracted from the rtc time to get the NTP time -- which
corresponds to wall clock time. If the offset returned has changed from the pervious call, then there has been a leap second inbetween.

Syntax

offset = sntp.getoffset()

Returns

The current offset.

 Somfy module

Somfy module

Since	Origin / Contributor	Maintainer	Source
2016-09-27	vsky279 [https://github.com/vsky279]	vsky279 [https://github.com/vsky279]	somfy.c

This module provides a simple interface to control Somfy blinds via an RF transmitter (433.42 MHz). It is based on Nickduino Somfy Remote Arduino skecth [https://github.com/Nickduino/Somfy_Remote].

The hardware used is the standard 433 MHz RF transmitter. Unfortunately these chips are usually transmitting at he frequency of 433.92MHz so the crystal resonator should be replaced with the 433.42 MHz resonator though some reporting that it is working even with the original crystal.

To understand details of the Somfy protocol please refer to Somfy RTS protocol [https://pushstack.wordpress.com/somfy-rts-protocol/] and also discussion here [https://forum.arduino.cc/index.php?topic=208346.0].

The module is using hardware timer so it cannot be used at the same time with other NodeMCU modules using the hardware timer, i.e. sigma delta, pcm, perf, or pwm modules.

somfy.sendcommand()

Builds an frame defined by Somfy protocol and sends it to the RF transmitter.

Syntax

somfy.sendcommand(pin, remote_address, command, rolling_code, repeat_count, call_back)

Parameters

	pin GPIO pin the RF transmitter is connected to.

	remote_address address of the remote control. The device to be controlled is programmed with the addresses of the remote controls it should listen to.

	command command to be transmitted. Can be one of somfy.SOMFY_UP, somfy.SOMFY_DOWN, somfy.SOMFY_PROG, somfy.SOMFY_STOP

	rolling_code The rolling code is increased every time a button is pressed. The receiver only accepts command if the rolling code is above the last received code and is not to far ahead of the last received code. This window is in the order of a 100 big. The rolling code needs to be stored in the EEPROM (i.e. filesystem) to survive the ESP8266 reset.

	repeat_count how many times the command is repeated

	call_back a function to be called after the command is transmitted. Allows chaining commands to set the blinds to a defined position.

My original remote is TELIS 4 MODULIS RTS [https://www.somfy.co.uk/products/1810765/telis-4-modulis-rts]. This remote is working with the additional info - additional 56 bits that follow data (shortening the Inter-frame gap). It seems that the scrumbling alhorithm has not been revealed yet.

When I send the somfy.DOWN command, repeating the frame twice (which seems to be the standard for a short button press), i.e. repeat_count equal to 2, the blinds go only 1 step down. This corresponds to the movement of the wheel on the original remote. The down button on the original remote sends also somfy.DOWN command but the additional info is different and this makes the blinds go full down. Fortunately it seems that repeating the frame 16 times makes the blinds go fully down.

Returns

nil

Example

To start with controlling your Somfy blinds you need to:

	Choose an arbitrary remote address (different from your existing remote) - 123 in this example

	Choose a starting point for the rolling code. Any unsigned int works, 1 is a good start

	Long-press the program button of your existing remote control until your blind goes up and down slightly

	execute somfy.sendcommand(4, 123, somfy.PROG, 1, 2) - the blinds will react and your ESP8266 remote control is now registered

	running somfy.sendcommand(4, 123, somfy.DOWN, 2, 16) - fully closes the blinds

For more elaborated example please refer to somfy.lua.

 SPI Module

SPI Module

Since	Origin / Contributor	Maintainer	Source
2015-01-16	Ibrahim Abd Elkader [https://github.com/iabdalkader]	Arnim Läuger [https://github.com/devsaurus]	spi.c

All transactions for sending and receiving are most-significant-bit first and least-significant last.
For technical details of the underlying hardware refer to metalphreak's ESP8266 HSPI articles [http://d.av.id.au/blog/tag/hspi/].

!!! note

The ESP hardware provides two SPI busses, with IDs 0, and 1, which map to pins generally labelled SPI and HSPI. If you are using any kind of development board which provides flash, then bus ID 0 (SPI) is almost certainly used for communicating with the flash chip. You probably want to choose bus ID 1 (HSPI) for your communication, as you will have uncontended use of it.

HSPI signals are fixed to the following IO indices and GPIO pins:

Signal	IO index	ESP8266 pin
HSPI CLK	5	GPIO14
HSPI /CS	8	GPIO15
HSPI MOSI	7	GPIO13
HSPI MISO	6	GPIO12

See also spi.setup().

High Level Functions

The high level functions provide a send & receive API for half- and
full-duplex mode. Sent and received data items are restricted to 1 - 32 bit
length and each data item is surrounded by (H)SPI CS inactive.

spi.recv()

Receive data from SPI.

Syntax

spi.recv(id, size[, default_data])

Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	size number of data items to be read

	default_data default data being sent on MOSI (all-1 if omitted)

Returns

String containing the bytes read from SPI.

####See also
spi.send()

spi.send()

Send data via SPI in half-duplex mode. Send & receive data in full-duplex mode.

Syntax

HALFDUPLEX:

wrote = spi.send(id, data1[, data2[, ..., datan]])

FULLDUPLEX:

wrote[, rdata1[, ..., rdatan]] = spi.send(id, data1[, data2[, ..., datan]])

Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	data data can be either a string, a table or an integer number.
Each data item is considered with databits number of bits.

Returns

	wrote number of written bytes

	rdata received data when configured with spi.FULLDUPLEX
Same data type as corresponding data parameter.

Example

=spi.send(1, 0, 255, 255, 255)
4 255 192 32 0
x = {spi.send(1, 0, 255, 255, 255)}
=x[1]
4
=x[2]
255
=x[3]
192
=x[4]
32
=x[5]
0
=x[6]
nil
=#x
5

_, _, x = spi.send(1, 0, {255, 255, 255})
=x[1]
192
=x[2]
32
=x[3]
0

See also

	spi.setup()

	spi.recv()

spi.setup()

Set up the SPI configuration.
Refer to Serial Peripheral Interface Bus [https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus#Clock_polarity_and_phase] for details regarding the clock polarity and phase definition.

Calling spi.setup() will route the HSPI signals to the related pins, overriding previous configuration and control by the gpio module. It is possible to revert any pin back to gpio control if its HSPI functionality is not needed, just set the desired gpio.mode() for it. This is recommended especially for the HSPI /CS pin function in case that SPI slave-select is driven from a different pin by gpio.write() - the SPI engine would toggle pin 8 otherwise.

Syntax

spi.setup(id, mode, cpol, cpha, databits, clock_div[, duplex_mode])

Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	mode select master or slave mode

	spi.MASTER

	spi.SLAVE - not supported currently

	cpol clock polarity selection

	spi.CPOL_LOW

	spi.CPOL_HIGH

	cpha clock phase selection

	spi.CPHA_LOW

	spi.CPHA_HIGH

	databits number of bits per data item 1 - 32

	clock_div SPI clock divider, f(SPI) = 80 MHz / clock_div, 1 .. n (0 defaults to divider 8)

	duplex_mode duplex mode

	spi.HALFDUPLEX (default when omitted)

	spi.FULLDUPLEX

Returns

Number: 1

Example

spi.setup(1, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 8)
-- we won't be using the HSPI /CS line, so disable it again
gpio.mode(8, gpio.INPUT, gpio.PULLUP)

Low Level Hardware Functions

The low level functions provide a hardware-centric API for application
scenarios that need to excercise more complex SPI transactions. The
programming model is built up around the HW send and receive buffers and SPI
transactions are initiated with full control over the hardware features.

spi.get_miso()

Extract data items from MISO buffer after spi.transaction().

Syntax

data1[, data2[, ..., datan]] = spi.get_miso(id, offset, bitlen, num)
string = spi.get_miso(id, num)

Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	offset bit offset into MISO buffer for first data item

	bitlen bit length of a single data item

	num number of data items to retrieve

####Returns
num data items or string

See also

spi.transaction()

spi.set_mosi()

Insert data items into MOSI buffer for spi.transaction().

Syntax

spi.set_mosi(id, offset, bitlen, data1[, data2[, ..., datan]])
spi.set_mosi(id, string)

####Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	offset bit offset into MOSI buffer for inserting data1 and subsequent items

	bitlen bit length of data1, data2, ...

	data data items where bitlen number of bits are considered for the transaction.

	string send data to be copied into MOSI buffer at offset 0, bit length 8

Returns

nil

See also

spi.transaction()

spi.transaction()

Start an SPI transaction, consisting of up to 5 phases:

	Command

	Address

	MOSI

	Dummy

	MISO

Syntax

spi.transaction(id, cmd_bitlen, cmd_data, addr_bitlen, addr_data, mosi_bitlen, dummy_bitlen, miso_bitlen)

Parameters

	id SPI ID number: 0 for SPI, 1 for HSPI

	cmd_bitlen bit length of the command phase (0 - 16)

	cmd_data data for command phase

	addr_bitlen bit length for address phase (0 - 32)

	addr_data data for command phase

	mosi_bitlen bit length of the MOSI phase (0 - 512)

	dummy_bitlen bit length of the dummy phase (0 - 256)

	miso_bitlen bit length of the MISO phase (0 - 512) for half-duplex.
Full-duplex mode is activated with a negative value.

####Returns
nil

####See also

	spi.set_mosi()

	spi.get_miso()

 sqlite3 Module

sqlite3 Module

Since	Origin / Contributor	Maintainer	Source
2017-06-20	Luiz Felipe Silva [https://github.com/luizfeliperj]	Luiz Felipe Silva [https://github.com/luizfeliperj]	sqlite3.c

This module is based on LuaSQLite3 [http://lua.sqlite.org/index.cgi/index] module developed by Tiago Dionizio and Doug Currie with contributions from Thomas Lauer, Michael Roth, and Wolfgang Oertl.

This module depens on SQLite3 [http://www.sqlite.org/] library developed by Dwayne Richard Hipp.

For instruction on how to use this module or further documentation, please, refer to LuaSQLite3 Documentation [http://lua.sqlite.org/index.cgi/doc/tip/doc/lsqlite3.wiki].

This module is a stripped down version of SQLite, with every possible OMIT_* configuration enable. The enabled OMIT_* directives are available in the module's config file.

The SQLite3 module vfs layer integration with NodeMCU was developed by me.

Simple example

db = sqlite3.open_memory()

db:exec[[
 CREATE TABLE test (id INTEGER PRIMARY KEY, content);

 INSERT INTO test VALUES (NULL, 'Hello, World');
 INSERT INTO test VALUES (NULL, 'Hello, Lua');
 INSERT INTO test VALUES (NULL, 'Hello, Sqlite3')
]]

for row in db:nrows("SELECT * FROM test") do
 print(row.id, row.content)
end

 Struct Module

Struct Module

Since	Origin / Contributor	Maintainer	Source
2015-02-13	Roberto Ierusalimschy [http://www.inf.puc-rio.br/~roberto/struct/], Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	struct.c

This module offers basic facilities to convert Lua values to and from C structs. Its main functions are struct.pack, which packs multiple Lua values into a struct-like string; and struct.unpack, which unpacks multiple Lua values from a given struct-like string.

The first argument to both functions is a format string, which describes the layout of the structure. The format string is a sequence of conversion elements, which respect the current endianess and the current alignment requirements. Initially, the current endianess is the machine's native endianness and the current alignment requirement is 1 (meaning no alignment at all). You can change these settings with appropriate directives in the format string.

Note that the float and double conversions are only available with a floating point NodeMCU build.

Format String

The elements in the format string are as follows:

	" " (empty space) ignored.

	"!n" flag to set the current alignment requirement to n
(necessarily a power of 2); an absent n means the machine's native
alignment.

	">" flag to set mode to big endian.

	"<" flag to set mode to little endian.

	"x" a padding zero byte with no corresponding Lua value.

	"b" a signed char.

	"B" an unsigned char.

	"h" a signed short (native size).

	"H" an unsigned short (native size).

	"l" a signed long (native size).

	"L" an unsigned long (native size).

	"T" a size_t (native size).

	"in" a signed integer with n bytes. An absent n means the
native size of an int.

	"In" like "in" but unsigned.

	"f" a float (native size).

	"d" a double (native size).

	"s" a zero-terminated string.

	"cn" a sequence of exactly n chars corresponding to a single Lua
string. An absent n means 1. When packing, the given string must
have at least n characters (extra characters are discarded).

	"c0" this is like "cn", except that the n is given by other
means: When packing, n is the length of the given string; when
unpacking, n is the value of the previous unpacked value (which
must be a number). In that case, this previous value is not
returned.

Examples

To pack and unpack the structure

 struct Str {
 char b;
 int i[4];
 };

you can use the string "<!4biiii".

To pack a string with its length coded in its first byte, use the
following code:

 x = struct.pack("Bc0", string.len(s), s)

To unpack that string, do as follows:

 s = struct.unpack("Bc0", x)

Note that the length (read by the element "B") is not returned.

To pack a string in a fixed-width field of 10 characters padded with
blanks, do as follows:

 x = struct.pack("c10", s .. string.rep(" ", 10))

struct.pack()

Returns a string containing the values d1, d2, etc. packed
according to the format string fmt.

Syntax

struct.pack (fmt, d1, d2, ...)

Parameters

	fmt The format string in the format above

	d1 The first data item to be packed

	d2 The second data item to be packed etc.

Returns

The packed string.

Example

s = struct.pack("I", 0x41424344)
print(s)

struct.unpack()

Returns the values packed in string s according to the format
string fmt. An optional i marks where in s to start reading
(default is 1). After the read values, this function also returns
the index in s where it stopped reading, which is also where you
should start to read the rest of the string.

Syntax

struct.unpack (fmt, s[, offset])

Parameters

	fmt The format string in the format above

	s The string holding the data to be unpacked

	offset The position to start in the string (default is 1)

Returns

All the unpacked data.

Example

Suppose we have to decode a string s with an unknown number of
doubles; the end is marked by a zero value. We can use the following
code:

 local a = {}
 local i = 1 -- index where to read
 while true do
 local d
 d, i = struct.unpack("d", s, i)
 if d == 0 then break end
 a[#a + 1] = d
 end

struct.size()

Returns the size of a string formatted according to the format
string fmt. The format string should contain neither the option
s nor the option c0.

Syntax

struct.size (fmt)

Parameters

	fmt The format string in the format above

Returns

The size of the string that would be output in a pack operation with this format string.

Example

print(struct.size("i"))

This prints the size of the native integer type.

License

This package is distributed under the MIT license. See copyright notice
at the end of file struct.c.

 Switec Module

Switec Module

Since	Origin / Contributor	Maintainer	Source
2016-06-26	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	switec.c

This module controls a Switec X.27 [http://www.jukenswisstech.com/?page_id=103] (or compatible) instrument stepper motor. These are the
stepper motors that are used in modern automotive instrument clusters. They are incredibly cheap
and can be found at your favorite auction site or Chinese shopping site. There are varieties
which are dual axis -- i.e. have two stepper motors driving two concentric shafts so you
can mount two needles from the same axis.

These motors run off 5V (some may work off 3.3V). They draw under 20mA and are designed to be
driven directly from MCU pins. Since the nodemcu runs at 3.3V, a level translator is required.
An octal translator like the 74LVC4245A [http://www.nxp.com/products/discretes-and-logic/logic/voltage-level-translators/octal-dual-supply-translating-transceiver-3-state-based-on-pip-74lvc4245a:74LVC4245A] can perfom this translation. It also includes all the
protection diodes required.

These motors can be driven off three pins, with pin2 and pin3 being the same GPIO pin.
If the motor is directly connected to the MCU, then the current load is doubled and may exceed
the maximum ratings. If, however, a driver chip is being used, then the load on the MCU is negligible
and the same MCU pin can be connected to two driver pins. In order to do this, just specify
the same pin for pin2 and pin3.

These motors do not have absolute positioning, but come with stops at both ends of the range.
The startup procedure is to drive the motor anti-clockwise until it is guaranteed that the needle
is on the step. Then this point can be set as zero. It is important not to let the motor
run into the endstops during normal operation as this will make the pointing inaccurate.
This module does not enforce any range limiting.

!!! important

This module uses the hardware timer interrupt and hence it cannot be used at the same time as the PWM module. Both modules can be compiled into the same firmware image, but an application can only use one. It may be possible for an application to alternate between `switec` and `pwm`, but care must be taken.

switec.setup()

Initialize the nodemcu to talk to a switec X.27 or compatible instrument stepper motor. The default
slew rate is set so that it should work for most motors. Some motors can run at 600 degress per second.

Syntax

switec.setup(channel, pin1, pin2, pin3, pin4 [, maxDegPerSec])

Parameters

	channel The switec module supports three stepper motors. The channel is either 0, 1 or 2.

	pin1 This is a GPIO number and connects to pin 1 on the stepper.

	pin2 This is a GPIO number and connects to pin 2 on the stepper.

	pin3 This is a GPIO number and connects to pin 3 on the stepper.

	pin4 This is a GPIO number and connects to pin 4 on the stepper.

	maxDegPerSec (optional) This can set to limit the maximum slew rate. The default is 400 degrees per second.

Returns

Nothing. If the arguments are in error, or the operation cannot be completed, then an error is thrown.

Note

Once a channel is setup, it cannot be re-setup until the needle has stopped moving.

Example

switec.setup(0, 5, 6, 7, 8)

switec.moveto()

Starts the needle moving to the specified position. If the needle is already moving, then the current
motion is cancelled, and the needle will move to the new position. It is possible to get a callback
when the needle stops moving. This is not normally required as multiple moveto operations can
be issued in quick succession. During the initial calibration, it is important. Note that the
callback is not guaranteed to be called -- it is possible that the needle never stops at the
target location before another moveto operation is triggered.

Syntax

switec.moveto(channel, position[, stoppedCallback)

Parameters

	channel The switec module supports three stepper motors. The channel is either 0, 1 or 2.

	position The position (number of steps clockwise) to move the needle. Typically in the range 0 to around 1000.

	stoppedCallback (optional) callback to be invoked when the needle stops moving.

Errors

The channel must have been setup, otherwise an error is thrown.

Example

switec.moveto(0, 1000, function ()
 switec.moveto(0, 0)
end)

switec.reset()

This sets the current position of the needle as being zero. The needle must be stationary.

Syntax

switec.reset(channel)

Parameters

	channel The switec module supports three stepper motors. The channel is either 0, 1 or 2.

Errors

The channel must have been setup and the needle must not be moving, otherwise an error is thrown.

switec.getpos()

Gets the current position of the needle and whether it is moving.

Syntax

switec.getpos(channel)

Parameters

	channel The switec module supports three stepper motors. The channel is either 0, 1 or 2.

Returns

	position the current position of the needle

	moving 0 if the needle is stationary. 1 for clockwise, -1 for anti-clockwise.

switec.close()

Releases the resources associated with the stepper.

Syntax

switec.close(channel)

Parameters

	channel The switec module supports three stepper motors. The channel is either 0, 1 or 2.

Errors

The needle must not be moving, otherwise an error is thrown.

Calibration

In order to set the zero point correctly, the needle should be driven anti-clockwise until
it runs into the end stop. Then the zero point can be set. The value of -1000 is used as that is
larger than the range of the motor -- i.e. it drives anti-clockwise through the entire range and
onto the end stop.

switec.setup(0, 5,6,7,8)
calibration = true
switec.moveto(0, -1000, function()
 switec.reset(0)
 calibration = false
end)

Other moveto operations should not be performed while calibration is set.

 TCS34725 module

TCS34725 module

Since	Origin / Contributor	Maintainer	Source
2017-04-02	tjhowse [https://github.com/tjhowse]	tjhowse [https://github.com/tjhowse]	tcs34725.c

This module provides a simple interface to TCS34725 colour/light sensors [https://www.adafruit.com/product/1334] (Adafruit).

!!! Warning

You must call [`setup()`](#tcs34725setup) before you can start reading values!

tcs34725.setup()

Initialization via this call is mandatory before values can be read.

Syntax

tcs34725.setup()

Returns

0 if setup has failed (no sensor connected?), 1 if sensor is TCS34725

Example

tcs34725.setup()
tcs34725.enable(function()
 print("TCS34275 Enabled")
 clear,red,green,blue=tcs34725.raw()
end)

tcs34725.enable(function())

Enables the sensor. Can be used to wake up after a disable.

Syntax

tcs34725.enable(function()
 print("TCS34275 Enabled")
 clear,red,green,blue=tcs34725.raw()
end)

Parameters

A function called when the sensor has finished initialising.

Returns

0

tcs34725.disable()

Disables the sensor. Enables a low-power sleep mode.

Syntax

tcs34725.disable()

Returns

0

tcs34725.raw()

Reads the clear, red, green and blue values from the sensor.

Syntax

clear,red,green,blue=tcs34725.raw()

Returns

clear, red, green, blue in uint16_t.

tcs34725.setGain()

Sets the gain of the sensor. Must be called after the sensor is enabled.

Syntax

tcs34725.setGain(gain)

Parameters

gain	Gain
0x00	TCS34725_GAIN_1X
0x01	TCS34725_GAIN_4X
0x02	TCS34725_GAIN_16X
0x03	TCS34725_GAIN_60X

Returns

0

tcs34725.setIntegrationTime()

Sets the integration time of the sensor. Must be called after the sensor is enabled.

Syntax

tcs34725.setIntegrationTime(time)

Parameters

time	Gain
0xFF	TCS34725_INTEGRATIONTIME_2_4MS
0xF6	TCS34725_INTEGRATIONTIME_24MS
0xD5	TCS34725_INTEGRATIONTIME_101MS
0xC0	TCS34725_INTEGRATIONTIME_154MS
0x00	TCS34725_INTEGRATIONTIME_700MS

Returns

0

 TLS Module

TLS Module

Since	Origin / Contributor	Maintainer	Source
2016-12-15	PhoeniX [https://github.com/djphoenix]	PhoeniX [https://github.com/djphoenix]	tls.c

SSL/TLS support

!!! attention
The TLS module depends on the net module, it is a required dependency.

NodeMCU includes the open-source version of mbed TLS library [https://tls.mbed.org/]. With the NodeMCU default configuration it supports TLS 1.0 / 1.1 / 1.2 and the most common cipher suites, including DH/ECDH. ECDSA-based cipher suites are disabled by default.

