

 Navigation

 	
 index

 	node-slack-sdk latest documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/node-slack-sdk/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/node-slack-sdk/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	node-slack-sdk latest documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

lib/models/README.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