!!! tip
The complete configuration is stored in user_mbedtls.h. This is the file to edit if you build your own firmware and want to change mbed TLS behavior.

For a list of features have a look at the mbed TLS features page [https://tls.mbed.org/core-features].

This module handles certificate verification when SSL/TLS is in use.

tls.createConnection()

Creates TLS connection.

Syntax

tls.createConnection()

Parameters

none

Returns

tls.socket sub module

Example

tls.createConnection()

tls.socket Module

tls.socket:close()

Closes socket.

Syntax

close()

Parameters

none

Returns

nil

See also

tls.createConnection()

tls.socket:connect()

Connect to a remote server.

Syntax

connect(port, ip|domain)

Parameters

	port port number

	ip IP address or domain name string

Returns

nil

See also

tls.socket:on()

tls.socket:dns()

Provides DNS resolution for a hostname.

Syntax

dns(domain, function(tls.socket, ip))

Parameters

	domain domain name

	function(tls.socket, ip) callback function. The first parameter is the socket, the second parameter is the IP address as a string.

Returns

nil

Example

sk = tls.createConnection()
sk:dns("google.com", function(conn, ip) print(ip) end)
sk = nil

tls.socket:getpeer()

Retrieve port and ip of peer.

Syntax

getpeer()

Parameters

none

Returns

	ip of peer

	port of peer

tls.socket:hold()

Throttle data reception by placing a request to block the TCP receive function. This request is not effective immediately, Espressif recommends to call it while reserving 5*1460 bytes of memory.

Syntax

hold()

Parameters

none

Returns

nil

See also

tls.socket:unhold()

tls.socket:on()

Register callback functions for specific events.

Syntax

on(event, function())

Parameters

	event string, which can be "connection", "reconnection", "disconnection", "receive" or "sent"

	function(tls.socket[, string]) callback function. The first parameter is the socket.
If event is "receive", the second parameter is the received data as string.
If event is "reconnection", the second parameter is the reason of connection error (string).

Returns

nil

Example

srv = tls.createConnection()
srv:on("receive", function(sck, c) print(c) end)
srv:on("connection", function(sck, c)
 -- Wait for connection before sending.
 sck:send("GET / HTTP/1.1\r\nHost: google.com\r\nConnection: keep-alive\r\nAccept: */*\r\n\r\n")
end)
srv:connect(443,"google.com")

!!! note
The receive event is fired for every network frame! See details at net.socket:on().

See also

	tls.createConnection()

	tls.socket:hold()

tls.socket:send()

Sends data to remote peer.

Syntax

send(string)

Parameters

	string data in string which will be sent to server

Returns

nil

Note

Multiple consecutive send() calls aren't guaranteed to work (and often don't) as network requests are treated as separate tasks by the SDK. Instead, subscribe to the "sent" event on the socket and send additional data (or close) in that callback. See #730 [https://github.com/nodemcu/nodemcu-firmware/issues/730#issuecomment-154241161] for details.

See also

tls.socket:on()

tls.socket:unhold()

Unblock TCP receiving data by revocation of a preceding hold().

Syntax

unhold()

Parameters

none

Returns

nil

See also

tls.socket:hold()

tls.cert Module

tls.cert.verify()

Controls the vertificate verification process when the Nodemcu makes a secure connection.

Syntax

tls.cert.verify(enable)

tls.cert.verify(pemdata)

Parameters

	enable A boolean which indicates whether verification should be enabled or not. The default at boot is false.

	pemdata A string containing the CA certificate to use for verification.

Returns

true if it worked.

Can throw a number of errors if invalid data is supplied.

Example

Make a secure https connection and verify that the certificate chain is valid.

tls.cert.verify(true)
http.get("https://example.com/info", nil, function (code, resp) print(code, resp) end)

Load a certificate into the flash chip and make a request. This is the startssl [https://startssl.com] root certificate. They provide free
certificates.

tls.cert.verify([[
-----BEGIN CERTIFICATE-----
MIIHyTCCBbGgAwIBAgIBATANBgkqhkiG9w0BAQUFADB9MQswCQYDVQQGEwJJTDEW
MBQGA1UEChMNU3RhcnRDb20gTHRkLjErMCkGA1UECxMiU2VjdXJlIERpZ2l0YWwg
Q2VydGlmaWNhdGUgU2lnbmluZzEpMCcGA1UEAxMgU3RhcnRDb20gQ2VydGlmaWNh
dGlvbiBBdXRob3JpdHkwHhcNMDYwOTE3MTk0NjM2WhcNMzYwOTE3MTk0NjM2WjB9
MQswCQYDVQQGEwJJTDEWMBQGA1UEChMNU3RhcnRDb20gTHRkLjErMCkGA1UECxMi
U2VjdXJlIERpZ2l0YWwgQ2VydGlmaWNhdGUgU2lnbmluZzEpMCcGA1UEAxMgU3Rh
cnRDb20gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwggIiMA0GCSqGSIb3DQEBAQUA
A4ICDwAwggIKAoICAQDBiNsJvGxGfHiflXu1M5DycmLWwTYgIiRezul38kMKogZk
pMyONvg45iPwbm2xPN1yo4UcodM9tDMr0y+v/uqwQVlntsQGfQqedIXWeUyAN3rf
OQVSWff0G0ZDpNKFhdLDcfN1YjS6LIp/Ho/u7TTQEceWzVI9ujPW3U3eCztKS5/C
Ji/6tRYccjV3yjxd5srhJosaNnZcAdt0FCX+7bWgiA/deMotHweXMAEtcnn6RtYT
Kqi5pquDSR3l8u/d5AGOGAqPY1MWhWKpDhk6zLVmpsJrdAfkK+F2PrRt2PZE4XNi
HzvEvqBTViVsUQn3qqvKv3b9bZvzndu/PWa8DFaqr5hIlTpL36dYUNk4dalb6kMM
Av+Z6+hsTXBbKWWc3apdzK8BMewM69KN6Oqce+Zu9ydmDBpI125C4z/eIT574Q1w
+2OqqGwaVLRcJXrJosmLFqa7LH4XXgVNWG4SHQHuEhANxjJ/GP/89PrNbpHoNkm+
Gkhpi8KWTRoSsmkXwQqQ1vp5Iki/untp+HDH+no32NgN0nZPV/+Qt+OR0t3vwmC3
Zzrd/qqc8NSLf3Iizsafl7b4r4qgEKjZ+xjGtrVcUjyJthkqcwEKDwOzEmDyei+B
26Nu/yYwl/WL3YlXtq09s68rxbd2AvCl1iuahhQqcvbjM4xdCUsT37uMdBNSSwID
AQABo4ICUjCCAk4wDAYDVR0TBAUwAwEB/zALBgNVHQ8EBAMCAa4wHQYDVR0OBBYE
FE4L7xqkQFulF2mHMMo0aEPQQa7yMGQGA1UdHwRdMFswLKAqoCiGJmh0dHA6Ly9j
ZXJ0LnN0YXJ0Y29tLm9yZy9zZnNjYS1jcmwuY3JsMCugKaAnhiVodHRwOi8vY3Js
LnN0YXJ0Y29tLm9yZy9zZnNjYS1jcmwuY3JsMIIBXQYDVR0gBIIBVDCCAVAwggFM
BgsrBgEEAYG1NwEBATCCATswLwYIKwYBBQUHAgEWI2h0dHA6Ly9jZXJ0LnN0YXJ0
Y29tLm9yZy9wb2xpY3kucGRmMDUGCCsGAQUFBwIBFilodHRwOi8vY2VydC5zdGFy
dGNvbS5vcmcvaW50ZXJtZWRpYXRlLnBkZjCB0AYIKwYBBQUHAgIwgcMwJxYgU3Rh
cnQgQ29tbWVyY2lhbCAoU3RhcnRDb20pIEx0ZC4wAwIBARqBl0xpbWl0ZWQgTGlh
YmlsaXR5LCByZWFkIHRoZSBzZWN0aW9uICpMZWdhbCBMaW1pdGF0aW9ucyogb2Yg
dGhlIFN0YXJ0Q29tIENlcnRpZmljYXRpb24gQXV0aG9yaXR5IFBvbGljeSBhdmFp
bGFibGUgYXQgaHR0cDovL2NlcnQuc3RhcnRjb20ub3JnL3BvbGljeS5wZGYwEQYJ
YIZIAYb4QgEBBAQDAgAHMDgGCWCGSAGG+EIBDQQrFilTdGFydENvbSBGcmVlIFNT
TCBDZXJ0aWZpY2F0aW9uIEF1dGhvcml0eTANBgkqhkiG9w0BAQUFAAOCAgEAFmyZ
9GYMNPXQhV59CuzaEE44HF7fpiUFS5Eyweg78T3dRAlbB0mKKctmArexmvclmAk8
jhvh3TaHK0u7aNM5Zj2gJsfyOZEdUauCe37Vzlrk4gNXcGmXCPleWKYK34wGmkUW
FjgKXlf2Ysd6AgXmvB618p70qSmD+LIU424oh0TDkBreOKk8rENNZEXO3SipXPJz
ewT4F+irsfMuXGRuczE6Eri8sxHkfY+BUZo7jYn0TZNmezwD7dOaHZrzZVD1oNB1
ny+v8OqCQ5j4aZyJecRDjkZy42Q2Eq/3JR44iZB3fsNrarnDy0RLrHiQi+fHLB5L
EUTINFInzQpdn4XBidUaePKVEFMy3YCEZnXZtWgo+2EuvoSoOMCZEoalHmdkrQYu
L6lwhceWD3yJZfWOQ1QOq92lgDmUYMA0yZZwLKMS9R9Ie70cfmu3nZD0Ijuu+Pwq
yvqCUqDvr0tVk+vBtfAii6w0TiYiBKGHLHVKt+V9E9e4DGTANtLJL4YSjCMJwRuC
O3NJo2pXh5Tl1njFmUNj403gdy3hZZlyaQQaRwnmDwFWJPsfvw55qVguucQJAX6V
um0ABj6y6koQOdjQK/W/7HW/lwLFCRsI3FU34oH7N4RDYiDK51ZLZer+bMEkkySh
NOsF/5oirpt9P/FlUQqmMGqz9IgcgA38corog14=
-----END CERTIFICATE-----
]])

http.get("https://pskreporter.info/gen404", nil, function (code, resp) print(code, resp) end)

Notes

The certificate needed for verification is stored in the flash chip. The tls.cert.verify call with true
enables verification against the value stored in the flash.

The certificate can be loaded into the flash chip in two ways -- one at firmware build time, and the other at initial boot
of the firmware. In order to load the certificate at build time, just place a file containing the CA certificate (in PEM format)
at server-ca.crt in the root of the nodemcu-firmware build tree. The build scripts will incorporate this into the resulting
firmware image.

The alternative approach is easier for development, and that is to supply the PEM data as a string value to tls.cert.verify. This
will store the certificate into the flash chip and turn on verification for that certificate. Subsequent boots of the nodemcu can then
use tls.cert.verify(true) and use the stored certificate.

tls.setDebug function

mbedTLS can be compiled with debug support. If so, the tls.setDebug
function is mapped to the mbedtls_debug_set_threshold function and
can be used to enable or disable debugging spew to the console.
See mbedTLS's documentation for more details.

 TM1829 Module

TM1829 Module

Since	Origin / Contributor	Maintainer	Source
2016-05-15	Sebastian Haas [https://github.com/sebi2k1]	Sebastian Haas [https://github.com/sebi2k1]	tm1829.c

tm1829 is a library to handle led strips using Titan Micro tm1829
led controller.

The library uses any GPIO to bitstream the led control commands.

tm1829.write()

Send data to a led strip using native chip format.

Syntax

tm1829.write(string)

Parameters

	string payload to be sent to one or more TM1829 leds.

Returns

nil

Example

tm1829.write(5, string.char(255,0,0,255,0,0)) -- turn the two first RGB leds to blue using GPIO 5

 Timer Module

Timer Module

Since	Origin / Contributor	Maintainer	Source
2014-12-12	Zeroday [https://github.com/funshine]	dnc40085 [https://github.com/dnc40085]	tmr.c

The tmr module allows access to simple timers, the system counter and uptime.

It is aimed at setting up regularly occurring tasks, timing out operations, and provide low-resolution deltas.

What the tmr module is not however, is a time keeping module. While most timeouts are expressed in milliseconds or even microseconds, the accuracy is limited and compounding errors would lead to rather inaccurate time keeping. Consider using the rtctime module for "wall clock" time.

NodeMCU provides 7 static timers, numbered 0-6, and dynamic timer creation function tmr.create().

!!! attention

Static timers are deprecated and will be removed later. Use the OO API initiated with [`tmr.create()`](#tmrcreate).

tmr.alarm()

This is a convenience function combining tmr.register() and tmr.start() into a single call.

To free up the resources with this timer when done using it, call tmr.unregister() on it. For one-shot timers this is not necessary, unless they were stopped before they expired.

Syntax

tmr.alarm([id/ref], interval_ms, mode, func())

Parameters

	id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

	interval_ms timer interval in milliseconds. Maximum value is 6870947 (1:54:30.947).

	mode timer mode:

	tmr.ALARM_SINGLE a one-shot alarm (and no need to call tmr.unregister())

	tmr.ALARM_SEMI manually repeating alarm (call tmr.start() to restart)

	tmr.ALARM_AUTO automatically repeating alarm

	func(timer) callback function which is invoked with the timer object as an argument

Returns

true if the timer was started, false on error

Example

if not tmr.create():alarm(5000, tmr.ALARM_SINGLE, function()
 print("hey there")
end)
then
 print("whoopsie")
end

See also

	tmr.create()

	tmr.register()

	tmr.start()

	tmr.unregister()

tmr.create()

Creates a dynamic timer object.

Dynamic timer can be used instead of numeric ID in control functions. Also can be controlled in object-oriented way.

Functions supported in timer object:

	t:alarm()

	t:interval()

	t:register()

	t:start()

	t:state()

	t:stop()

	t:unregister()

Parameters

none

Returns

timer object

Example

local mytimer = tmr.create()

-- oo calling
mytimer:register(5000, tmr.ALARM_SINGLE, function (t) print("expired"); t:unregister() end)
mytimer:start()

-- with self parameter
tmr.register(mytimer, 5000, tmr.ALARM_SINGLE, function (t) print("expired"); tmr.unregister(t) end)
tmr.start(mytimer)

tmr.delay()

Busyloops the processor for a specified number of microseconds.

This is in general a bad idea, because nothing else gets to run, and the networking stack (and other things) can fall over as a result. The only time tmr.delay() may be appropriate to use is if dealing with a peripheral device which needs a (very) brief delay between commands, or similar. Use with caution!

Also note that the actual amount of time delayed for may be noticeably greater, both as a result of timing inaccuracies as well as interrupts which may run during this time.

Syntax

tmr.delay(us)

Parameters

us microseconds to busyloop for

Returns

nil

Example

tmr.delay(100)

tmr.interval()

Changes a registered timer's expiry interval.

Syntax

tmr.interval([id/ref], interval_ms)

Parameters

	id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

	interval_ms new timer interval in milliseconds. Maximum value is 6870947 (1:54:30.947).

Returns

nil

Example

mytimer = tmr.create()
mytimer:register(10000, tmr.ALARM_AUTO, function() print("hey there") end)
mytimer:interval(3000) -- actually, 3 seconds is better!
mytimer:start()

tmr.now()

Returns the system counter, which counts in microseconds. Limited to 31 bits, after that it wraps around back to zero. That is essential if you use this function to debounce or throttle GPIO input [https://github.com/hackhitchin/esp8266-co-uk/issues/2].

Syntax

tmr.now()

Parameters

none

Returns

the current value of the system counter

Example

print(tmr.now())
print(tmr.now())

tmr.register()

Configures a timer and registers the callback function to call on expiry.

To free up the resources with this timer when done using it, call tmr.unregister() on it. For one-shot timers this is not necessary, unless they were stopped before they expired.

Syntax

tmr.register([id/ref], interval_ms, mode, func())

Parameters

	id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

	interval_ms timer interval in milliseconds. Maximum value is 6870947 (1:54:30.947).

	mode timer mode:

	tmr.ALARM_SINGLE a one-shot alarm (and no need to call tmr.unregister())

	tmr.ALARM_SEMI manually repeating alarm (call tmr.start() to restart)

	tmr.ALARM_AUTO automatically repeating alarm

	func(timer) callback function which is invoked with the timer object as an argument

Note that registering does not start the alarm.

Returns

nil

Example

mytimer = tmr.create()
mytimer:register(5000, tmr.ALARM_SINGLE, function() print("hey there") end)
mytimer:start()

See also

	tmr.create()

	tmr.alarm()

tmr.softwd()

Provides a simple software watchdog, which needs to be re-armed or disabled before it expires, or the system will be restarted.

Syntax

tmr.softwd(timeout_s)

Parameters

timeout_s watchdog timeout, in seconds. To disable the watchdog, use -1 (or any other negative value).

Returns

nil

Example

function on_success_callback()
 tmr.softwd(-1)
 print("Complex task done, soft watchdog disabled!")
end

tmr.softwd(5)
-- go off and attempt to do whatever might need a restart to recover from
complex_stuff_which_might_never_call_the_callback(on_success_callback)

tmr.start()

Starts or restarts a previously configured timer.

Syntax

tmr.start([id/ref])

Parameters

id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

Returns

true if the timer was started, false on error

Example

mytimer = tmr.create()
mytimer:register(5000, tmr.ALARM_SINGLE, function() print("hey there") end)
if not mytimer:start() then print("uh oh") end

See also

	tmr.create()

	tmr.register()

	tmr.stop()

	tmr.unregister()

tmr.state()

Checks the state of a timer.

Syntax

tmr.state([id/ref])

Parameters

id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

Returns

(bool, int) or nil

If the specified timer is registered, returns whether it is currently started and its mode. If the timer is not registered, nil is returned.

Example

mytimer = tmr.create()
print(mytimer:state()) -- nil
mytimer:register(5000, tmr.ALARM_SINGLE, function() print("hey there") end)
running, mode = mytimer:state()
print("running: " .. tostring(running) .. ", mode: " .. mode) -- running: false, mode: 0

tmr.stop()

Stops a running timer, but does not unregister it. A stopped timer can be restarted with tmr.start().

Syntax

tmr.stop([id/ref])

Parameters

id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

Returns

true if the timer was stopped, false on error

Example

mytimer = tmr.create()
if not mytimer:stop() then print("timer not stopped, not registered?") end

See also

	tmr.register()

	tmr.stop()

	tmr.unregister()

tmr.time()

Returns the system uptime, in seconds. Limited to 31 bits, after that it wraps around back to zero.

Syntax

tmr.time()

Parameters

none

Returns

the system uptime, in seconds, possibly wrapped around

Example

print("Uptime (probably):", tmr.time())

tmr.unregister()

Stops the timer (if running) and unregisters the associated callback.

This isn't necessary for one-shot timers (tmr.ALARM_SINGLE), as those automatically unregister themselves when fired.

Syntax

tmr.unregister([id/ref])

Parameters

id/ref timer id (0-6) or object, obsolete for OO API (→ tmr.create())

Returns

nil

Example

tmr.unregister(0)

See also

tmr.register()

tmr.wdclr()

Feed the system watchdog.

In general, if you ever need to use this function, you are doing it wrong.

The event-driven model of NodeMCU means that there is no need to be sitting in hard loops waiting for things to occur. Rather, simply use the callbacks to get notified when somethings happens. With this approach, there should never be a need to manually feed the system watchdog.

Syntax

tmr.wdclr()

Parameters

none

Returns

nil

 TSL2561 Module

TSL2561 Module

Since	Origin / Contributor	Maintainer	Source
2015-08-22	Michael Lucas [https://github.com/Aeprox]	Michael Lucas [https://github.com/Aeprox]	tsl2561.c

tsl2561.getlux()

Reads sensor values from the device and returns calculated lux value.

Syntax

tsl2561.getlux()

Parameters

none

Returns

	lux the calculated illuminance in lux (lx)

	status value indicating success or failure as explained below:

	tsl2561.TSL2561_OK

	tsl2561.TSL2561_ERROR_I2CINIT can't initialize I²C bus

	tsl2561.TSL2561_ERROR_I2CBUSY I²C bus busy

	tsl2561.TSL2561_ERROR_NOINIT initialize I²C bus before calling function

	tsl2561.TSL2561_ERROR_LAST

Example

status = tsl2561.init(5, 6, tsl2561.ADDRESS_FLOAT, tsl2561.PACKAGE_T_FN_CL)

if status == tsl2561.TSL2561_OK then
 lux = tsl2561.getlux()
 print("Illuminance: "..lux.." lx")
end

tsl2561.getrawchannels()

Reads the device's 2 sensors and returns their values.

Syntax

tsl2561.getrawchannels()

Parameters

none

Returns

	ch0 value of the broad spectrum sensor

	ch1 value of the IR sensor

	status value indicating success or failure as explained below:

	tsl2561.TSL2561_OK

	tsl2561.TSL2561_ERROR_I2CINIT can't initialize I²C bus

	tsl2561.TSL2561_ERROR_I2CBUSY I²C bus busy

	tsl2561.TSL2561_ERROR_NOINIT initialize I²C bus before calling function

	tsl2561.TSL2561_ERROR_LAST

Example

status = tsl2561.init(5, 6, tsl2561.ADDRESS_FLOAT, tsl2561.PACKAGE_T_FN_CL)

if status == tsl2561.TSL2561_OK then
 ch0, ch1 = tsl2561.getrawchannels()
 print("Raw values: "..ch0, ch1)
 lux = tsl2561.getlux()
 print("Illuminance: "..lux.." lx")
end

tsl2561.init()

Initializes the device on pins sdapin & sclpin. Optionally also configures the devices address and package. Default: address pin floating (0x39) and FN package.

Syntax

tsl2561.init(sdapin, sclpin[, address[, package]])

Parameters

	sdapin pin number of the device's I²C sda connection

	sclpin pin number of the device's I²C scl connection

	address optional address of the device on the I²C bus

	tsl2561.ADDRESS_GND

	tsl2561.ADDRESS_FLOAT (default when omitted)

	tsl2561.ADDRESS_VDD

	package optional device's package type (slight difference in lux calculation)

	tsl2561.PACKAGE_CS

	tsl2561.PACKAGE_T_FN_CL (default when omitted)

Returns

status value indicating success or failure as explained below:

	tsl2561.TSL2561_OK

	tsl2561.TSL2561_ERROR_I2CINIT can't initialize I²C bus

	tsl2561.TSL2561_ERROR_I2CBUSY I²C bus busy

	tsl2561.TSL2561_ERROR_NOINIT Initialize I²C bus before calling function

	tsl2561.TSL2561_ERROR_LAST

Example

status = tsl2561.init(5, 6, tsl2561.ADDRESS_FLOAT, tsl2561.PACKAGE_T_FN_CL)
if status == tsl2561.TSL2561_OK then
 lux = tsl2561.getlux()
 print("Illuminance: "..lux.." lx")
end

tsl2561.settiming()

Sets the integration time and gain settings of the device. When tls2561.init() is called, these values default to 402 ms and no gain.

Syntax

tsl2561.settiming(integration, gain)

Parameters

	integration sets the device's integration period. Valid options are:

	tsl2561.INTEGRATIONTIME_13MS

	tsl2561.INTEGRATIONTIME_101MS

	tsl2561.INTEGRATIONTIME_402MS (default when omitted)

	gain sets the device's gain. Valid options are:

	tsl2561.GAIN_1X (default when omitted)

	tsl2561.GAIN_16X

Returns

status value indicating success or failure as explained below:

	tsl2561.TSL2561_OK

	tsl2561.TSL2561_ERROR_I2CINIT can't initialize I²C bus

	tsl2561.TSL2561_ERROR_I2CBUSY I²C bus busy

	tsl2561.TSL2561_ERROR_NOINIT initialize I²C bus before calling function

	tsl2561.TSL2561_ERROR_LAST

Example

status = tsl2561.init(5, 6, tsl2561.ADDRESS_FLOAT, tsl2561.PACKAGE_T_FN_CL)
if status == tsl2561.TSL2561_OK then
 status = tsl2561.settiming(tsl2561.INTEGRATIONTIME_101MS, tsl2561.GAIN_16X)
end
if status == tsl2561.TSL2561_OK then
 lux = tsl2561.getlux()
 print("Illuminance: "..lux.." lx")
end

 u8g2 Module

u8g2 Module

Since	Origin / Contributor	Maintainer	Source
2017-06-02	Oli Kraus [https://github.com/olikraus/u8glib], Arnim Läuger [https://github.com/devsaurus]	Arnim Läuger [https://github.com/devsaurus]	u8g2.c

U8g2 is a graphics library developed at olikraus/u8g2 [https://github.com/olikraus/u8g2] with support for many different displays. It is the successor of U8glib [https://github.com/olikraus/u8glib] which is not developed any further. Please see How to port U8g code [https://github.com/olikraus/u8g2/wiki/u8gvsu8g2] for generic porting instructions.

!!! note "BSD License for U8g2lib Code"
Universal 8bit Graphics Library (http://code.google.com/p/u8g2/)

Copyright (c) 2016, olikraus@gmail.com

All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
 of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
 list of conditions and the following disclaimer in the documentation and/or other
 materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The NodeMCU firmware supports the following displays in I²C and SPI mode:

	ld7032 60x32

	sh1106 128x64

	sh1107 - variants 64x128, seeed 96x96, 128x128

	sh1108 160x160

	ssd1305 128x32

	ssd1306 - variants 128x32, 128x64, 64x48, and 96x16

	ssd1309 128x64

	ssd1325 128x63

	ssd1326 er 256x32

	ssd1327 - variants 96x96, ea w128128, and midas 128x128

	st7567 64x32

	st7588 jlx12864

	st75256 - variants jlx256128, jlx256160, jlx240160, jlx25664, and jlx172104

	uc1601 128x32

	uc1604 jlx19264

	uc1608 - 240x180 and erc24064 variants

	ux1610 dogxl160

	uc1611 - variants dogm240, dogxl240, and ew50850

SPI only:

	hx1230 96x68

	il3820 v2 296x128

	ist3020 erc19264

	lc9081 - variants 160x80, 160x160, 240x128, and 240x64

	ls013b7dh03 128x128

	max7219 32x8

	nt7534 tg12864r

	pcd8544 84x48

	pcf8812 96x65

	sed1520 122x32

	ssd1322 nhd 256x64 and nhd 128x64 variants

	ssd1329 128x96

	ssd1606 172x72

	ssd1607 200x200

	st7565 - variants 64128n, dogm128/132, erc12864, lm6059, c12832/c12864, and zolen 128x64

	st7567 - variants 132x64, jlx12864, and enh_dg128064i

	st7586 - s028hn118a and erc240160 variants

	st75256 - jlx172104 and jlx256128 variants

	t6963 - variants 240x128, 240x64, 256x64, 128x64, and 160x80

	uc1701 - dogs102 and mini12864 variants

This integration uses full "RAM" memory buffer without picture loop and calls u8g2's begin() internally when creating a display object. It is based on v2.23.18 [https://github.com/olikraus/U8g2_Arduino/releases/tag/2.23.18].

Overview

Library Usage

The Lua bindings for this library closely follow u8g2's object oriented C++ API. Based on the u8g2 class, you create an object for your display type. The communication interface has to be initialized up front, refer to the examples below on how to do this.

SSD1306 via I²C:

sla = 0x3c
disp = u8g2.ssd1306_i2c_128x64_noname(id, sla)

SSD1306 via SPI:

cs = 22
dc = 16
res = 0 -- RES is optional YMMV
disp = u8g2.ssd1306_128x64_noname(bus, cs, dc, res)

This object provides all of u8g2's methods to control the display. Refer to graphics_test.lua to get an impression how this is achieved with Lua code. Visit the u8g2 homepage [https://github.com/olikraus/u8g2] for technical details.

Displays selection

I²C and HW SPI based displays with support in u8g2 can be enabled.

The procedure is different for ESP8266 and ESP32 platforms.

ESP8266

Add the desired entries to the I²C or SPI display tables in app/include/u8g2_displays.h:

#define U8G2_DISPLAY_TABLE_I2C \
 U8G2_DISPLAY_TABLE_ENTRY(u8g2_Setup_ssd1306_i2c_128x64_noname_f, ssd1306_i2c_128x64_noname) \

#define U8G2_DISPLAY_TABLE_SPI \
 U8G2_DISPLAY_TABLE_ENTRY(u8g2_Setup_ssd1306_128x64_noname_f, ssd1306_128x64_noname) \
 U8G2_DISPLAY_TABLE_ENTRY(u8g2_Setup_pcd8544_84x48_f, pcd8544_84x48) \
 U8G2_DISPLAY_TABLE_ENTRY(u8g2_Setup_pcf8812_96x65_f, pcf8812_96x65) \

Alternatively, you can define them as U8G2_DISPLAY_TABLE_I2C_EXTRA and U8G2_DISPLAY_TABLE_SPI_EXTRA in an external file to avoid changing the source tree. Include the extra file on the make command line:

make EXTRA_CCFLAGS='-include $(TOP_DIR)/my_extras.h'

ESP32

Enable the desired entries for I²C and SPI displays in u8g2's sub-menu (run make menuconfig).

Fonts selection

U8g2 comes with a wide range of fonts for small displays. Fonts can be supplied as strings or compiled into the firmware image to decrease the RAM footprint. If compiled into the firmware they become available as u8g2.<font_name> in Lua.

The procedure is different for ESP8266 and ESP32 platforms.

ESP8266

Add the desired fonts to the font table in app/include/u8g2_fonts.h:

#define U8G2_FONT_TABLE \
 U8G2_FONT_TABLE_ENTRY(font_6x10_tf) \
 U8G2_FONT_TABLE_ENTRY(font_unifont_t_symbols) \

Alternatively, you can define this as U8G2_FONT_TABLE_EXTRA in an external file to avoid changing the source tree. Include the extra file on the make command line:

make EXTRA_CCFLAGS='-include $(TOP_DIR)/my_extras.h'

ESP32

Add the desired fonts to the font selection sub-entry via make menuconfig.

Bitmaps

XBM bitmaps are supplied as strings to drawXBM() in contrast to the source code based inclusion of XBMs in upstream u8g2 library. This off-loads all data handling from the u8g2 module to generic methods for binary files. See graphics_test.lua.

Conversion of XBM bitmaps can be performed online with Online-Utility's Image Converter [http://www.online-utility.org/image_converter.jsp]: Convert from XBM to MONO format and upload the binary result.

I²C Display Drivers

Initialize a display via I²C.

	u8g2.ld7032_i2c_60x32()

	u8g2.sh1106_i2c_128x64_noname()

	u8g2.sh1106_i2c_128x64_vcomh0()

	u8g2.sh1107_i2c_64x128()

	u8g2.sh1107_i2c_seeed_96x96()

	u8g2.sh1107_i2c_128x128()

	u8g2.sh1108_i2c_160x160()

	u8g2.ssd1305_i2c_128x32_noname()

	u8g2.ssd1306_i2c_128x32_univision()

	u8g2.ssd1306_i2c_128x64_noname()

	u8g2.ssd1306_i2c_128x64_vcomh0()

	u8g2.ssd1309_i2c_128x64_noname0()

	u8g2.ssd1309_i2c_128x64_noname2()

	u8g2.ssd1306_i2c_128x64_alt0()

	u8g2.ssd1306_i2c_64x48_er()

	u8g2.ssd1306_i2c_96x16_er()

	u8g2.ssd1325_i2c_nhd_128x64()

	u8g2.ssd1326_i2c_er_256x32()

	u8g2.ssd1327_i2c_seeed_96x96()

	u8g2.ssd1327_i2c_ea_w128128()

	u8g2.ssd1327_i2c_midas_128x128()

	u8g2.st7567_i2c_64x32()

	u8g2.st7588_i2c_jlx12864()

	u8g2.st75256_i2c_jlx25664()

	u8g2.st75256_i2c_jlx172104()

	u8g2.st75256_i2c_jlx240160()

	u8g2.st75256_i2c_jlx256128()

	u8g2.st75256_i2c_jlx256160()

	u8g2.uc1602_i2c_128X32()

	u8g2.uc1604_i2c_jlx19264()

	u8g2.uc1608_i2c_erc24064()

	u8g2.uc1608_i2c_240x128()

	u8g2.uc1610_i2c_ea_dogxl160()

	u8g2.uc1611_i2c_ea_dogm240()

	u8g2.uc1611_i2c_ea_dogxl240()

	u8g2.uc1611_i2c_ew50850()

Syntax

u8g2.ssd1306_i2c_128x64_noname(id, address[, cb_fn])

Parameters

	id i2c interface id, see i2c module

	address I²C slave address of display (unshifted)

	cb_fn optional callback function, see Framebuffer callback

Returns

u8g2 display object

Example for ESP8266

id = 0
sda = 5 -- GPIO14
scl = 6 -- GPIO12
sla = 0x3c
i2c.setup(id, sda, scl, i2c.SLOW)
disp = u8g2.ssd1306_i2c_128x64_noname(id, sla)

Example for ESP32

id = i2c.HW0
sda = 16
scl = 17
sla = 0x3c
i2c.setup(id, sda, scl, i2c.FAST)
disp = u8g2.ssd1306_i2c_128x64_noname(id, sla)

SPI Display Drivers

Initialize a display via Hardware SPI.

	u8g2.hx1230_96x68()

	u8g2.il3820_v2_296x128()

	u8g2.ist3020_erc19264()

	u8g2.lc7981_160x80()

	u8g2.lc7981_160x80()

	u8g2.lc7981_160x80()

	u8g2.lc7981_160x80()

	u8g2.ld7032_60x32()

	u8g2.ls013b7dh03_128x128()

	u8g2.max7219_32x8()

	u8g2.nt7534_tg12864r()

	u8g2.pcd8544_84x48()

	u8g2.pcf8812_96x65()

	u8g2.sh1106_128x64_noname()

	u8g2.sh1106_128x64_vcomh0()

	u8g2.sh1107_64x128()

	u8g2.sh1107_seeed_96x96()

	u8g2.sh1107_128x128()

	u8g2.sh1108_160x160()

	u8g2.sh1122_256x64()

	u8g2.ssd1305_128x32_noname()

	u8g2.ssd1306_128x32_univision()

	u8g2.ssd1306_128x64_noname()

	u8g2.ssd1306_128x64_vcomh0()

	u8g2.ssd1306_128x64_alt0()

	u8g2.ssd1306_64x48_er()

	u8g2.ssd1306_96x16_er()

	u8g2.ssd1309_128x64_noname0()

	u8g2.ssd1309_128x64_noname2()

	u8g2.ssd1322_nhd_128x64()

	u8g2.ssd1326_er_256x32()

	u8g2.ssd1327_ea_w128128()

	u8g2.ssd1327_midas_128x128()

	u8g2.ssd1322_nhd_256x64()

	u8g2.ssd1325_nhd_128x64()

	u8g2.ssd1327_seeed_96x96()

	u8g2.ssd1329_128x96_noname()

	u8g2.sed1520_122x32()

	u8g2.ssd1606_172x72()

	u8g2.ssd1607_200x200()

	u8g2.st7565_64128n()

	u8g2.st7565_ea_dogm128()

	u8g2.st7565_ea_dogm132()

	u8g2.st7565_erc12864()

	u8g2.st7565_lm6059()

	u8g2.st7565_nhd_c12832()

	u8g2.st7565_nhd_c12864()

	u8g2.st7565_zolen_128x64()

	u8g2.st7567_enh_dg128064i()

	u8g2.st7567_64x32()

	u8g2.st7567_jxl12864()

	u8g2.st7567_pi_132x64()

	u8g2.st7586s_s028hn118a()

	u8g2.st7586s_erc240160()

	u8g2.st7588_jlx12864()

	u8g2.st7920_s_128x64()

	u8g2.st7920_s_192x32()

	u8g2.st75256_jlx25664()

	u8g2.st75256_jlx172104()

	u8g2.st75256_jlx240160()

	u8g2.st75256_jlx256128()

	u8g2.st75256_jlx256160()

	u8g2.t6963_240x128()

	u8g2.t6963_240x64()

	u8g2.t6963_256x64()

	u8g2.t6963_128x64()

	u8g2.t6963_160x80()

	u8g2.uc1601_128X32()

	u8g2.uc1604_jlx19264()

	u8g2.uc1608_240x128()

	u8g2.uc1608_erc24064()

	u8g2.uc1610_ea_dogxl160()

	u8g2.uc1611_ea_dogm240()

	u8g2.uc1611_ea_dogxl240()

	u8g2.uc1611_ew50850()

	u8g2.uc1701_ea_dogs102()

	u8g2.uc1701_mini12864()

Syntax

u8g2.ssd1306_128x64_noname(bus, cs, dc[, [res][, cb_fn]])

Parameters

	bus SPI master bus

	cs GPIO pin for CS

	dc GPIO pin for DC

	res GPIO pin for RES, none if omitted

	cb_fn optional callback function, see Framebuffer callback

Returns

u8g2 display object

Example for ESP8266

-- Hardware SPI CLK = GPIO14
-- Hardware SPI MOSI = GPIO13
-- Hardware SPI MISO = GPIO12 (not used)
-- Hardware SPI /CS = GPIO15 (not used)
cs = 8 -- GPIO15, pull-down 10k to GND
dc = 4 -- GPIO2
res = 0 -- GPIO16
bus = 1
spi.setup(bus, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 8)
-- we won't be using the HSPI /CS line, so disable it again
gpio.mode(8, gpio.INPUT, gpio.PULLUP)
disp = u8g2.ssd1306_128x64_noname(bus, cs, dc, res)

Example for ESP32

sclk = 19
mosi = 23
cs = 22
dc = 16
res = 17
bus = spi.master(spi.HSPI, {sclk=sclk, mosi=mosi})
disp = u8g2.ssd1306_128x64_noname(bus, cs, dc, res)

Framebuffer callback

Each display type can be initialized to provide the framebuffer contents in run-length encoded format to a Lua callback. This mode is enabled when a callback function is specified for the setup function. Hardware display and framebuffer callback can be operated in parallel. If the callback function is the only parameter then no signals for a hardware display are generated, leaving a virtual display.

The callback function can be used to process the framebuffer line by line. It's called with either nil as parameter to indicate the start of a new frame or with a string containing a line of the framebuffer with run-length encoding. First byte in the string specifies how many pairs of (x, len) follow, while each pair defines the start (leftmost x-coordinate) and length of a sequence of lit pixels. All other pixels in the line are dark.

n = struct.unpack("B", rle_line)
print(n.." pairs")
for i = 0,n-1 do
 print(string.format(" x: %d len: %d", struct.unpack("BB", rle_line, 1+1 + i*2)))
end

Syntax

u8g2.ssd1306_i2c_128x64_noname(id, address[, cb_fn])
u8g2.ssd1306_i2c_128x64_noname(cb_fn)
u8g2.ssd1306_128x64_noname(bus, cs, dc[, [res][, cb_fn]])
u8g2.ssd1306_128x64_noname(cb_fn)

Parameters

	id, address, bus, cs, dc, res see above

	cb_fn([rle_line]) callback function. rle_line is a string containing a run-length encoded framebuffer line, or nil to indicate start of frame.

Constants

Constants for various functions.

u8g2.DRAW_UPPER_RIGHT, u8g2.DRAW_UPPER_LEFT, u8g2.DRAW_LOWER_RIGHT, u8g2.DRAW_LOWER_LEFT, u8g2.DRAW_ALL,

u8g2.R0, u8g2.R1, u8g2.R2, u8g2.R3, u8g2.MIRROR,

u8g2.font_6x10, ...

u8g2.disp Sub-Module

u8g2.disp:clearBuffer()

Clears all pixel in the memory frame buffer.

See u8g2 clearBuffer() [https://github.com/olikraus/u8g2/wiki/u8g2reference#clearbuffer].

u8g2.disp:drawBox()

Draw a box (filled frame).

See u8g2 drawBox() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawbox].

u8g2.disp:drawCircle()

Draw a circle.

See u8g2 drawCircle() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawcircle].

Note that parameter opt is optional and defaults to u8g2.DRAW_ALL if omitted.

u8g2.disp:drawDisc()

Draw a filled circle.

See u8g2 drawDisc() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawdisc].

Note that parameter opt is optional and defaults to u8g2.DRAW_ALL if omitted.

u8g2.disp:drawEllipse()

Draw an ellipse.

See u8g2 drawEllipse() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawellipse].

Note that parameter opt is optional and defaults to u8g2.DRAW_ALL if omitted.

u8g2.disp:drawFilledEllipse()

Draw a filled ellipse.

See u8g2 drawFilledEllipse() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawfilledellipse].

Note that parameter opt is optional and defaults to u8g2.DRAW_ALL if omitted.

u8g2.disp:drawFrame()

Draw a frame (empty box).

See u8g2 drawFrame() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawframe].

u8g2.disp:drawGlyph()

Draw a single character.

See u8g2 drawGlyph() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawglyph].

u8g2.disp:drawHLine()

Draw a horizontal line.

See u8g2 drawHLine() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawhline].

u8g2.disp:drawLine()

Draw a line between two points.

See u8g2 drawLine() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawline].

u8g2.disp:drawPixel()

Draw a pixel.

See u8g2 drawPixel() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawpixel].

u8g2.disp:drawRBox()

Draw a box with round edges.

See u8g2 drawRBox() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawrbox].

u8g2.disp:drawRFrame()

Draw a frame with round edges.

See u8g2 drawRFrame() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawrframe].

u8g2.disp:drawStr()

Draw a string.

See u8g2 drawStr() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawstr].

u8g2.disp:drawTriangle()

Draw a triangle (filled polygon).

See u8g2 drawTriangle() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawtriangle].

u8g2.disp:drawUTF8()

Draw a string which is encoded as UTF-8.

See u8g2 drawUTF8() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawutf8].

u8g2.disp:drawVLine()

Draw a vertical line.

See u8g2 drawVLine() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawvline].

u8g2.disp:drawXBM()

Draw a XBM Bitmap.

See u8g2 drawXBM() [https://github.com/olikraus/u8g2/wiki/u8g2reference#drawxbm].

XBM bitmaps are supplied as strings to drawXBM(). This off-loads all data handling from the u8g2 module to generic methods for binary files. See graphics_test.lua.

In contrast to the source code based inclusion of XBMs in upstream u8g2 library, it's required to provide precompiled binary files. This can be performed online with Online-Utility's Image Converter [http://www.online-utility.org/image_converter.jsp]: Convert from XBM to MONO format and upload the binary result.

u8g2.disp:getAscent()

Returns the reference height of the glyphs above the baseline (ascent).

See u8g2 getAscent() [https://github.com/olikraus/u8g2/wiki/u8g2reference#getascent].

u8g2.disp:getDescent()

Returns the reference height of the glyphs below the baseline (descent).

See u8g2 getDescent() [https://github.com/olikraus/u8g2/wiki/u8g2reference#getdescent].

u8g2.disp:getStrWidth()

Return the pixel width of string.

See u8g2 getStrWidth() [https://github.com/olikraus/u8g2/wiki/u8g2reference#getstrwidth].

u8g2.disp:getUTF8Width()

Return the pixel width of an UTF-8 encoded string.

See u8g2 getUTF8Width() [https://github.com/olikraus/u8g2/wiki/u8g2reference#getutf8width].

u8g2.disp:sendBuffer()

Send the content of the memory frame buffer to the display.

See u8g2 sendBuffer() [https://github.com/olikraus/u8g2/wiki/u8g2reference#sendbuffer].

u8g2.disp:setBitmapMode()

Define bitmap background color mode.

See u8g2 setBitmapMode() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setbitmapmode].

u8g2.disp:setContrast()

Set the contrast or brightness.

See u8g2 setContrast() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setconstrast].

u8g2.disp:setDisplayRotation()

Changes the display rotation.

See u8g2 setDisplayRotation() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setdisplayrotation].

u8g2.disp:setDrawColor()

Defines the bit value (color index) for all drawing functions.

See u8g2 setDrawColor() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setdrawcolor].

u8g2.disp:setFlipMode()

Set flip (180 degree rotation) mode.

See u8g2 setFlipMode() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setflipmode].

u8g2.disp:setFont()

Define a u8g2 font for the glyph and string drawing functions. They can be supplied as strings or compiled into the firmware image. They are available as u8g2.<font_name> in Lua.

See u8g2 setFont() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfont].

u8g2.disp:setFontDirection()

Set the drawing direction of all strings or glyphs.

See u8g2 setFontDirection() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontdirection].

u8g2.disp:setFontMode()

Define font background color mode.

See u8g2 setFontMode() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontmode].

u8g2.disp:setFontPosBaseline()

Change the reference position for the glyph and string draw functions to "baseline".

See u8g2 setFontPosBaseline() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontposbaseline].

u8g2.disp:setFontPosBottom()

Change the reference position for the glyph and string draw functions to "bottom".

See u8g2 setFontPosBottom() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontposbottom].

u8g2.disp:setFontPosTop()

Change the reference position for the glyph and string draw functions to "top".

See u8g2 setFontPosTop() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontpostop].

u8g2.disp:setFontPosCenter()

Change the reference position for the glyph and string draw functions to "center".

See u8g2 setFontPosCenter() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontposcenter].

u8g2.disp:setFontRefHeightAll()

Set ascent and descent calculation mode to "highest and lowest glyph".

See u8g2 setFontRefHeightAll() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontrefheightall].

u8g2.disp:setFontRefHeightExtendedText()

Set ascent and descent calculation mode to "highest of [A1(], lowest of [g(]".

See u8g2 setFontRefHeightExtendedText() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontrefheightextendedtext].

u8g2.disp:setFontRefHeightText()

Set ascent and descent calculation mode to "highest of [A1], lowest of [g]".

See u8g2 setFontRefHeightText() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setfontrefheighttext].

u8g2.disp:setPowerSave()

Activate or disable power save mode of the display.

See u8g2 setPowerSave() [https://github.com/olikraus/u8g2/wiki/u8g2reference#setpowersave].

 UART Module

UART Module

Since	Origin / Contributor	Maintainer	Source
2014-12-22	Zeroday [https://github.com/funshine]	Zeroday [https://github.com/funshine]	uart.c

The UART [https://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter] (Universal asynchronous receiver/transmitter) module allows configuration of and communication over the UART serial port.

The default setup for the uart is controlled by build-time settings. The default rate is 115,200 bps. In addition, auto-baudrate detection is enabled for the first two minutes
after platform boot. This will cause a switch to the correct baud rate once a few characters are received. Auto-baudrate detection is disabled when uart.setup is called.

!!! important
Although there are two UARTs(0 and 1) available to NodeMCU, UART 1 is not capable of receiving data and is therefore transmit only.

uart.alt()

Change UART pin assignment.

Syntax

uart.alt(on)

Parameters

on

	0 for standard pins

	1 to use alternate pins GPIO13 and GPIO15

Returns

nil

uart.on()

Sets the callback function to handle UART events.

Currently only the "data" event is supported.

!!! note
Due to limitations of the ESP8266, only UART 0 is capable of receiving data.

Syntax

uart.on(method, [number/end_char], [function], [run_input])

Parameters

	method "data", data has been received on the UART

	number/end_char

	if n=0, will receive every char in buffer

	if n<255, the callback is called when n chars are received

	if one char "c", the callback will be called when "c" is encountered, or max n=255 received

	function callback function, event "data" has a callback like this: function(data) end

	run_input 0 or 1. If 0, input from UART will not go into Lua interpreter, can accept binary data. If 1, input from UART will go into Lua interpreter, and run.

To unregister the callback, provide only the "data" parameter.

Returns

nil

Example

-- when 4 chars is received.
uart.on("data", 4,
 function(data)
 print("receive from uart:", data)
 if data=="quit" then
 uart.on("data") -- unregister callback function
 end
end, 0)
-- when '\r' is received.
uart.on("data", "\r",
 function(data)
 print("receive from uart:", data)
 if data=="quit\r" then
 uart.on("data") -- unregister callback function
 end
end, 0)

uart.setup()

(Re-)configures the communication parameters of the UART.

!!! note

Bytes sent to the UART can get lost if this function re-configures the UART while reception is in progress.

Syntax

uart.setup(id, baud, databits, parity, stopbits[, echo])

Parameters

	id UART id (0 or 1).

	baud one of 300, 600, 1200, 2400, 4800, 9600, 19200, 31250, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400

	databits one of 5, 6, 7, 8

	parity uart.PARITY_NONE, uart.PARITY_ODD, or uart.PARITY_EVEN

	stopbits uart.STOPBITS_1, uart.STOPBITS_1_5, or uart.STOPBITS_2

	echo if 0, disable echo, otherwise enable echo (default if omitted)

Returns

configured baud rate (number)

Example

-- configure for 9600, 8N1, with echo
uart.setup(0, 9600, 8, uart.PARITY_NONE, uart.STOPBITS_1, 1)

uart.getconfig()

Returns the current configuration parameters of the UART.

Syntax

uart.getconfig(id)

Parameters

	id UART id (0 or 1).

Returns

Four values as follows:

	baud one of 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 74880, 115200, 230400, 256000, 460800, 921600, 1843200, 3686400

	databits one of 5, 6, 7, 8

	parity uart.PARITY_NONE, uart.PARITY_ODD, or uart.PARITY_EVEN

	stopbits uart.STOPBITS_1, uart.STOPBITS_1_5, or uart.STOPBITS_2

Example

print (uart.getconfig(0))
-- prints 9600 8 0 1 for 9600, 8N1

uart.write()

Write string or byte to the UART.

Syntax

uart.write(id, data1 [, data2, ...])

Parameters

	id UART id (0 or 1).

	data1... string or byte to send via UART

Returns

nil

Example

uart.write(0, "Hello, world\n")

 ucg Module

ucg Module

Since	Origin / Contributor	Maintainer	Source
2015-08-05	Oli Kraus [https://github.com/olikraus/ucglib], Arnim Läuger [https://github.com/devsaurus]	Arnim Läuger [https://github.com/devsaurus]	ucglib

Ucglib is a graphics library developed at olikraus/ucglib [https://github.com/olikraus/ucglib] with support for color TFT displays.

!!! note "BSD License for Ucglib Code"
Universal 8bit Graphics Library (http://code.google.com/p/u8glib/)

Copyright (c) 2014, olikraus@gmail.com
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list
 of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this
 list of conditions and the following disclaimer in the documentation and/or other
 materials provided with the distribution.

 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
 CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
 CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
 ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The NodeMCU firmware supports a subset of these:

	HX8352C

	ILI9163

	ILI9341

	ILI9486

	PCF8833

	SEPS225

	SSD1331

	SSD1351

	ST7735

This integration is based on v1.5.2 [https://github.com/olikraus/Ucglib_Arduino/releases/tag/v1.5.2].

Overview

SPI Connection

The HSPI module is used (more information [http://d.av.id.au/blog/esp8266-hardware-spi-hspi-general-info-and-pinout/]), so certain pins are fixed:

	HSPI CLK = GPIO14

	HSPI MOSI = GPIO13

	HSPI MISO = GPIO12 (not used)

All other pins can be assigned to any available GPIO:

	CS

	D/C

	RES (optional for some displays)

Also refer to the initialization sequence eg in GraphicsTest.lua [https://github.com/nodemcu/nodemcu-firmware/blob/master/lua_examples/ucglib/GraphicsTest.lua]:

spi.setup(1, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 8)

Library Usage

The Lua bindings for this library closely follow ucglib's object oriented C++ API. Based on the ucg class, you create an object for your display type.

ILI9341 via SPI:

cs = 8 -- GPIO15, pull-down 10k to GND
dc = 4 -- GPIO2
res = 0 -- GPIO16, RES is optional YMMV
disp = ucg.ili9341_18x240x320_hw_spi(cs, dc, res)

This object provides all of ucglib's methods to control the display.
Again, refer to GraphicsTest.lua [https://github.com/nodemcu/nodemcu-firmware/blob/master/lua_examples/ucglib/GraphicsTest.lua] to get an impression how this is achieved with Lua code. Visit the ucglib homepage [https://github.com/olikraus/ucglib] for technical details.

Display selection

HW SPI based displays with support in u8g2 can be enabled.

The procedure is different for ESP8266 and ESP32 platforms.

ESP8266

Add the desired entries to the display table in app/include/ucg_config.h:

#define UCG_DISPLAY_TABLE \
 UCG_DISPLAY_TABLE_ENTRY(ili9341_18x240x320_hw_spi, ucg_dev_ili9341_18x240x320, ucg_ext_ili9341_18) \
 UCG_DISPLAY_TABLE_ENTRY(st7735_18x128x160_hw_spi, ucg_dev_st7735_18x128x160, ucg_ext_st7735_18) \

ESP32

Enable the desired entries for SPI displays in ucg's sub-menu (run make menuconfig).

Fonts

ucglib comes with a wide range of fonts for small displays. Since they need to be compiled into the firmware image.

The procedure is different for ESP8266 and ESP32 platforms.

ESP8266

Add the desired fonts to the font table in app/include/ucg_config.h:

#define UCG_FONT_TABLE \
 UCG_FONT_TABLE_ENTRY(font_7x13B_tr) \
 UCG_FONT_TABLE_ENTRY(font_helvB12_hr) \
 UCG_FONT_TABLE_ENTRY(font_helvB18_hr) \
 UCG_FONT_TABLE_ENTRY(font_ncenR12_tr) \
 UCG_FONT_TABLE_ENTRY(font_ncenR14_hr)

They will be available as ucg.<font_name> in Lua.

ESP32

Add the desired fonts to the font selection sub-entry via make menuconfig.

Display Drivers

Initialize a display via Hardware SPI.

	hx8352c_18x240x400_hw_spi()

	ili9163_18x128x128_hw_spi()

	ili9341_18x240x320_hw_spi()

	ili9486_18x320x480_hw_spi()

	pcf8833_16x132x132_hw_spi()

	seps225_16x128x128_uvis_hw_spi()

	ssd1351_18x128x128_hw_spi()

	ssd1351_18x128x128_ft_hw_spi()

	ssd1331_18x96x64_uvis_hw_spi()

	st7735_18x128x160_hw_spi()

Syntax

ucg.st7735_18x128x160_hw_spi(bus, cs, dc[, res])

Parameters

	bus SPI master bus

	cs GPIO pin for /CS

	dc GPIO pin for DC

	res GPIO pin for /RES, none if omitted

Returns

ucg display object

Example for ESP8266

-- Hardware SPI CLK = GPIO14
-- Hardware SPI MOSI = GPIO13
-- Hardware SPI MISO = GPIO12 (not used)
-- Hardware SPI /CS = GPIO15 (not used)
cs = 8 -- GPIO15, pull-down 10k to GND
dc = 4 -- GPIO2
res = 0 -- GPIO16, RES is optional YMMV
bus = 1
spi.setup(bus, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, spi.DATABITS_8, 0)
-- we won't be using the HSPI /CS line, so disable it again
gpio.mode(8, gpio.INPUT, gpio.PULLUP)

disp = ucg.st7735_18x128x160_hw_spi(bus, cs, dc, res)

Example for ESP32

sclk = 19
mosi = 23
cs = 22
dc = 16
res = 17
bus = spi.master(spi.HSPI, {sclk=sclk, mosi=mosi})
disp = ucg.st7735_18x128x160_hw_spi(bus, cs, dc, res)

Constants

Constants for various functions.

ucg.FONT_MODE_TRANSPARENT, ucg.FONT_MODE_SOLID, ucg.DRAW_UPPER_RIGHT,
ucg.DRAW_UPPER_LEFT, ucg.DRAW_LOWER_RIGHT, ucg.DRAW_LOWER_LEFT, ucg.DRAW_ALL

ucg.font_7x13B_tr, ...

ucg.disp Sub-Module

ucg.disp:begin()

See ucglib begin() [https://github.com/olikraus/ucglib/wiki/reference#begin].

ucg.disp:clearScreen()

See ucglib clearScreen() [https://github.com/olikraus/ucglib/wiki/reference#clearscreen].

ucg.disp:draw90Line()

See ucglib draw90Line() [https://github.com/olikraus/ucglib/wiki/reference#draw90line].

ucg.disp:drawBox()

See ucglib drawBox() [https://github.com/olikraus/ucglib/wiki/reference#drawbox].

ucg.disp:drawCircle()

See ucglib drawCircle() [https://github.com/olikraus/ucglib/wiki/reference#drawcircle].

ucg.disp:drawDisc()

See ucglib drawDisc() [https://github.com/olikraus/ucglib/wiki/reference#drawdisc].

ucg.disp:drawFrame()

See ucglib drawFrame() [https://github.com/olikraus/ucglib/wiki/reference#drawframe].

ucg.disp:drawGlyph()

See ucglib drawGlyph() [https://github.com/olikraus/ucglib/wiki/reference#drawglyph].

ucg.disp:drawGradientBox()

See ucglib drawGradientBox() [https://github.com/olikraus/ucglib/wiki/reference#drawgradientbox].

ucg.disp:drawGradientLine()

See ucglib drawGradientLine() [https://github.com/olikraus/ucglib/wiki/reference#drawgradientline].

ucg.disp:drawHLine()

See ucglib drawHLine() [https://github.com/olikraus/ucglib/wiki/reference#drawhline].

ucg.disp:drawLine()

See ucglib drawLine() [https://github.com/olikraus/ucglib/wiki/reference#drawline].

ucg.disp:drawPixel()

See ucglib drawPixel() [https://github.com/olikraus/ucglib/wiki/reference#drawpixel].

ucg.disp:drawRBox()

See ucglib drawRBox() [https://github.com/olikraus/ucglib/wiki/reference#drawrbox].

ucg.disp:drawRFrame()

See ucglib drawRFrame() [https://github.com/olikraus/ucglib/wiki/reference#drawrframe].

ucg.disp:drawString()

See ucglib drawString() [https://github.com/olikraus/ucglib/wiki/reference#drawstring].

ucg.disp:drawTetragon()

See ucglib drawTetragon() [https://github.com/olikraus/ucglib/wiki/reference#drawtetragon].

ucg.disp:drawTriangle()

See ucglib drawTriangle() [https://github.com/olikraus/ucglib/wiki/reference#drawrtiangle].

ucg.disp:drawVLine()

See ucglib drawVline() [https://github.com/olikraus/ucglib/wiki/reference#drawvline].

ucg.disp:getFontAscent()

See ucglib getFontAscent() [https://github.com/olikraus/ucglib/wiki/reference#getfontascent].

ucg.disp:getFontDescent()

See ucglib getFontDescent() [https://github.com/olikraus/ucglib/wiki/reference#getfontdescent].

ucg.disp:getHeight()

See ucglib getHeight() [https://github.com/olikraus/ucglib/wiki/reference#getheight].

ucg.disp:getStrWidth()

See ucglib getStrWidth() [https://github.com/olikraus/ucglib/wiki/reference#getstrwidth].

ucg.disp:getWidth()

See ucglib getWidth() [https://github.com/olikraus/ucglib/wiki/reference#getwidth].

ucg.disp:print()

See ucglib print() [https://github.com/olikraus/ucglib/wiki/reference#print].

ucg.disp:setClipRange()

See ucglib setClipRange() [https://github.com/olikraus/ucglib/wiki/reference#setcliprange].

ucg.disp:setColor()

See ucglib setColor() [https://github.com/olikraus/ucglib/wiki/reference#setcolor].

ucg.disp:setFont()

Define a ucg font for the glyph and string drawing functions. They are available as ucg.<font_name> in Lua.

Syntax

disp:setFont(font)

Parameters

font constant to identify pre-compiled font

Returns

nil

Example

disp:setFont(ucg.font_7x13B_tr)

See also

ucglib setFont() [https://github.com/olikraus/ucglib/wiki/reference#setfont]

ucg.disp:setFontMode()

See ucglib setFontMode() [https://github.com/olikraus/ucglib/wiki/reference#setfontmode].

ucg.disp:setFontPosBaseline()

See ucglib setFontPosBaseline() [https://github.com/olikraus/ucglib/wiki/reference#setfontposbaseline].

ucg.disp:setFontPosBottom()

See ucglib setFontPosBottom() [https://github.com/olikraus/ucglib/wiki/reference#setfontposbottom].

ucg.disp:setFontPosCenter()

See ucglib setFontPosCenter() [https://github.com/olikraus/ucglib/wiki/reference#setfontposcenter].

ucg.disp:setFontPosTop()

See ucglib setFontPosTop() [https://github.com/olikraus/ucglib/wiki/reference#setfontpostop].

ucg.disp:setMaxClipRange()

See ucglib setMaxClipRange() [https://github.com/olikraus/ucglib/wiki/reference#setmaxcliprange].

ucg.disp:setPrintDir()

See ucglib setPrintDir() [https://github.com/olikraus/ucglib/wiki/reference#setprintdir].

ucg.disp:setPrintPos()

See ucglib setPrintPos() [https://github.com/olikraus/ucglib/wiki/reference#setprintpos].

ucg.disp:setRotate90()

See ucglib setRotate90() [https://github.com/olikraus/ucglib/wiki/reference#setrotate90].

ucg.disp:setRotate180()

See ucglib setRotate180() [https://github.com/olikraus/ucglib/wiki/reference#setrotate180].

ucg.disp:setRotate270()

See ucglib setRotate270() [https://github.com/olikraus/ucglib/wiki/reference#setrotate270].

ucg.disp:setScale2x2()

See ucglib setScale2x2() [https://github.com/olikraus/ucglib/wiki/reference#setscale2x2].

ucg.disp:undoClipRange()

See ucglib undoClipRange() [https://github.com/olikraus/ucglib/wiki/reference#undocliprange].

ucg.disp:undoRotate()

See ucglib undoRotate() [https://github.com/olikraus/ucglib/wiki/reference#undorotate].

ucg.disp:undoScale()

See ucglib undoScale() [https://github.com/olikraus/ucglib/wiki/reference#undoscale].

 Websocket Module

Websocket Module

Since	Origin / Contributor	Maintainer	Source
2016-08-02	Luís Fonseca [https://github.com/luismfonseca]	Luís Fonseca [https://github.com/luismfonseca]	websocket.c

A websocket client module that implements RFC6455 [https://tools.ietf.org/html/rfc6455] (version 13) and provides a simple interface to send and receive messages.

The implementation supports fragmented messages, automatically respondes to ping requests and periodically pings if the server isn't communicating.

SSL/TLS support

Take note of constraints documented in the net module.

websocket.createClient()

Creates a new websocket client. This client should be stored in a variable and will provide all the functions to handle a connection.

When the connection becomes closed, the same client can still be reused - the callback functions are kept - and you can connect again to any server.

Before disposing the client, make sure to call ws:close().

Syntax

websocket.createClient()

Parameters

none

Returns

websocketclient

Example

local ws = websocket.createClient()
-- ...
ws:close()
ws = nil

websocket.client:close()

Closes a websocket connection. The client issues a close frame and attemtps to gracefully close the websocket.
If server doesn't reply, the connection is terminated after a small timeout.

This function can be called even if the websocket isn't connected.

This function must always be called before disposing the reference to the websocket client.

Syntax

websocket:close()

Parameters

none

Returns

nil

Example

ws = websocket.createClient()
ws:close()
ws:close() -- nothing will happen

ws = nil -- fully dispose the client as Lua will now gc it

websocket.client:config(params)

Configures websocket client instance.

Syntax

websocket:config(params)

Parameters

	params table with configuration parameters. Following keys are recognized:

	headers table of extra request headers affecting every request

Returns

nil

Example

ws = websocket.createClient()
ws:config({headers={['User-Agent']='NodeMCU'}})

websocket.client:connect()

Attempts to estabilish a websocket connection to the given URL.

Syntax

websocket:connect(url)

Parameters

	url the URL for the websocket.

Returns

nil

Example

ws = websocket.createClient()
ws:connect('ws://echo.websocket.org')

If it fails, an error will be delivered via websocket:on("close", handler).

websocket.client:on()

Registers the callback function to handle websockets events (there can be only one handler function registered per event type).

Syntax

websocket:on(eventName, function(ws, ...))

Parameters

	eventName the type of websocket event to register the callback function. Those events are: connection, receive and close.

	function(ws, ...) callback function.
The function first parameter is always the websocketclient.
Other arguments are required depending on the event type. See example for more details.
If nil, any previously configured callback is unregistered.

Returns

nil

Example

local ws = websocket.createClient()
ws:on("connection", function(ws)
 print('got ws connection')
end)
ws:on("receive", function(_, msg, opcode)
 print('got message:', msg, opcode) -- opcode is 1 for text message, 2 for binary
end)
ws:on("close", function(_, status)
 print('connection closed', status)
 ws = nil -- required to Lua gc the websocket client
end)

ws:connect('ws://echo.websocket.org')

Note that the close callback is also triggered if any error occurs.

The status code for the close, if not 0 then it represents an error, as described in the following table.

Status Code	Explanation
0	User requested close or the connection was terminated gracefully
-1	Failed to extract protocol from URL
-2	Hostname is too large (>256 chars)
-3	Invalid port number (must be >0 and <= 65535)
-4	Failed to extract hostname
-5	DNS failed to lookup hostname
-6	Server requested termination
-7	Server sent invalid handshake HTTP response (i.e. server sent a bad key)
-8 to -14	Failed to allocate memory to receive message
-15	Server not following FIN bit protocol correctly
-16	Failed to allocate memory to send message
-17	Server is not switching protocols
-18	Connect timeout
-19	Server is not responding to health checks nor communicating
-99 to -999	Well, something bad has happenned

websocket.client:send()

Sends a message through the websocket connection.

Syntax

websocket:send(message, opcode)

Parameters

	message the data to send.

	opcode optionally set the opcode (default: 1, text message)

Returns

nil or an error if socket is not connected

Example

ws = websocket.createClient()
ws:on("connection", function()
 ws:send('hello!')
end)
ws:connect('ws://echo.websocket.org')

 WiFi Module

WiFi Module

Since	Origin / Contributor	Maintainer	Source
2015-05-12	Zeroday [https://github.com/funshine]	dnc40085 [https://github.com/dnc40085]	wifi.c

!!! important
The WiFi subsystem is maintained by background tasks that must run periodically. Any function or task that takes longer than 15ms (milliseconds) may cause the WiFi subsystem to crash. To avoid these potential crashes, it is advised that the WiFi subsystem be suspended with wifi.suspend() prior to the execution of any tasks or functions that exceed this 15ms guideline.

WiFi modes

Courtesy: content for this chapter is borrowed/inspired by the Arduino ESP8266 WiFi documentation [https://arduino-esp8266.readthedocs.io/en/latest/esp8266wifi/readme.html].

Devices that connect to WiFi network are called stations (STA). Connection to Wi-Fi is provided by an access point (AP), that acts as a hub for one or more stations. The access point on the other end is connected to a wired network. An access point is usually integrated with a router to provide access from Wi-Fi network to the internet. Each access point is recognized by a SSID (Service Set IDentifier), that essentially is the name of network you select when connecting a device (station) to the WiFi.

Each ESP8266 module can operate as a station, so we can connect it to the WiFi network. It can also operate as a soft access point (soft-AP), to establish its own WiFi network. Therefore, we can connect other stations to such modules. Third, ESP8266 is also able to operate both in station and soft access point mode at the same time. This offers the possibility of building e.g. mesh networks [https://en.wikipedia.org/wiki/Mesh_networking].

Station

Station (STA) mode is used to get the ESP8266 connected to a WiFi network established by an access point.

[image: ESP8266 operating in station mode]

Soft Access Point

An access point (AP) is a device that provides access to Wi-Fi network to other devices (stations) and connects them further to a wired network. ESP8266 can provide similar functionality except it does not have interface to a wired network. Such mode of operation is called soft access point (soft-AP). The maximum number of stations connected to the soft-AP is five.

[image: ESP8266 operating in Soft Access Point mode]

The soft-AP mode is often used and an intermediate step before connecting ESP to a WiFi in a station mode. This is when SSID and password to such network is not known upfront. The module first boots in soft-AP mode, so we can connect to it using a laptop or a mobile phone. Then we are able to provide credentials to the target network. Once done ESP is switched to the station mode and can connect to the target WiFi.

Such functionality is provided by the NodeMCU enduser setup module.

Station + Soft Access Point

Another handy application of soft-AP mode is to set up mesh networks [https://en.wikipedia.org/wiki/Mesh_networking]. ESP can operate in both soft-AP and Station mode so it can act as a node of a mesh network.

[image: ESP8266 operating in station AP mode]

Function reference

The NodeMCU WiFi control is spread across several tables:

	wifi for overall WiFi configuration

	wifi.sta for station mode functions

	wifi.ap for wireless access point (WAP or simply AP) functions

	wifi.ap.dhcp for DHCP server control

	wifi.eventmon for wifi event monitor

	wifi.monitor for wifi monitor mode

wifi.getchannel()

Gets the current WiFi channel.

Syntax

wifi.getchannel()

Parameters

nil

Returns

current WiFi channel

wifi.getcountry()

Get the current country info.

Syntax

wifi.getcountry()

Parameters

nil

Returns

	country_info this table contains the current country info configuration

	country Country code, 2 character string.

	start_ch Starting channel.

	end_ch Ending channel.

	policy The policy parameter determines which country info configuration to use, country info given to station by AP or local configuration.

	0 Country policy is auto, NodeMCU will use the country info provided by AP that the station is connected to.

	1 Country policy is manual, NodeMCU will use locally configured country info.

Example

for k, v in pairs(wifi.getcountry()) do
 print(k, v)
end

See also

wifi.setcountry()

wifi.getdefaultmode()

Gets default WiFi operation mode.

Syntax

wifi.getdefaultmode()

Parameters

nil

Returns

The WiFi mode, as one of the wifi.STATION, wifi.SOFTAP, wifi.STATIONAP or wifi.NULLMODE constants.

See also

wifi.getmode()
wifi.setmode()

wifi.getmode()

Gets WiFi operation mode.

Syntax

wifi.getmode()

Parameters

nil

Returns

The WiFi mode, as one of the wifi.STATION, wifi.SOFTAP, wifi.STATIONAP or wifi.NULLMODE constants.

See also

wifi.getdefaultmode()
wifi.setmode()

wifi.getphymode()

Gets WiFi physical mode.

Syntax

wifi.getphymode()

Parameters

none

Returns

The current physical mode as one of wifi.PHYMODE_B, wifi.PHYMODE_G or wifi.PHYMODE_N.

See also

wifi.setphymode()

wifi.nullmodesleep()

Configures whether or not WiFi automatically goes to sleep in NULL_MODE. Enabled by default.

!!! note
This function does not store it's setting in flash, if auto sleep in NULL_MODE is not desired, wifi.nullmodesleep(false) must be called after power-up, restart, or wake from deep sleep.

Syntax

wifi.nullmodesleep([enable])

Parameters

	enable

	true Enable WiFi auto sleep in NULL_MODE. (Default setting)

	false Disable WiFi auto sleep in NULL_MODE.

Returns

	sleep_enabled Current/New NULL_MODE sleep setting

	If wifi.nullmodesleep() is called with no arguments, current setting is returned.

	If wifi.nullmodesleep() is called with enable argument, confirmation of new setting is returned.

wifi.resume()

Wake up WiFi from suspended state or cancel pending wifi suspension.

!!! attention
This is disabled by default. Modify PMSLEEP_ENABLE in app/include/user_config.h to enable it.

!!! note
Wifi resume occurs asynchronously, this means that the resume request will only be processed when control of the processor is passed back to the SDK (after MyResumeFunction() has completed). The resume callback also executes asynchronously and will only execute after wifi has resumed normal operation.

Syntax

wifi.resume([resume_cb])

Parameters

	resume_cb Callback to execute when WiFi wakes from suspension.
!!! note "Note:"

Any previously provided callbacks will be replaced!

Returns

nil

Example

--Resume wifi from timed or indefinite sleep
wifi.resume()

--Resume wifi from timed or indefinite sleep w/ resume callback
wifi.resume(function() print("WiFi resume") end)

See also

	wifi.suspend()

	node.sleep()

	node.dsleep()

wifi.setcountry()

Set the current country info.

Syntax

wifi.setcountry(country_info)

Parameters

	country_info This table contains the country info configuration. (If a blank table is passed to this function, default values will be configured.)

	country Country code, 2 character string containing the country code (a list of country codes can be found here [https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2#Officially_assigned_code_elements]). (Default:"CN")

	start_ch Starting channel (range:1-14). (Default:1)

	end_ch Ending channel, must not be less than starting channel (range:1-14). (Default:13)

	policy The policy parameter determines which country info configuration to use, country info given to station by AP or local configuration. (default:wifi.COUNTRY_AUTO)

	wifi.COUNTRY_AUTO Country policy is auto, NodeMCU will use the country info provided by AP that the station is connected to.

	while in stationAP mode, beacon/probe respose will reflect the country info of the AP that the station is connected to.

	wifi.COUNTRY_MANUAL Country policy is manual, NodeMCU will use locally configured country info.

Returns

true If configuration was sucessful.

Example

do
 country_info={}
 country_info.country="US"
 country_info.start_ch=1
 country_info.end_ch=13
 country_info.policy=wifi.COUNTRY_AUTO;
 wifi.setcountry(country_info)
end

--compact version
 wifi.setcountry({country="US", start_ch=1, end_ch=13, policy=wifi.COUNTRY_AUTO})

--Set defaults
 wifi.setcountry({})

See also

wifi.getcountry()

wifi.setmode()

Configures the WiFi mode to use. NodeMCU can run in one of four WiFi modes:

	Station mode, where the NodeMCU device joins an existing network

	Access point (AP) mode, where it creates its own network that others can join

	Station + AP mode, where it both creates its own network while at the same time being joined to another existing network

	WiFi off

When using the combined Station + AP mode, the same channel will be used for both networks as the radio can only listen on a single channel.

!!! note
WiFi configuration will be retained until changed even if device is turned off.

Syntax

wifi.setmode(mode[, save])

Parameters

	mode value should be one of

	wifi.STATION for when the device is connected to a WiFi router. This is often done to give the device access to the Internet.

	wifi.SOFTAP for when the device is acting only as an access point. This will allow you to see the device in the list of WiFi networks (unless you hide the SSID, of course). In this mode your computer can connect to the device, creating a local area network. Unless you change the value, the NodeMCU device will be given a local IP address of 192.168.4.1 and assign your computer the next available IP address, such as 192.168.4.2.

	wifi.STATIONAP is the combination of wifi.STATION and wifi.SOFTAP. It allows you to create a local WiFi connection and connect to another WiFi router.

	wifi.NULLMODE changing WiFi mode to NULL_MODE will put wifi into a low power state similar to MODEM_SLEEP, provided wifi.nullmodesleep(false) has not been called.

	save choose whether or not to save wifi mode to flash

	true WiFi mode configuration will be retained through power cycle. (Default)

	false WiFi mode configuration will not be retained through power cycle.

Returns

current mode after setup

Example

wifi.setmode(wifi.STATION)

See also

wifi.getmode()
wifi.getdefaultmode()

wifi.setphymode()

Sets WiFi physical mode.

	wifi.PHYMODE_B
802.11b, more range, low Transfer rate, more current draw

	wifi.PHYMODE_G
802.11g, medium range, medium transfer rate, medium current draw

	wifi.PHYMODE_N
802.11n, least range, fast transfer rate, least current draw (STATION ONLY)
Information from the Espressif datasheet v4.3

Parameters	Typical Power Usage
Tx 802.11b, CCK 11Mbps, P OUT=+17dBm	170 mA
Tx 802.11g, OFDM 54Mbps, P OUT =+15dBm	140 mA
Tx 802.11n, MCS7 65Mbps, P OUT =+13dBm	120 mA
Rx 802.11b, 1024 bytes packet length, -80dBm	50 mA
Rx 802.11g, 1024 bytes packet length, -70dBm	56 mA
Rx 802.11n, 1024 bytes packet length, -65dBm	56 mA

Syntax

wifi.setphymode(mode)

Parameters

mode one of the following

	wifi.PHYMODE_B

	wifi.PHYMODE_G

	wifi.PHYMODE_N

Returns

physical mode after setup

See also

wifi.getphymode()

wifi.setmaxtxpower()

Sets WiFi maximum TX power. This setting is not persisted across power cycles, and the Espressif SDK documentation does not specify if the setting persists after deep sleep. The default value used is read from byte 34 of the ESP8266 init data, and its value is hence defined by the manufacturer.

The default value, 82, corresponds to maximum TX power. Lowering this setting could reduce power consumption on battery backed devices.

Syntax

wifi.setmaxtxpower(max_tpw)

Parameters

max_tpw maximum value of RF Tx Power, unit: 0.25 dBm, range [0, 82].

Returns

nil

See also

flash SDK init data

wifi.startsmart()

Starts to auto configuration, if success set up SSID and password automatically.

Intended for use with SmartConfig apps, such as Espressif's Android & iOS app [https://github.com/espressifapp].

Only usable in wifi.STATION mode.

!!! important

SmartConfig is disabled by default and can be enabled by setting `WIFI_SMART_ENABLE` in [`user_config.h`](https://github.com/nodemcu/nodemcu-firmware/blob/dev/app/include/user_config.h#L96) before you build the firmware.

Syntax

wifi.startsmart(type, callback)

Parameters

	type 0 for ESP_TOUCH, or 1 for AIR_KISS.

	callback a callback function of the form function(ssid, password) end which gets called after configuration.

Returns

nil

Example

wifi.setmode(wifi.STATION)
wifi.startsmart(0,
 function(ssid, password)
 print(string.format("Success. SSID:%s ; PASSWORD:%s", ssid, password))
 end
)

See also

wifi.stopsmart()

wifi.stopsmart()

Stops the smart configuring process.

Syntax

wifi.stopsmart()

Parameters

none

Returns

nil

See also

wifi.startsmart()

wifi.suspend()

Suspend Wifi to reduce current consumption.

!!! attention
This is disabled by default. Modify PMSLEEP_ENABLE in app/include/user_config.h to enable it.

!!! note
Wifi suspension occurs asynchronously, this means that the suspend request will only be processed when control of the processor is passed back to the SDK (after MySuspendFunction() has completed). The suspend callback also executes asynchronously and will only execute after wifi has been successfully been suspended.

Syntax

wifi.suspend({duration[, suspend_cb, resume_cb, preserve_mode]})

Parameters

	duration Suspend duration in microseconds(μs). If a suspend duration of 0 is specified, suspension will be indefinite (Range: 0 or 50000 - 268435454 μs (0:4:28.000454))

	suspend_cb Callback to execute when WiFi is suspended. (Optional)

	resume_cb Callback to execute when WiFi wakes from suspension. (Optional)

	preserve_mode preserve current WiFi mode through node sleep. (Optional, Default: true)

	If true, Station and StationAP modes will automatically reconnect to previously configured Access Point when NodeMCU resumes.

	If false, discard WiFi mode and leave NodeMCU in wifi.NULL_MODE. WiFi mode will be restored to original mode on restart.

Returns

	suspend_state if no parameters are provided, current WiFi suspension state will be returned

	States:

	0 WiFi is awake.

	1 WiFi suspension is pending. (Waiting for idle task)

	2 WiFi is suspended.

Example

--get current wifi suspension state
print(wifi.suspend())

--Suspend WiFi for 10 seconds with suspend/resume callbacks
 cfg={}
 cfg.duration=10*1000*1000
 cfg.resume_cb=function() print("WiFi resume") end
 cfg.suspend_cb=function() print("WiFi suspended") end

 wifi.suspend(cfg)

--Suspend WiFi for 10 seconds with suspend/resume callbacks and discard WiFi mode
 cfg={}
 cfg.duration=10*1000*1000
 cfg.resume_cb=function() print("WiFi resume") end
 cfg.suspend_cb=function() print("WiFfi suspended") end
 cfg.preserve_mode=false

 wifi.suspend(cfg)

See also

	wifi.resume()

	node.sleep()

	node.dsleep()

wifi.sta Module

wifi.sta.autoconnect()

Auto connects to AP in station mode.

Syntax

wifi.sta.autoconnect(auto)

Parameters

auto 0 to disable auto connecting, 1 to enable auto connecting

Returns

nil

Example

wifi.sta.autoconnect(1)

See also

	wifi.sta.config()

	wifi.sta.connect()

	wifi.sta.disconnect()

wifi.sta.changeap()

Select Access Point from list returned by wifi.sta.getapinfo()

Syntax

wifi.sta.changeap(ap_index)

Parameters

ap_index Index of Access Point you would like to change to. (Range:1-5)

	Corresponds to index used by wifi.sta.getapinfo() and wifi.sta.getapindex()

Returns

	true Success

	false Failure

Example

wifi.sta.changeap(4)

See also

	wifi.sta.getapinfo()

	wifi.sta.getapindex()

wifi.sta.clearconfig()

Clears the currently saved WiFi station configuration, erasing it from the flash. May be useful for certain factory-reset
scenarios when a full node.restore() is not desired, or to prepare for using
End-User Setup so that the SoftAP is able to lock onto a single hardware radio channel.

Syntax

wifi.sta.clearconfig()

Parameters

none

Returns

	true Success

	false Failure

See also

	wifi.sta.config()

	node.restore()

wifi.sta.config()

Sets the WiFi station configuration.

!!! note
It is not advised to assume that the WiFi is connected at any time during initialization start-up. WiFi connection status should be validated either by using a WiFi event callback or by polling the status on a timer.

Syntax

wifi.sta.config(station_config)

Parameters

	station_config table containing configuration data for station

	ssid string which is less than 32 bytes.

	pwd string which is 0-64. Empty string indicates an open WiFi access point. Note: WPA requires a minimum of 8-characters, but the ESP8266 can also connect to a WEP access point (a 40-bit WEP key can be provided as its corresponding 5-character ASCII string).

	auto defaults to true

	true to enable auto connect and connect to access point, hence with auto=true there's no need to call wifi.sta.connect()

	false to disable auto connect and remain disconnected from access point

	bssid string that contains the MAC address of the access point (optional)

	You can set BSSID if you have multiple access points with the same SSID.

	If you set BSSID for a specific SSID and would like to configure station to connect to the same SSID only without the BSSID requirement, you MUST first configure to station to a different SSID first, then connect to the desired SSID

	The following formats are valid:

	"DE:C1:A5:51:F1:ED"

	"AC-1D-1C-B1-0B-22"

	"DE AD BE EF 7A C0"

	save Save station configuration to flash.

	true configuration will be retained through power cycle. (Default).

	false configuration will not be retained through power cycle.

	Event callbacks will only be available if WIFI_SDK_EVENT_MONITOR_ENABLE is uncommented in user_config.h

	Please note: To ensure all station events are handled at boot time, all relevant callbacks must be registered as early as possible in init.lua with either wifi.sta.config() or wifi.eventmon.register().

	connected_cb: Callback to execute when station is connected to an access point. (Optional)

	Items returned in table :

	SSID: SSID of access point. (format: string)

	BSSID: BSSID of access point. (format: string)

	channel: The channel the access point is on. (format: number)

	disconnected_cb: Callback to execute when station is disconnected from an access point. (Optional)

	Items returned in table :

	SSID: SSID of access point. (format: string)

	BSSID: BSSID of access point. (format: string)

	reason: See wifi.eventmon.reason below. (format: number)

	authmode_change_cb: Callback to execute when the access point has changed authorization mode. (Optional)

	Items returned in table :

	old_auth_mode: Old wifi authorization mode. (format: number)

	new_auth_mode: New wifi authorization mode. (format: number)

	got_ip_cb: Callback to execute when the station received an IP address from the access point. (Optional)

	Items returned in table :

	IP: The IP address assigned to the station. (format: string)

	netmask: Subnet mask. (format: string)

	gateway: The IP address of the access point the station is connected to. (format: string)

	dhcp_timeout_cb: Station DHCP request has timed out. (Optional)

	Blank table is returned.

Returns

	true Success

	false Failure

Example

--connect to Access Point (DO NOT save config to flash)
station_cfg={}
station_cfg.ssid="NODE-AABBCC"
station_cfg.pwd="password"
station_cfg.save=false
wifi.sta.config(station_cfg)

--connect to Access Point (DO save config to flash)
station_cfg={}
station_cfg.ssid="NODE-AABBCC"
station_cfg.pwd="password"
station_cfg.save=true
wifi.sta.config(station_cfg)

--connect to Access Point with specific MAC address (DO save config to flash)
station_cfg={}
station_cfg.ssid="NODE-AABBCC"
station_cfg.pwd="password"
station_cfg.bssid="AA:BB:CC:DD:EE:FF"
wifi.sta.config(station_cfg)

--configure station but don't connect to Access point (DO save config to flash)
station_cfg={}
station_cfg.ssid="NODE-AABBCC"
station_cfg.pwd="password"
station_cfg.auto=false
wifi.sta.config(station_cfg)

See also

	wifi.sta.clearconfig()

	wifi.sta.connect()

	wifi.sta.disconnect()

	wifi.sta.apinfo()

wifi.sta.connect()

Connects to the configured AP in station mode. You only ever need to call this if auto-connect was disabled in wifi.sta.config().

Syntax

wifi.sta.connect([connected_cb])

Parameters

	connected_cb: Callback to execute when station is connected to an access point. (Optional)

	Items returned in table :

	SSID: SSID of access point. (format: string)

	BSSID: BSSID of access point. (format: string)

	channel: The channel the access point is on. (format: number)

Returns

nil

See also

	wifi.sta.disconnect()

	wifi.sta.config()

wifi.sta.disconnect()

Disconnects from AP in station mode.

!!! note
Please note that disconnecting from Access Point does not reduce power consumption. If power saving is your goal, please refer to the description for wifi.NULLMODE in the function wifi.setmode() for more details.

Syntax

wifi.sta.disconnect([disconnected_cb])

Parameters

	disconnected_cb: Callback to execute when station is disconnected from an access point. (Optional)

	Items returned in table :

	SSID: SSID of access point. (format: string)

	BSSID: BSSID of access point. (format: string)

	reason: See wifi.eventmon.reason below. (format: number)

Returns

nil

See also

	wifi.sta.config()

	wifi.sta.connect()

wifi.sta.getap()

Scans AP list as a Lua table into callback function.

Syntax

wifi.sta.getap([[cfg], format,] callback(table))

Parameters

	cfg table that contains scan configuration

	ssid SSID == nil, don't filter SSID

	bssid BSSID == nil, don't filter BSSID

	channel channel == 0, scan all channels, otherwise scan set channel (default is 0)

	show_hidden show_hidden == 1, get info for router with hidden SSID (default is 0)

	format select output table format, defaults to 0

	0: old format (SSID : Authmode, RSSI, BSSID, Channel), any duplicate SSIDs will be discarded

	1: new format (BSSID : SSID, RSSI, auth mode, Channel)

	callback(table) a callback function to receive the AP table when the scan is done. This function receives a table, the key is the BSSID, the value is other info in format: SSID, RSSID, auth mode, channel.

Returns

nil

Example

-- print AP list in old format (format not defined)
function listap(t)
 for k,v in pairs(t) do
 print(k.." : "..v)
 end
end
wifi.sta.getap(listap)

-- Print AP list that is easier to read
function listap(t) -- (SSID : Authmode, RSSI, BSSID, Channel)
 print("\n"..string.format("%32s","SSID").."\tBSSID\t\t\t\t RSSI\t\tAUTHMODE\tCHANNEL")
 for ssid,v in pairs(t) do
 local authmode, rssi, bssid, channel = string.match(v, "([^,]+),([^,]+),([^,]+),([^,]+)")
 print(string.format("%32s",ssid).."\t"..bssid.."\t "..rssi.."\t\t"..authmode.."\t\t\t"..channel)
 end
end
wifi.sta.getap(listap)

-- print AP list in new format
function listap(t)
 for k,v in pairs(t) do
 print(k.." : "..v)
 end
end
wifi.sta.getap(1, listap)

-- Print AP list that is easier to read
function listap(t) -- (SSID : Authmode, RSSI, BSSID, Channel)
 print("\n\t\t\tSSID\t\t\t\t\tBSSID\t\t\t RSSI\t\tAUTHMODE\t\tCHANNEL")
 for bssid,v in pairs(t) do
 local ssid, rssi, authmode, channel = string.match(v, "([^,]+),([^,]+),([^,]+),([^,]*)")
 print(string.format("%32s",ssid).."\t"..bssid.."\t "..rssi.."\t\t"..authmode.."\t\t\t"..channel)
 end
end
wifi.sta.getap(1, listap)

--check for specific AP
function listap(t)
 print("\n\t\t\tSSID\t\t\t\t\tBSSID\t\t\t RSSI\t\tAUTHMODE\t\tCHANNEL")
 for bssid,v in pairs(t) do
 local ssid, rssi, authmode, channel = string.match(v, "([^,]+),([^,]+),([^,]+),([^,]*)")
 print(string.format("%32s",ssid).."\t"..bssid.."\t "..rssi.."\t\t"..authmode.."\t\t\t"..channel)
 end
end
scan_cfg = {}
scan_cfg.ssid = "myssid"
scan_cfg.bssid = "AA:AA:AA:AA:AA:AA"
scan_cfg.channel = 0
scan_cfg.show_hidden = 1
wifi.sta.getap(scan_cfg, 1, listap)

--get RSSI for currently configured AP
function listap(t)
 for bssid,v in pairs(t) do
 local ssid, rssi, authmode, channel = string.match(v, "([^,]+),([^,]+),([^,]+),([^,]*)")
 print("CURRENT RSSI IS: "..rssi)
 end
end
ssid, tmp, bssid_set, bssid=wifi.sta.getconfig()

scan_cfg = {}
scan_cfg.ssid = ssid
if bssid_set == 1 then scan_cfg.bssid = bssid else scan_cfg.bssid = nil end
scan_cfg.channel = wifi.getchannel()
scan_cfg.show_hidden = 0
ssid, tmp, bssid_set, bssid=nil, nil, nil, nil
wifi.sta.getap(scan_cfg, 1, listap)

See also

wifi.sta.getip()

wifi.sta.getapindex()

Get index of current Access Point stored in AP cache.

Syntax

wifi.sta.getapindex()

Parameters

none

Returns

current_index index of currently selected Access Point. (Range:1-5)

Example

print("the index of the currently selected AP is: "..wifi.sta.getapindex())

See also

	wifi.sta.getapindex()

	wifi.sta.apinfo()

	wifi.sta.apchange()

wifi.sta.getapinfo()

Get information of APs cached by ESP8266 station.

!!! Note
Any Access Points configured with save disabled wifi.sta.config({save=false}) will populate this list (appearing to overwrite APs stored in flash) until restart.

Syntax

wifi.sta.getapinfo()

Parameters

nil

Returns

	ap_info

	qty quantity of APs returned

	1-5 index of AP. (the index corresponds to index used by wifi.sta.changeap() and wifi.sta.getapindex())

	ssid ssid of Access Point

	pwd password for Access Point, nil if no password was configured

	bssid MAC address of Access Point

	nil will be returned if no MAC address was configured during station configuration.

Example

--print stored access point info
do
 for k,v in pairs(wifi.sta.getapinfo()) do
 if (type(v)=="table") then
 print(" "..k.." : "..type(v))
 for k,v in pairs(v) do
 print("\t\t"..k.." : "..v)
 end
 else
 print(" "..k.." : "..v)
 end
 end
end

--print stored access point info(formatted)
do
 local x=wifi.sta.getapinfo()
 local y=wifi.sta.getapindex()
 print("\n Number of APs stored in flash:", x.qty)
 print(string.format(" %-6s %-32s %-64s %-18s", "index:", "SSID:", "Password:", "BSSID:"))
 for i=1, (x.qty), 1 do
 print(string.format(" %s%-6d %-32s %-64s %-18s",(i==y and ">" or " "), i, x[i].ssid, x[i].pwd and x[i].pwd or type(nil), x[i].bssid and x[i].bssid or type(nil)))
 end
end

See also

	wifi.sta.getapindex()

	wifi.sta.setaplimit()

	wifi.sta.changeap()

	wifi.sta.config()

wifi.sta.getbroadcast()

Gets the broadcast address in station mode.

Syntax

wifi.sta.getbroadcast()

Parameters

nil

Returns

broadcast address as string, for example "192.168.0.255",
returns nil if IP address = "0.0.0.0".

See also

wifi.sta.getip()

wifi.sta.getconfig()

Gets the WiFi station configuration.

Syntax

wifi.sta.getconfig()

Parameters

	return_table

	true returns data in a table

	false returns data in the old format (default)

Returns

If return_table is true:

	config_table

	ssid ssid of Access Point.

	pwd password to Access Point, nil if no password was configured

	bssid_set will return true if the station was configured specifically to connect to the AP with the matching bssid.

	bssid If a connection has been made to the configured AP this field will contain the AP's MAC address. Otherwise "ff:ff:ff:ff:ff:ff" will be returned.

If return_table is false:

	ssid, password, bssid_set, bssid, if bssid_set is equal to 0 then bssid is irrelevant

Example

--Get current Station configuration (NEW FORMAT)
do
local sta_config=wifi.sta.getconfig(true)
print(string.format("\tCurrent station config\n\tssid:\"%s\"\tpassword:\"%s\"\n\tbssid:\"%s\"\tbssid_set:%s", sta_config.ssid, sta_config.pwd, sta_config.bssid, (sta_config.bssid_set and "true" or "false")))
end

--Get current Station configuration (OLD FORMAT)
ssid, password, bssid_set, bssid=wifi.sta.getconfig()
print("\nCurrent Station configuration:\nSSID : "..ssid
.."\nPassword : "..password
.."\nBSSID_set : "..bssid_set
.."\nBSSID: "..bssid.."\n")
ssid, password, bssid_set, bssid=nil, nil, nil, nil

See also

	wifi.sta.getdefaultconfig()

	wifi.sta.connect()

	wifi.sta.disconnect()

wifi.sta.getdefaultconfig()

Gets the default WiFi station configuration stored in flash.

Syntax

wifi.sta.getdefaultconfig(return_table)

Parameters

	return_table

	true returns data in a table

	false returns data in the old format (default)

Returns

If return_table is true:

	config_table

	ssid ssid of Access Point.

	pwd password to Access Point, nil if no password was configured

	bssid_set will return true if the station was configured specifically to connect to the AP with the matching bssid.

	bssid If a connection has been made to the configured AP this field will contain the AP's MAC address. Otherwise "ff:ff:ff:ff:ff:ff" will be returned.

If return_table is false:

	ssid, password, bssid_set, bssid, if bssid_set is equal to 0 then bssid is irrelevant

Example

--Get default Station configuration (NEW FORMAT)
do
local def_sta_config=wifi.sta.getdefaultconfig(true)
print(string.format("\tDefault station config\n\tssid:\"%s\"\tpassword:\"%s\"\n\tbssid:\"%s\"\tbssid_set:%s", def_sta_config.ssid, def_sta_config.pwd, def_sta_config.bssid, (def_sta_config.bssid_set and "true" or "false")))
end

--Get default Station configuration (OLD FORMAT)
ssid, password, bssid_set, bssid=wifi.sta.getdefaultconfig()
print("\nCurrent Station configuration:\nSSID : "..ssid
.."\nPassword : "..password
.."\nBSSID_set : "..bssid_set
.."\nBSSID: "..bssid.."\n")
ssid, password, bssid_set, bssid=nil, nil, nil, nil

See also

	wifi.sta.getconfig()

	wifi.sta.connect()

	wifi.sta.disconnect()

wifi.sta.gethostname()

Gets current station hostname.

Syntax

wifi.sta.gethostname()

Parameters

none

Returns

currently configured hostname

Example

print("Current hostname is: \""..wifi.sta.gethostname().."\"")

wifi.sta.getip()

Gets IP address, netmask, and gateway address in station mode.

Syntax

wifi.sta.getip()

Parameters

none

Returns

IP address, netmask, gateway address as string, for example "192.168.0.111". Returns nil if IP = "0.0.0.0".

Example

-- print current IP address, netmask, gateway
print(wifi.sta.getip())
-- 192.168.0.111 255.255.255.0 192.168.0.1
ip = wifi.sta.getip()
print(ip)
-- 192.168.0.111
ip, nm = wifi.sta.getip()
print(nm)
-- 255.255.255.0

See also

wifi.sta.getmac()

wifi.sta.getmac()

Gets MAC address in station mode.

Syntax

wifi.sta.getmac()

Parameters

none

Returns

MAC address as string e.g. "18:fe:34:a2:d7:34"

See also

wifi.sta.getip()

wifi.sta.getrssi()

Get RSSI(Received Signal Strength Indicator) of the Access Point which ESP8266 station connected to.

Syntax

wifi.sta.getrssi()

Parameters

none

Returns

	If station is connected to an access point, rssi is returned.

	If station is not connected to an access point, nil is returned.

Example

RSSI=wifi.sta.getrssi()
print("RSSI is", RSSI)

wifi.sta.setaplimit()

Set Maximum number of Access Points to store in flash.

	This value is written to flash

!!! Attention
New setting will not take effect until restart.

!!! Note
If 5 Access Points are stored and AP limit is set to 4, the AP at index 5 will remain until node.restore() is called or AP limit is set to 5 and AP is overwritten.

Syntax

wifi.sta.setaplimit(qty)

Parameters

qty Quantity of Access Points to store in flash. Range: 1-5 (Default: 1)

Returns

	true Success

	false Failure

Example

wifi.sta.setaplimit(5)

See also

	wifi.sta.getapinfo()

wifi.sta.sethostname()

Sets station hostname.

Syntax

wifi.sta.sethostname(hostname)

Parameters

hostname must only contain letters, numbers and hyphens('-') and be 32 characters or less with first and last character being alphanumeric

Returns

	true Success

	false Failure

Example

if (wifi.sta.sethostname("NodeMCU") == true) then
 print("hostname was successfully changed")
else
 print("hostname was not changed")
end

wifi.sta.setip()

Sets IP address, netmask, gateway address in station mode.

Syntax

wifi.sta.setip(cfg)

Parameters

cfg table contain IP address, netmask, and gateway

{
 ip = "192.168.0.111",
 netmask = "255.255.255.0",
 gateway = "192.168.0.1"
}

Returns

true if success, false otherwise

See also

wifi.sta.setmac()

wifi.sta.setmac()

Sets MAC address in station mode.

Syntax

wifi.sta.setmac(mac)

Parameters

MAC address in string e.g. "DE:AD:BE:EF:7A:C0"

Returns

true if success, false otherwise

Example

print(wifi.sta.setmac("DE:AD:BE:EF:7A:C0"))

See also

wifi.sta.setip()

wifi.sta.sleeptype()

Configures the WiFi modem sleep type to be used while station is connected to an Access Point.

!!! note
Does not apply to wifi.SOFTAP, wifi.STATIONAP or wifi.NULLMODE.

Syntax

wifi.sta.sleeptype(type_wanted)

Parameters

type_wanted one of the following:

	wifi.NONE_SLEEP to keep the modem on at all times

	wifi.LIGHT_SLEEP to allow the CPU to power down under some circumstances

	wifi.MODEM_SLEEP to power down the modem as much as possible

Returns

The actual sleep mode set, as one of wifi.NONE_SLEEP, wifi.LIGHT_SLEEP or wifi.MODEM_SLEEP.

wifi.sta.status()

Gets the current status in station mode.

Syntax

wifi.sta.status()

Parameters

nil

Returns

The current state which can be one of the following:

	wifi.STA_IDLE

	wifi.STA_CONNECTING

	wifi.STA_WRONGPWD

	wifi.STA_APNOTFOUND

	wifi.STA_FAIL

	wifi.STA_GOTIP

wifi.ap Module

wifi.ap.config()

Sets SSID and password in AP mode. Be sure to make the password at least 8 characters long! If you don't it will default to no password and not set the SSID! It will still work as an access point but use a default SSID like e.g. NODE_9997C3.

Syntax

wifi.ap.config(cfg)

Parameters

	cfg table to hold configuration

	ssid SSID chars 1-32

	pwd password chars 8-64

	auth authentication method, one of wifi.OPEN (default), wifi.WPA_PSK, wifi.WPA2_PSK, wifi.WPA_WPA2_PSK

	channel channel number 1-14 default = 6

	hidden false = not hidden, true = hidden, default = false

	max maximum number of connections 1-4 default=4

	beacon beacon interval time in range 100-60000, default = 100

	save save configuration to flash.

	true configuration will be retained through power cycle. (Default)

	false configuration will not be retained through power cycle.

	Event callbacks will only be available if WIFI_SDK_EVENT_MONITOR_ENABLE is uncommented in user_config.h

	Please note: To ensure all SoftAP events are handled at boot time, all relevant callbacks must be registered as early as possible in init.lua with either wifi.ap.config() or wifi.eventmon.register().

	staconnected_cb: Callback executed when a new client has connected to the access point. (Optional)

	Items returned in table :

	MAC: MAC address of client that has connected.

	AID: SDK provides no details concerning this return value.

	stadisconnected_cb: Callback executed when a client has disconnected from the access point. (Optional)

	Items returned in table :

	MAC: MAC address of client that has disconnected.

	AID: SDK provides no details concerning this return value.

	probereq_cb: Callback executed when a probe request was received. (Optional)

	Items returned in table :

	MAC: MAC address of the client that is probing the access point.

	RSSI: Received Signal Strength Indicator of client.

Returns

	true Success

	false Failure

Example:

 cfg={}
 cfg.ssid="myssid"
 cfg.pwd="mypassword"
 wifi.ap.config(cfg)

wifi.ap.deauth()

Deauths (forcibly removes) a client from the ESP access point by sending a corresponding IEEE802.11 management packet (first) and removing the client from it's data structures (afterwards).

The IEEE802.11 reason code used is 2 for "Previous authentication no longer valid"(AUTH_EXPIRE).

Syntax

wifi.ap.deauth([MAC])

Parameters

	MAC address of station to be deauthed.

	Note: if this field is left blank, all currently connected stations will get deauthed.

Returns

Returns true unless called while the ESP is in the STATION opmode

Example

allowed_mac_list={"18:fe:34:00:00:00", "18:fe:34:00:00:01"}

wifi.eventmon.register(wifi.eventmon.AP_STACONNECTED, function(T)
 print("\n\tAP - STATION CONNECTED".."\n\tMAC: "..T.MAC.."\n\tAID: "..T.AID)
 if(allowed_mac_list~=nil) then
 for _, v in pairs(allowed_mac_list) do
 if(v == T.MAC) then return end
 end
 end
 wifi.ap.deauth(T.MAC)
 print("\tStation DeAuthed!")
end)

See also

wifi.eventmon.register()wifi.eventmon.reason()

wifi.ap.getbroadcast()

Gets broadcast address in AP mode.

Syntax

wifi.ap.getbroadcast()

Parameters

none

Returns

broadcast address in string, for example "192.168.0.255",
returns nil if IP address = "0.0.0.0".

Example

bc = wifi.ap.getbroadcast()
print(bc)
-- 192.168.0.255

See also

wifi.ap.getip()

wifi.ap.getclient()

Gets table of clients connected to device in AP mode.

Syntax

wifi.ap.getclient()

Parameters

none

Returns

table of connected clients

Example

table={}
table=wifi.ap.getclient()
for mac,ip in pairs(table) do
 print(mac,ip)
end

-- or shorter
for mac,ip in pairs(wifi.ap.getclient()) do
 print(mac,ip)
end

wifi.ap.getconfig()

Gets the current SoftAP configuration.

Syntax

wifi.ap.getconfig(return_table)

Parameters

	return_table

	true returns data in a table

	false returns data in the old format (default)

Returns

If return_table is true:

	config_table

	ssid Network name

	pwd Password, nil if no password was configured - auth Authentication Method (wifi.OPEN, wifi.WPA_PSK, wifi.WPA2_PSK or wifi.WPA_WPA2_PSK)

	channel Channel number

	hidden false = not hidden, true = hidden

	max Maximum number of client connections

	beacon Beacon interval

If return_table is false:

	ssid, password, if bssid_set is equal to 0 then bssid is irrelevant

Example

--Get SoftAP configuration table (NEW FORMAT)
do
 print("\n Current SoftAP configuration:")
 for k,v in pairs(wifi.ap.getconfig(true)) do
 print(" "..k.." :",v)
 end
end

--Get current SoftAP configuration (OLD FORMAT)
do
 local ssid, password=wifi.ap.getconfig()
 print("\n Current SoftAP configuration:\n SSID : "..ssid..
 "\n Password :",password)
 ssid, password=nil, nil
end

wifi.ap.getdefaultconfig()

Gets the default SoftAP configuration stored in flash.

Syntax

wifi.ap.getdefaultconfig(return_table)

Parameters

	return_table

	true returns data in a table

	false returns data in the old format (default)

Returns

If return_table is true:

	config_table

	ssid Network name

	pwd Password, nil if no password was configured - auth Authentication Method (wifi.OPEN, wifi.WPA_PSK, wifi.WPA2_PSK or wifi.WPA_WPA2_PSK)

	channel Channel number

	hidden false = not hidden, true = hidden

	max Maximum number of client connections

	beacon Beacon interval

If return_table is false:

	ssid, password, if bssid_set is equal to 0 then bssid is irrelevant

Example

--Get default SoftAP configuration table (NEW FORMAT)
do
 print("\n Default SoftAP configuration:")
 for k,v in pairs(wifi.ap.getdefaultconfig(true)) do
 print(" "..k.." :",v)
 end
end

--Get default SoftAP configuration (OLD FORMAT)
do
 local ssid, password=wifi.ap.getdefaultconfig()
 print("\n Default SoftAP configuration:\n SSID : "..ssid..
 "\n Password :",password)
 ssid, password=nil, nil
end

wifi.ap.getip()

Gets IP address, netmask and gateway in AP mode.

Syntax

wifi.ap.getip()

Parameters

none

Returns

IP address, netmask, gateway address as string, for example "192.168.0.111", returns nil if IP address = "0.0.0.0".

Example

-- print current ip, netmask, gateway
print(wifi.ap.getip())
-- 192.168.4.1 255.255.255.0 192.168.4.1
ip = wifi.ap.getip()
print(ip)
-- 192.168.4.1
ip, nm = wifi.ap.getip()
print(nm)
-- 255.255.255.0
ip, nm, gw = wifi.ap.getip()
print(gw)
-- 192.168.4.1

See also

	wifi.ap.getmac()

wifi.ap.getmac()

Gets MAC address in AP mode.

Syntax

wifi.ap.getmac()

Parameters

none

Returns

MAC address as string, for example "1A-33-44-FE-55-BB"

See also

wifi.ap.getip()

wifi.ap.setip()

Sets IP address, netmask and gateway address in AP mode.

Syntax

wifi.ap.setip(cfg)

Parameters

cfg table contain IP address, netmask, and gateway

Returns

true if successful, false otherwise

Example

cfg =
{
 ip="192.168.1.1",
 netmask="255.255.255.0",
 gateway="192.168.1.1"
}
wifi.ap.setip(cfg)

See also

wifi.ap.setmac()

wifi.ap.setmac()

Sets MAC address in AP mode.

Syntax

wifi.ap.setmac(mac)

Parameters

MAC address in byte string, for example "AC-1D-1C-B1-0B-22"

Returns

true if success, false otherwise

Example

print(wifi.ap.setmac("AC-1D-1C-B1-0B-22"))

See also

wifi.ap.setip()

wifi.ap.dhcp Module

wifi.ap.dhcp.config()

Configure the dhcp service. Currently only supports setting the start address of the dhcp address pool.

Syntax

wifi.ap.dhcp.config(dhcp_config)

Parameters

dhcp_config table containing the start-IP of the DHCP address pool, eg. "192.168.1.100"

Returns

pool_startip, pool_endip

Example

dhcp_config ={}
dhcp_config.start = "192.168.1.100"
wifi.ap.dhcp.config(dhcp_config)

wifi.ap.dhcp.start()

Starts the DHCP service.

Syntax

wifi.ap.dhcp.start()

Parameters

none

Returns

boolean indicating success

wifi.ap.dhcp.stop()

Stops the DHCP service.

Syntax

wifi.ap.dhcp.stop()

Parameters

none

Returns

boolean indicating success

wifi.eventmon Module

wifi.eventmon.register()

Register/unregister callbacks for WiFi event monitor.

	After a callback is registered, this function may be called to update a callback's function at any time

!!! note
To ensure all WiFi events are caught, the Wifi event monitor callbacks should be registered as early as possible in init.lua. Any events that occur before callbacks are registered will be discarded!

Syntax

wifi.eventmon.register(Event[, function(T)])

Parameters

Event: WiFi event you would like to set a callback for.

	Valid WiFi events:

	wifi.eventmon.STA_CONNECTED

	wifi.eventmon.STA_DISCONNECTED

	wifi.eventmon.STA_AUTHMODE_CHANGE

	wifi.eventmon.STA_GOT_IP

	wifi.eventmon.STA_DHCP_TIMEOUT

	wifi.eventmon.AP_STACONNECTED

	wifi.eventmon.AP_STADISCONNECTED

	wifi.eventmon.AP_PROBEREQRECVED

Returns

Function:nil

Callback:T: Table returned by event.

	wifi.eventmon.STA_CONNECTED Station is connected to access point.

	SSID: SSID of access point.

	BSSID: BSSID of access point.

	channel: The channel the access point is on.

	wifi.eventmon.STA_DISCONNECTED: Station was disconnected from access point.

	SSID: SSID of access point.

	BSSID: BSSID of access point.

	reason: See wifi.eventmon.reason below.

	wifi.eventmon.STA_AUTHMODE_CHANGE: Access point has changed authorization mode.

	old_auth_mode: Old wifi authorization mode.

	new_auth_mode: New wifi authorization mode.

	wifi.eventmon.STA_GOT_IP: Station got an IP address.

	IP: The IP address assigned to the station.

	netmask: Subnet mask.

	gateway: The IP address of the access point the station is connected to.

	wifi.eventmon.STA_DHCP_TIMEOUT: Station DHCP request has timed out.

	Blank table is returned.

	wifi.eventmon.AP_STACONNECTED: A new client has connected to the access point.

	MAC: MAC address of client that has connected.

	AID: SDK provides no details concerning this return value.

	wifi.eventmon.AP_STADISCONNECTED: A client has disconnected from the access point.

	MAC: MAC address of client that has disconnected.

	AID: SDK provides no details concerning this return value.

	wifi.eventmon.AP_PROBEREQRECVED: A probe request was received.

	MAC: MAC address of the client that is probing the access point.

	RSSI: Received Signal Strength Indicator of client.

	wifi.eventmon.WIFI_MODE_CHANGE: WiFi mode has changed.

	old_auth_mode: Old WiFi mode.

	new_auth_mode: New WiFi mode.

Example

 wifi.eventmon.register(wifi.eventmon.STA_CONNECTED, function(T)
 print("\n\tSTA - CONNECTED".."\n\tSSID: "..T.SSID.."\n\tBSSID: "..
 T.BSSID.."\n\tChannel: "..T.channel)
 end)

 wifi.eventmon.register(wifi.eventmon.STA_DISCONNECTED, function(T)
 print("\n\tSTA - DISCONNECTED".."\n\tSSID: "..T.SSID.."\n\tBSSID: "..
 T.BSSID.."\n\treason: "..T.reason)
 end)

 wifi.eventmon.register(wifi.eventmon.STA_AUTHMODE_CHANGE, function(T)
 print("\n\tSTA - AUTHMODE CHANGE".."\n\told_auth_mode: "..
 T.old_auth_mode.."\n\tnew_auth_mode: "..T.new_auth_mode)
 end)

 wifi.eventmon.register(wifi.eventmon.STA_GOT_IP, function(T)
 print("\n\tSTA - GOT IP".."\n\tStation IP: "..T.IP.."\n\tSubnet mask: "..
 T.netmask.."\n\tGateway IP: "..T.gateway)
 end)

 wifi.eventmon.register(wifi.eventmon.STA_DHCP_TIMEOUT, function()
 print("\n\tSTA - DHCP TIMEOUT")
 end)

 wifi.eventmon.register(wifi.eventmon.AP_STACONNECTED, function(T)
 print("\n\tAP - STATION CONNECTED".."\n\tMAC: "..T.MAC.."\n\tAID: "..T.AID)
 end)

 wifi.eventmon.register(wifi.eventmon.AP_STADISCONNECTED, function(T)
 print("\n\tAP - STATION DISCONNECTED".."\n\tMAC: "..T.MAC.."\n\tAID: "..T.AID)
 end)

 wifi.eventmon.register(wifi.eventmon.AP_PROBEREQRECVED, function(T)
 print("\n\tAP - PROBE REQUEST RECEIVED".."\n\tMAC: ".. T.MAC.."\n\tRSSI: "..T.RSSI)
 end)

 wifi.eventmon.register(wifi.eventmon.WIFI_MODE_CHANGED, function(T)
 print("\n\tSTA - WIFI MODE CHANGED".."\n\told_mode: "..
 T.old_mode.."\n\tnew_mode: "..T.new_mode)
 end)

See also

	wifi.eventmon.unregister()

wifi.eventmon.unregister()

Unregister callbacks for WiFi event monitor.

Syntax

wifi.eventmon.unregister(Event)

Parameters

Event: WiFi event you would like to set a callback for.

	Valid WiFi events:

	wifi.eventmon.STA_CONNECTED

	wifi.eventmon.STA_DISCONNECTED

	wifi.eventmon.STA_AUTHMODE_CHANGE

	wifi.eventmon.STA_GOT_IP

	wifi.eventmon.STA_DHCP_TIMEOUT

	wifi.eventmon.AP_STACONNECTED

	wifi.eventmon.AP_STADISCONNECTED

	wifi.eventmon.AP_PROBEREQRECVED

	wifi.eventmon.WIFI_MODE_CHANGED

Returns

nil

Example

 wifi.eventmon.unregister(wifi.eventmon.STA_CONNECTED)

See also

	wifi.eventmon.register()

wifi.eventmon.reason

Table containing disconnect reasons.

Disconnect reason	value			
wifi.eventmon.reason.UNSPECIFIED	1			
wifi.eventmon.reason.AUTH_EXPIRE	2		wifi.eventmon.reason.AUTH_LEAVE	3
wifi.eventmon.reason.ASSOC_EXPIRE	4			
wifi.eventmon.reason.ASSOC_TOOMANY	5			
wifi.eventmon.reason.NOT_AUTHED	6			
wifi.eventmon.reason.NOT_ASSOCED	7			
wifi.eventmon.reason.ASSOC_LEAVE	8			
wifi.eventmon.reason.ASSOC_NOT_AUTHED	9			
wifi.eventmon.reason.DISASSOC_PWRCAP_BAD	10			
wifi.eventmon.reason.DISASSOC_SUPCHAN_BAD	11			
wifi.eventmon.reason.IE_INVALID	13			
wifi.eventmon.reason.MIC_FAILURE	14			
wifi.eventmon.reason.4WAY_HANDSHAKE_TIMEOUT	15			
wifi.eventmon.reason.GROUP_KEY_UPDATE_TIMEOUT	16			
wifi.eventmon.reason.IE_IN_4WAY_DIFFERS	17			
wifi.eventmon.reason.GROUP_CIPHER_INVALID	18			
wifi.eventmon.reason.PAIRWISE_CIPHER_INVALID	19			
wifi.eventmon.reason.AKMP_INVALID	20			
wifi.eventmon.reason.UNSUPP_RSN_IE_VERSION	21			
wifi.eventmon.reason.INVALID_RSN_IE_CAP	22			
wifi.eventmon.reason.802_1X_AUTH_FAILED	23			
wifi.eventmon.reason.CIPHER_SUITE_REJECTED	24			
wifi.eventmon.reason.BEACON_TIMEOUT	200			
wifi.eventmon.reason.NO_AP_FOUND	201			
wifi.eventmon.reason.AUTH_FAIL	202			
wifi.eventmon.reason.ASSOC_FAIL	203			
wifi.eventmon.reason.HANDSHAKE_TIMEOUT	204			

 WiFi.monitor Module

WiFi.monitor Module

Since	Origin / Contributor	Maintainer	Source
2017-12-20	Philip Gladstone [https://github.com/pjsg]	Philip Gladstone [https://github.com/pjsg]	wifi_monitor.c

This is an optional module that is only included if LUA_USE_MODULES_WIFI_MONITOR is defined in the user_modules.h file. This module
provides access to the monitor mode features of the ESP8266 chipset. In particular, it provides access to received WiFi management frames.

This module is not for casual use -- it requires an understanding of IEEE802.11 management protocols.

wifi.monitor.start()

This registers a callback function to be called whenever a management frame is received. Note that this can be at quite a high rate, so some limited
filtering is provided before the callback is invoked. Only the first 110 bytes or so of the frame are returned -- this is an SDK restriction.
Any connected AP/station will be disconnected. Calling this function sets the channel back to 1.

Syntax

wifi.monitor.start([filter parameters,] mgmt_frame_callback)

Parameters

	filter parameters. This is a byte offset (1 based) into the underlying data structure, a value to match against, and an optional mask to use for matching.
The data structure used for filtering is 12 bytes of radio header, and then the actual frame. The first byte of the frame is therefore numbered 13. The filter
values of 13, 0x80 will just extract beacon frames.

	mgmt_frame_callback is a function which is invoked with a single argument which is a wifi.packet object which has many methods and attributes.

Returns

nothing.

Example

wifi.monitor.start(13, 0x80, function(pkt)
 print ('Beacon: ' .. pkt.bssid_hex .. " '" .. pkt[0] .. "' ch " .. pkt[3]:byte(1))
end)
wifi.monitor.channel(6)

wifi.monitor.stop()

This disables the monitor mode and returns to normal operation. There are no parameters and no return value.

Syntax

wifi.monitor.stop()

wifi.monitor.channel()

This sets the channel number to monitor. Note that in many applications you will want to step through the channel numbers at regular intervals. Beacon
frames (in particular) are typically sent every 102 milliseconds, so a switch time of (say) 150 milliseconds seems to work well.
Note that this function should be called after starting to monitor, since wifi.monitor.start resets the channel back to 1.

Syntax

wifi.monitor.channel(channel)

Parameters

	channel sets the channel number in the range 1 to 15.

Returns

nothing.

wifi.packet object

This object provides access to the raw packet data and also many methods to extract data from the packet in a simple way.

packet:radio_byte()

This is like the string.byte method, except that it gives access to the bytes of the radio header.

Syntax

packet:radio_byte(n)

Parameters

	n the byte number (1 based) to get from the radio header portion of the packet

Returns

0-255 as the value of the byte
nothing if the offset is not within the radio header.

packet:frame_byte()

This is like the string.byte method, except that it gives access to the bytes of the received frame.

Syntax

packet:frame_byte(n)

Parameters

	n the byte number (1 based) to get from the received frame.

Returns

0-255 as the value of the byte
nothing if the offset is not within the received frame.

packet:radio_sub()

This is like the string.sub method, except that it gives access to the bytes of the radio header.

Syntax

packet:radio_sub(start, end)

Parameters

Same rules as for string.sub except that it operates on the radio header.

Returns

A string according to the string.sub rules.

packet:frame_sub()

This is like the string.sub method, except that it gives access to the bytes of the received frame.

Syntax

packet:frame_sub(start, end)

Parameters

Same rules as for string.sub except that it operates on the received frame.

Returns

A string according to the string.sub rules.

packet:radio_subhex()

This is like the string.sub method, except that it gives access to the bytes of the radio header. It also
converts them into hex efficiently.

Syntax

packet:radio_subhex(start, end [, seperator])

Parameters

Same rules as for string.sub except that it operates on the radio header.

	seperator is an optional sting which is placed between the individual hex pairs returned.

Returns

A string according to the string.sub rules, converted into hex with possible inserted spacers.

packet:frame_sub()

This is like the string.sub method, except that it gives access to the bytes of the received frame.

Syntax

packet:frame_subhex(start, end [, seperator])

Parameters

Same rules as for string.sub except that it operates on the received frame.

	seperator is an optional sting which is placed between the individual hex pairs returned.

Returns

A string according to the string.sub rules, converted into hex with possible inserted spacers.

packet:ie_table()

This returns a table of the information elements from the management frame. The table keys values are the
information element numbers (0 - 255). Note that IE0 is the SSID. This method is mostly only useful if
you need to determine which information elements were in the management frame.

Syntax

packet:ie_table()

Parameters

None.

Returns

A table with all the information elements in it.

Example

print ("SSID", packet:ie_table()[0])

Note that this is possibly the worst way of getting the SSID.

Alternative

The packet object itself can be indexed to extract the information elements.

Example

print ("SSID", packet[0])

This is more efficient than the above approach, but requires you to remember that IE0 is the SSID.

packet.<

attribute>

The packet object has many attributes on it. These allow easy access to all the fields, though not an easy way to enumerate them. All integers are unsigned
except where noted. Information Elements are only returned if they are completely within the captured frame. This can mean that for some frames, some of the
information elements can be missing.

When a string is returned as the value of a field, it can (and often is) be a binary string with embedded nulls. All information elements are returned as strings
even if they are only one byte long and look like a number in the specification. This is purely to make the interface consistent. Note that even SSIDs can contain
embedded nulls.

Attribute name	Type
aggregation	Integer
ampdu_cnt	Integer
association_id	Integer
authentication_algorithm	Integer
authentication_transaction	Integer
beacon_interval	Integer
beacon_interval	Integer
bssid	String
bssid_hex	String
bssidmatch0	Integer
bssidmatch1	Integer
capability	Integer
channel	Integer
current_ap	String
cwb	Integer
dmatch0	Integer
dmatch1	Integer
dstmac	String
dstmac_hex	String
duration	Integer
fec_coding	Integer
frame	String (the entire received frame)
frame_hex	String
fromds	Integer
header	String (the fixed part of the management frame)
ht_length	Integer
ie_20_40_bss_coexistence	String
ie_20_40_bss_intolerant_channel_report	String
ie_advertisement_protocol	String
ie_aid	String
ie_antenna	String
ie_ap_channel_report	String
ie_authenticated_mesh_peering_exchange	String
ie_beacon_timing	String
ie_bss_ac_access_delay	String
ie_bss_available_admission_capacity	String
ie_bss_average_access_delay	String
ie_bss_load	String
ie_bss_max_idle_period	String
ie_cf_parameter_set	String
ie_challenge_text	String
ie_channel_switch_announcement	String
ie_channel_switch_timing	String
ie_channel_switch_wrapper	String
ie_channel_usage	String
ie_collocated_interference_report	String
ie_congestion_notification	String
ie_country	String
ie_destination_uri	String
ie_diagnostic_report	String
ie_diagnostic_request	String
ie_dms_request	String
ie_dms_response	String
ie_dse_registered_location	String
ie_dsss_parameter_set	String
ie_edca_parameter_set	String
ie_emergency_alart_identifier	String
ie_erp_information	String
ie_event_report	String
ie_event_request	String
ie_expedited_bandwidth_request	String
ie_extended_bss_load	String
ie_extended_capabilities	String
ie_extended_channel_switch_announcement	String
ie_extended_supported_rates	String
ie_fast_bss_transition	String
ie_fh_parameter_set	String
ie_fms_descriptor	String
ie_fms_request	String
ie_fms_response	String
ie_gann	String
ie_he_capabilities	String
ie_hopping_pattern_parameters	String
ie_hopping_pattern_table	String
ie_ht_capabilities	String
ie_ht_operation	String
ie_ibss_dfs	String
ie_ibss_parameter_set	String
ie_interworking	String
ie_link_identifier	String
ie_location_parameters	String
ie_management_mic	String
ie_mccaop	String
ie_mccaop_advertisement	String
ie_mccaop_advertisement_overview	String
ie_mccaop_setup_reply	String
ie_mccaop_setup_request	String
ie_measurement_pilot_transmission	String
ie_measurement_report	String
ie_measurement_request	String
ie_mesh_awake_window	String
ie_mesh_channel_switch_parameters	String
ie_mesh_configuration	String
ie_mesh_id	String
ie_mesh_link_metric_report	String
ie_mesh_peering_management	String
ie_mic	String
ie_mobility_domain	String
ie_multiple_bssid	String
ie_multiple_bssid_index	String
ie_neighbor_report	String
ie_nontransmitted_bssid_capability	String
ie_operating_mode_notification	String
ie_overlapping_bss_scan_parameters	String
ie_perr	String
ie_power_capability	String
ie_power_constraint	String
ie_prep	String
ie_preq	String
ie_proxy_update	String
ie_proxy_update_confirmation	String
ie_pti_control	String
ie_qos_capability	String
ie_qos_map_set	String
ie_qos_traffic_capability	String
ie_quiet	String
ie_quiet_channel	String
ie_rann	String
ie_rcpi	String
ie_request	String
ie_ric_data	String
ie_ric_descriptor	String
ie_rm_enabled_capacities	String
ie_roaming_consortium	String
ie_rsn	String
ie_rsni	String
ie_schedule	String
ie_secondary_channel_offset	String
ie_ssid	String
ie_ssid_list	String
ie_supported_channels	String
ie_supported_operating_classes	String
ie_supported_rates	String
ie_tclas	String
ie_tclas_processing	String
ie_tfs_request	String
ie_tfs_response	String
ie_tim	String
ie_tim_broadcast_request	String
ie_tim_broadcast_response	String
ie_time_advertisement	String
ie_time_zone	String
ie_timeout_interval	String
ie_tpc_report	String
ie_tpc_request	String
ie_tpu_buffer_status	String
ie_ts_delay	String
ie_tspec	String
ie_uapsd_coexistence	String
ie_vendor_specific	String
ie_vht_capabilities	String
ie_vht_operation	String
ie_vht_transmit_power_envelope	String
ie_wakeup_schedule	String
ie_wide_bandwidth_channel_switch	String
ie_wnm_sleep_mode	String
is_group	Integer
legacy_length	Integer
listen_interval	Integer
mcs	Integer
moredata	Integer
moreflag	Integer
not_counding	Integer
number	Integer
order	Integer
protectedframe	Integer
protocol	Integer
pwrmgmt	Integer
radio	String (the entire radio header)
rate	Integer
reason	Integer
retry	Integer
rssi	Signed Integer
rxend_state	Integer
sgi	Integer
sig_mode	Integer
smoothing	Integer
srcmac	String
srcmac_hex	String
status	Integer
stbc	Integer
subtype	Integer
timestamp	String
tods	Integer
type	Integer

If you don't know what some of the attributes are, then you probably need to read the IEEE 802.11 specifications and other supporting material.

Example

print ("SSID", packet.ie_ssid)

The Radio Header

The Radio Header has been mentioned above as a 12 byte structure. The layout is shown below. The only comments are in Chinese.

struct {
 signed rssi:8;//表示该包的信号强度
 unsigned rate:4;
 unsigned is_group:1;
 unsigned:1;
 unsigned sig_mode:2;//表示该包是否是11n 的包，0 表示非11n，非0 表示11n
 unsigned legacy_length:12;//如果不是11n 的包，它表示包的长度
 unsigned damatch0:1;
 unsigned damatch1:1;
 unsigned bssidmatch0:1;
 unsigned bssidmatch1:1;
 unsigned MCS:7;//如果是11n 的包，它表示包的调制编码序列，有效值：0-76
 unsigned CWB:1;//如果是11n 的包，它表示是否为HT40 的包
 unsigned HT_length:16;//如果是11n 的包，它表示包的长度
 unsigned Smoothing:1;
 unsigned Not_Sounding:1;
 unsigned:1;
 unsigned Aggregation:1;
 unsigned STBC:2;
 unsigned FEC_CODING:1;//如果是11n 的包，它表示是否为LDPC 的包
 unsigned SGI:1;
 unsigned rxend_state:8;
 unsigned ampdu_cnt:8;
 unsigned channel:4;//表示该包所在的信道
 unsigned:12;
}

 WPS Module

WPS Module

Since	Origin / Contributor	Maintainer	Source
2017-01-01	Frank Exoo [https://github.com/FrankX0]	Frank Exoo [https://github.com/FrankX0]	wps.c

WPS [https://en.wikipedia.org/wiki/Wi-Fi_Protected_Setup] allows devices to be added to an existing network without entering the network credentials.

!!! danger

Use this with caution. There are serious security concerns about using WPS.

WPA/WPA2 networks that have the WPS feature enabled are [very easy to crack](http://www.howtogeek.com/176124/wi-fi-protected-setup-wps-is-insecure-heres-why-you-should-disable-it/). Once the WPS pin has been stolen [the router gives out the password](https://scotthelme.co.uk/wifi-insecurity-wps/) even if it has been changed.

You should use WPA/WPA2 with the WPS feature disabled.

wps.disable()

Disable WiFi WPS function.

Parameters

none

Returns

nil

wps.enable()

Enable WiFi WPS function.

Parameters

none

Returns

nil

wps.start()

Start WiFi WPS function. WPS must be enabled prior calling this function.

!!! note
This function only configures the station with the AP's info, it does not connect to AP automatically.

Syntax

wps.start([function(status)])

Parameters

	function(status) callback function for when the WPS function ends.

Returns

nil

Example

 --Basic example
 wifi.setmode(wifi.STATION)
 wps.enable()
 wps.start(function(status)
 if status == wps.SUCCESS then
 wps.disable()
 print("WPS: Success, connecting to AP...")
 wifi.sta.connect()
 return
 elseif status == wps.FAILED then
 print("WPS: Failed")
 elseif status == wps.TIMEOUT then
 print("WPS: Timeout")
 elseif status == wps.WEP then
 print("WPS: WEP not supported")
 elseif status == wps.SCAN_ERR then
 print("WPS: AP not found")
 else
 print(status)
 end
 wps.disable()
 end)

 --Full example
 do
 -- Register wifi station event callbacks
 wifi.eventmon.register(wifi.eventmon.STA_CONNECTED, function(T)
 print("\n\tSTA - CONNECTED".."\n\tSSID: "..T.SSID.."\n\tBSSID: "..
 T.BSSID.."\n\tChannel: "..T.channel)
 end)
 wifi.eventmon.register(wifi.eventmon.STA_GOT_IP, function(T)
 print("\n\tSTA - GOT IP".."\n\tStation IP: "..T.IP.."\n\tSubnet mask: "..
 T.netmask.."\n\tGateway IP: "..T.gateway)
 end)

 wifi.setmode(wifi.STATION)

 wps_retry_func = function()
 if wps_retry_count == nil then wps_retry_count = 0 end
 if wps_retry_count < 3 then
 wps.disable()
 wps.enable()
 wps_retry_count = wps_retry_count + 1
 wps_retry_timer = tmr.create()
 wps_retry_timer:alarm(3000, tmr.ALARM_SINGLE, function() wps.start(wps_cb) end)
 print("retry #"..wps_retry_count)
 else
 wps_retry_count = nil
 wps_retry_timer = nil
 wps_retry_func = nil
 wps_cb = nil
 end
 end

 wps_cb = function(status)
 if status == wps.SUCCESS then
 wps.disable()
 print("WPS: success, connecting to AP...")
 wifi.sta.connect()
 wps_retry_count = nil
 wps_retry_timer = nil
 wps_retry_func = nil
 wps_cb = nil
 return
 elseif status == wps.FAILED then
 print("WPS: Failed")
 wps_retry_func()
 return
 elseif status == wps.TIMEOUT then
 print("WPS: Timeout")
 wps_retry_func()
 return
 elseif status == wps.WEP then
 print("WPS: WEP not supported")
 elseif status == wps.SCAN_ERR then
 print("WPS: AP not found")
 wps_retry_func()
 return
 else
 print(status)
 end
 wps.disable()
 wps_retry_count = nil
 wps_retry_timer = nil
 wps_retry_func = nil
 wps_cb = nil
 end
 wps.enable()
 wps.start(wps_cb)
 end

 WS2801 Module

WS2801 Module

Since	Origin / Contributor	Maintainer	Source
2015-07-12	Espressif example [https://github.com/CHERTS/esp8266-devkit/blob/master/Espressif/examples/EspLightNode/user/ws2801.c], Konrad Beckmann [https://github.com/kbeckmann]	Konrad Beckmann [https://github.com/kbeckmann]	ws2801.c

ws2801.init()

Initializes the module and sets the pin configuration.

Syntax

ws2801.init(pin_clk, pin_data)

Parameters

	pin_clk pin for the clock. Supported are GPIO 0, 2, 4, 5.

	pin_data pin for the data. Supported are GPIO 0, 2, 4, 5.

Returns

nil

ws2801.write()

Sends a string of RGB Data in 24 bits to WS2801. Don't forget to call ws2801.init() before.

Syntax

ws2801.write(string)

####Parameters

	string payload to be sent to one or more WS2801.
It should be composed from an RGB triplet per element.

	R1 the first pixel's red channel value (0-255)

	G1 the first pixel's green channel value (0-255)

	B1 the first pixel's blue channel value (0-255)

... You can connect a lot of WS2801...

	R2, G2, B2 are the next WS2801's Red, Green, and Blue channel values

Returns

nil

Example

ws2801.write(string.char(255,0,0, 0,255,0, 0,0,255))

 WS2812 effects Module

WS2812 effects Module

Since	Origin / Contributor	Maintainer	Source
2017-11-01	Konrad Huebner [https://github.com/skycoders]	Konrad Huebner [https://github.com/skycoders]	ws2812_effects.c

This module provides effects based on the WS2812 library. Some effects are inspired by / based on the WS2812FX Library [https://github.com/kitesurfer1404/WS2812FX] but have been adopted to the specifics of the ws2812 library. The effects library works based on a buffer created through the ws2812 library and performs the operations on this buffer.

Note that dual mode is currently not supported for effects.

!!! caution

This module depends on the [color utils module](color-utils.md). Things **will** fail if that module is missing in the firmware!

Example usage

-- init the ws2812 module
ws2812.init(ws2812.MODE_SINGLE)
-- create a buffer, 60 LEDs with 3 color bytes
strip_buffer = ws2812.newBuffer(60, 3)
-- init the effects module, set color to red and start blinking
ws2812_effects.init(strip_buffer)
ws2812_effects.set_speed(100)
ws2812_effects.set_brightness(50)
ws2812_effects.set_color(0,255,0)
ws2812_effects.set_mode("blink")
ws2812_effects.start()

ws2812_effects.init()

Initialize the effects library with the provided buffer for the connected LED strip.

Syntax

ws2812_effects.init(buffer)

Parameters

	buffer is a ws2812.buffer for the connected strip.

Returns

nil

ws2812_effects.start()

Start the animation effect.

Syntax

ws2812_effects.start()

Parameters

none

Returns

nil

ws2812_effects.stop()

Stop the animation effect.

Syntax

ws2812_effects.stop()

Parameters

none

Returns

nil

ws2812_effects.set_brightness()

Set the brightness.

Syntax

ws2812_effects.set_brightness(brightness)

Parameters

	brightness brightness between 0 and 255

Returns

nil

ws2812_effects.set_color()

Set the color.

Syntax

ws2812_effects.set_color(g, r, b, [w])

Parameters

	g is the green value between 0 and 255

	r is the red value between 0 and 255

	b is the blue value between 0 and 255

	w (optional) is the white value between 0 and 255

Returns

nil

ws2812_effects.set_speed()

Set the speed.

Syntax

ws2812_effects.set_speed(speed)

Parameters

	speed speed between 0 and 255

Returns

nil

ws2812_effects.get_speed()

Get current speed.

Syntax

ws2812_effects.get_speed()

Parameters

none

Returns

speed between 0 and 255

ws2812_effects.set_delay()

Set the delay between two effect steps in milliseconds.

Syntax

ws2812_effects.set_delay(delay)

Parameters

	delay is the delay in milliseconds, minimum 10ms

Returns

nil

ws2812_effects.get_delay()

Get current delay.

Syntax

ws2812_effects.get_delay()

Parameters

none

Returns

delay is the current effect delay in milliseconds

ws2812_effects.set_mode()

Set the active effect mode.

Syntax

ws2812_effects.set_mode(mode, [effect_param])

Parameters

	mode is the effect mode as a string, can be one of

	static fills the buffer with the color set through ws2812_effects.set_color()

	blink fills the buffer with the color set through ws2812_effects.set_color() and starts blinking

	gradient fills the buffer with a gradient defined by the color values provided with the effect_param. This parameter must be a string containing the color values with same pixel size as the current buffer configuration. Minimum two colors must be provided. If more are provided, the strip is split in equal parts and the colors are used as intermediate colors. The gradient is calculated based on HSV color space, so no greyscale colors are supported as those cannot be converted to HSV.

	gradient_rgb similar to gradient but uses simple RGB value interpolation instead of conversions to the HSV color space.

	random_color fills the buffer completely with a random color and changes this color constantly

	rainbow animates through the full color spectrum, with the entire strip having the same color

	rainbow_cycle fills the buffer with a rainbow gradient. The optional second parameter states the number of repetitions (integer).

	flicker fills the buffer with the color set through ws2812_effects.set_color() and begins random flickering of pixels with a maximum flicker amount defined by the second parameter (integer, e.g. 50 to flicker with 50/255 of the color)

	fire is a fire flickering effect

	fire_soft is a soft fire flickering effect

	fire_intense is an intense fire flickering effect

	halloween fills the strip with purple and orange pixels and circles them

	circus_combustus fills the strip with red/white/black pixels and circles them

	larson_scanner is the K.I.T.T. scanner effect, based on the color set through ws2812_effects.set_color()

	color_wipe fills the strip pixel by pixel with the color set through ws2812_effects.set_color() and then starts turning pixels off again from beginning to end.

	random_dot sets random dots to the color set through ws2812_effects.set_color() and fades them out again

	cycle takes the buffer as-is and cycles it. With the second parameter it can be defined how many pixels the shift will be. Negative values shift to opposite direction.

	effect_param is an optional effect parameter. See the effect modes for further explanations. It can be an integer value or a string.

Returns

nil

Examples

Full initialization code for the strip, a buffer and the effect library can be found at top of this documentation. Only effect examples are shown here.

-- rainbow cycle with two repetitions
ws2812_effects.set_mode("rainbow_cycle", 2)
-- gradient from red to yellow to red
ws2812_effects.set_mode("gradient", string.char(0,200,0,200,200,0,0,200,0))
-- random dots with fading
ws2812_effects.set_mode("random_dot",3)

 WS2812 Module

WS2812 Module

Since	Origin / Contributor	Maintainer	Source
2015-02-05	Till Klocke [https://github.com/dereulenspiegel], Thomas Soëte [https://github.com/Alkorin]	Till Klocke [https://github.com/dereulenspiegel]	ws2812.c

ws2812 is a library to handle ws2812-like led strips.
It works at least on WS2812, WS2812b, APA104, SK6812 (RGB or RGBW).

The library uses UART1 routed on GPIO2 (Pin D4 on NodeMCU DEVKIT) to
generate the bitstream. It can use UART0 routed to TXD0 as well to
handle two led strips at the same time.

WARNING: In dual mode, you will loose access to the Lua's console
through the serial port (it will be reconfigured to support WS2812-like
protocol). If you want to keep access to Lua's console, you will have to
use an other input channel like a TCP server (see example [https://github.com/nodemcu/nodemcu-firmware/blob/master/lua_examples/telnet.lua])

ws2812.init()

Initialize UART1 and GPIO2, should be called once and before write().
Initialize UART0 (TXD0) too if ws2812.MODE_DUAL is set.

Syntax

ws2812.init([mode])

Parameters

	mode (optional) either ws2812.MODE_SINGLE (default if omitted) or ws2812.MODE_DUAL

In ws2812.MODE_DUAL mode you will be able to handle two strips in parallel but will lose access to Lua's serial console as it shares the same UART and PIN.

Returns

nil

ws2812.write()

Send data to one or two led strip using its native format which is generally Green,Red,Blue for RGB strips
and Green,Red,Blue,White for RGBW strips.

Syntax

ws2812.write(data1, [data2])

Parameters

	data1 payload to be sent to one or more WS2812 like leds through GPIO2

	data2 (optional) payload to be sent to one or more WS2812 like leds through TXD0 (ws2812.MODE_DUAL mode required)

Payload type could be:

	nil nothing is done

	string representing bytes to send

	ws2812.buffer see Buffer module

Returns

nil

Example

ws2812.init()
ws2812.write(string.char(255, 0, 0, 255, 0, 0)) -- turn the two first RGB leds to green

ws2812.init()
ws2812.write(string.char(0, 0, 0, 255, 0, 0, 0, 255)) -- turn the two first RGBW leds to white

ws2812.init(ws2812.MODE_DUAL)
ws2812.write(string.char(255, 0, 0, 255, 0, 0), string.char(0, 255, 0, 0, 255, 0)) -- turn the two first RGB leds to green on the first strip and red on the second strip

ws2812.init(ws2812.MODE_DUAL)
ws2812.write(nil, string.char(0, 255, 0, 0, 255, 0)) -- turn the two first RGB leds to red on the second strip, do nothing on the first

Buffer module

For more advanced animations, it is useful to keep a "framebuffer" of the strip,
interact with it and flush it to the strip.

For this purpose, the ws2812 library offers a read/write buffer. This buffer has a __tostring method so that it can be printed. This is useful for debugging.

Example

Led chaser with a RGBW strip

ws2812.init()
local i, buffer = 0, ws2812.newBuffer(300, 4); buffer:fill(0, 0, 0, 0); tmr.create():alarm(50, 1, function()
 i = i + 1
 buffer:fade(2)
 buffer:set(i % buffer:size() + 1, 0, 0, 0, 255)
 ws2812.write(buffer)
end)

ws2812.newBuffer()

Allocate a new memory buffer to store led values.

Syntax

ws2812.newBuffer(numberOfLeds, bytesPerLed)

Parameters

	numberOfLeds length of the led strip

	bytesPerLed 3 for RGB strips and 4 for RGBW strips

Returns

ws2812.buffer

ws2812.buffer:get()

Return the value at the given position

Syntax

buffer:get(index)

Parameters

	index position in the buffer (1 for first led)

Returns

(color)

Example

buffer = ws2812.newBuffer(32, 4)
print(buffer:get(1))
0 0 0 0

ws2812.buffer:set()

Set the value at the given position

Syntax

buffer:set(index, color)

Parameters

	index position in the buffer (1 for the first led)

	color payload of the color

Payload could be:

	number, number, ... you should pass as many arguments as bytesPerLed

	table should contains bytesPerLed numbers

	string should contains bytesPerLed bytes

Returns

nil

Example

buffer = ws2812.newBuffer(32, 3)
buffer:set(1, 255, 0, 0) -- set the first led green for a RGB strip

buffer = ws2812.newBuffer(32, 4)
buffer:set(1, {0, 0, 0, 255}) -- set the first led white for a RGBW strip

buffer = ws2812.newBuffer(32, 3)
buffer:set(1, string.char(255, 0, 0)) -- set the first led green for a RGB strip

ws2812.buffer:size()

Return the size of the buffer in number of leds

Syntax

buffer:size()

Parameters

none

Returns

int

ws2812.buffer:fill()

Fill the buffer with the given color.
The number of given bytes must match the number of bytesPerLed of the buffer

Syntax

buffer:fill(color)

Parameters

	color bytes of the color, you should pass as many arguments as bytesPerLed

Returns

nil

Example

buffer:fill(0, 0, 0) -- fill the buffer with black for a RGB strip

ws2812.buffer:dump()

Returns the contents of the buffer (the pixel values) as a string. This can then be saved to a file or sent over a network.

Syntax

buffer:dump()

Returns

A string containing the pixel values.

Example

local s = buffer:dump()

ws2812.buffer:replace()

Inserts a string (or a buffer) into another buffer with an offset.
The buffer must have the same number of colors per led or an error will be thrown.

Syntax

buffer:replace(source[, offset])

Parameters

	source the pixel values to be set into the buffer. This is either a string or a buffer.

	offset the offset where the source is to be placed in the buffer. Default is 1. Negative values can be used.

Returns

nil

Example

buffer:replace(anotherbuffer:dump()) -- copy one buffer into another via a string
buffer:replace(anotherbuffer) -- copy one buffer into another
newbuffer = buffer.sub(1) -- make a copy of a buffer into a new buffer

ws2812.buffer:mix()

This is a general method that loads data into a buffer that is a linear combination of data from other buffers. It can be used to copy a buffer or,
more usefully, do a cross fade. The pixel values are computed as integers and then range limited to [0, 255]. This means that negative
factors work as expected, and that the order of combining buffers does not matter.

Syntax

buffer:mix(factor1, buffer1, ...)

Parameters

	factor1 This is the factor that the contents of buffer1 are multiplied by. This factor is scaled by a factor of 256. Thus factor1 value of 256 is a factor of 1.0.

	buffer1 This is the source buffer. It must be of the same shape as the destination buffer.

There can be any number of factor/buffer pairs.

Returns

nil

Example

-- loads buffer with a crossfade between buffer1 and buffer2
buffer:mix(256 - crossmix, buffer1, crossmix, buffer2)

-- multiplies all values in buffer by 0.75
-- This can be used in place of buffer:fade
buffer:mix(192, buffer)

ws2812.buffer:power()

Computes the total energy requirement for the buffer. This is merely the total sum of all the pixel values (which assumes that each color in each
pixel consumes the same amount of power). A real WS2812 (or WS2811) has three constant current drivers of 20mA -- one for each of R, G and B. The
pulse width modulation will cause the average current to scale linearly with pixel value.

Syntax

buffer:power()

Returns

An integer which is the sum of all the pixel values.

Example

-- Dim the buffer to no more than the PSU can provide
local psu_current_ma = 1000
local led_current_ma = 20
local led_sum = psu_current_ma * 255 / led_current_ma

local p = buffer:power()
if p > led_sum then
 buffer:mix(256 * led_sum / p, buffer) -- power is now limited
end

ws2812.buffer:fade()

Fade in or out. Defaults to out. Multiply or divide each byte of each led with/by the given value. Useful for a fading effect.

Syntax

buffer:fade(value [, direction])

Parameters

	value value by which to divide or multiply each byte

	direction ws2812.FADE_IN or ws2812.FADE_OUT. Defaults to ws2812.FADE_OUT

Returns

nil

Example

buffer:fade(2)
buffer:fade(2, ws2812.FADE_IN)

ws2812.buffer:shift()

Shift the content of (a piece of) the buffer in positive or negative direction. This allows simple animation effects. A slice of the buffer can be specified by using the
standard start and end offset Lua notation. Negative values count backwards from the end of the buffer.

Syntax

buffer:shift(value [, mode[, i[, j]]])

Parameters

	value number of pixels by which to rotate the buffer. Positive values rotate forwards, negative values backwards.

	mode is the shift mode to use. Can be one of ws2812.SHIFT_LOGICAL or ws2812.SHIFT_CIRCULAR. In case of SHIFT_LOGICAL, the freed pixels are set to 0 (off). In case of SHIFT_CIRCULAR, the buffer is treated like a ring buffer, inserting the pixels falling out on one end again on the other end. Defaults to SHIFT_LOGICAL.

	i is the first offset in the buffer to be affected. Negative values are permitted and count backwards from the end. Default is 1.

	j is the last offset in the buffer to be affected. Negative values are permitted and count backwards from the end. Default is -1.

Returns

nil

Example

buffer:shift(3)

ws2812.buffer:sub()

This implements the extraction function like string.sub. The indexes are in leds and all the same rules apply.

Syntax

buffer1:sub(i[, j])

Parameters

	i This is the start of the extracted data. Negative values can be used.

	j this is the end of the extracted data. Negative values can be used. The default is -1.

Returns

A buffer containing the extracted piece.

Example

b = buffer:sub(1,10)

ws2812.buffer:__concat()

This implements the .. operator to concatenate two buffers. They must have the same number of colors per led.

Syntax

buffer1 .. buffer2

Parameters

	buffer1 this is the start of the resulting buffer

	buffer2 this is the end of the resulting buffer

Returns

The concatenated buffer.

Example

ws2812.write(buffer1 .. buffer2)

 XPT2046 Module

XPT2046 Module

Since	Origin / Contributor	Maintainer	Source
2017-03-09	Starofall [https://github.com/nodemcu/nodemcu-firmware/pull/1242]/Frank Exoo [https://github.com/FrankX0]	Frank Exoo [https://github.com/FrankX0]	xpt2046.c

XPT2046 is a touch controller used by several cheap displays - often in combination with the ILI9341 display controller.
The module is built based on the libraries of spapadim [https://github.com/spapadim/XPT2046/] and PaulStoffregen [https://github.com/PaulStoffregen/XPT2046_Touchscreen].

xpt2046.init()

Initiates the XPT2046 module to read touch values from the display. It is required to call spi.setup() before calling xpt2046.init (see example).
As the ucg lib also requires spi.setup() to be called before it is important to only call it once in total and to activate spi.FULLDUPLEX.
The clock_div used in spi.setup() should be 16 or higher, as lower values might produces inaccurate results.

Syntax

xpt2046.init(cs_pin, irq_pin, height, width)

Parameters

	cs_pin GPIO pin for cs

	irq_pin GPIO pin for irq

	height display height in pixel

	width display width in pixel

Returns

nil

Example

-- Setup spi with `clock_div` of 16 and spi.FULLDUPLEX
spi.setup(1, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 16,spi.FULLDUPLEX)
-- SETTING UP DISPLAY (using ucg module)
local disp = ucg.ili9341_18x240x320_hw_spi(8, 4, 0)
disp:begin(0)
-- SETTING UP TOUCH
xpt2046.init(2,1,320,240)
xpt2046.setCalibration(198, 1776, 1762, 273)

xpt2046.setCalibration()

Sets the calibration of the display. Calibration values can be optained by using xpt2046.getRaw() and read the values in the edges.

Syntax

xpt2046.setCalibration(x1, y1, x2, y2)

Parameters

	x1 raw x value at top left

	y1 raw y value at top left

	x2 raw x value at bottom right

	y2 raw y value at bottom right

Returns

nil

xpt2046.isTouched()

Checks if the touch panel is touched.

Syntax

xpt2046.isTouched()

Returns

true if the display is touched, else false

Example

if(xpt2046.isTouched()) then
 local x, y = xpt2046.getPosition()
 print(x .. "-" .. y)
end

xpt2046.getPosition()

Returns the position the display is touched using the calibration values and given width and height.
Can be used in an interrupt pin callback to return the coordinates when the touch screen is touched.

Syntax

xpt2046.getPosition()

Returns

returns both the x and the y position.

Example

-- Setup spi with `clock_div` of 16 and spi.FULLDUPLEX
spi.setup(1, spi.MASTER, spi.CPOL_LOW, spi.CPHA_LOW, 8, 16,spi.FULLDUPLEX)
-- SETTING UP TOUCH
cs_pin = 2 -- GPIO4
irq_pin = 3 -- GPIO0
height = 240
width = 320
xpt2046.init(cs_pin, irq_pin, width, height)
xpt2046.setCalibration(198, 1776, 1762, 273)
gpio.mode(irq_pin,gpio.INT,gpio.PULLUP)
gpio.trig(irq_pin, "down", function()
 print(xpt2046.getPosition())
end)

xpt2046.getPositionAvg()

To create better measurements this function reads the position three times and averages the two positions with the least distance.

Syntax

xpt2046.getPositionAvg()

Returns

returns both the x and the y position.

Example

local x, y = xpt2046.getPositionAvg()
print(x .. "-" .. y)

xpt2046.getRaw()

Reads the raw value from the display. Useful for debugging and custom conversions.

Syntax

xpt2046.getRaw()

Returns

returns both the x and the y position as a raw value.

Example

local rawX, rawY = xpt2046.getRaw()
print(rawX .. "-" .. rawY)

_static/ajax-loader.gif

_images/micro_sd_shield-small.jpg
Micro SD T
Shield ~x@

_images/sigma_delta_audiofilter.png
GPIO

270R

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_images/enduser-setup.jpg
WIFI LOGIN
Connect gadget to your WiFi

WiFi Name

Password

_images/gui.png
® NodeMCU PyFlasher

Sela el /dev/cu.SLAB_USBtoUART 5

NEEEHEY e /Users/marcelstoer/Data/NodeMCU/nodemcu-firmware/bin/nodemc Browse

Baud rate 9600 57600 74880 115200 230400 460800 ° 921600
Flash mode Quad Flash I/O (gio) ° Dual Flash I/O (dio), usually for >=4MB flash chips
Erase flash ° no yes, wipes all data

Flash NodeMCU

Console Connecting. .
Detecting chip type... ESP8266
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Auto-detected Flash size: 16MB
Flash params set to 0x0290
Compressed 648976 bytes to 420576...
Wrote 648976 bytes (420576 compressed) at 0x00000000 in 6.1
seconds (effective 845.0 kbit/s)
Hash of data verified.

Leaving...
Hard resetting...

Welcome to NodeMCU PyFlasher 2.0-beta

_images/WiFi-station-mode.png
Internet

Station

(ESP8266) Access Point

Station (PC)

ESP8266 operating in the Station mode

_images/WiFi-stationap-mode.png
Internet

=) (

Station + Soft
Access Point
(ESP8266) Access Point

ESP8266 operating in the Station + Soft Access Point Mode mode

_images/micro_sd-small.jpg
T Card sreskou 04 @)
a1 @)

T En @

00 ®)

scik @)

OPEN-SHART

_images/NodeMCU-PyFlasher.png
® NodeMCU PyFlasher

Sela el /dev/cu.SLAB_USBtoUART 5

NEEEHEY e /Users/marcelstoer/Data/NodeMCU/nodemcu-firmware/bin/nodemc Browse

Baud rate 9600 57600 74880 115200 230400 460800 ° 921600
Flash mode Quad Flash I/O (gio) ° Dual Flash I/O (dio), usually for >=4MB flash chips
Erase flash ° no yes, wipes all data

Flash NodeMCU

Console Connecting. .
Detecting chip type... ESP8266
Uploading stub...
Running stub...
Stub running...
Changing baud rate to 921600
Changed.
Auto-detected Flash size: 16MB
Flash params set to 0x0290
Compressed 648976 bytes to 420576...
Wrote 648976 bytes (420576 compressed) at 0x00000000 in 6.1
seconds (effective 845.0 kbit/s)
Hash of data verified.

Leaving...
Hard resetting...

Welcome to NodeMCU PyFlasher 2.0-beta

_images/WiFi-softap-mode.png
R =

Station (PC)

Station

(mobile phone) Soft Access Point

(ESP8266)

ESP8266 operating in the Soft Access Point mode

_images/ESPlorer.jpg
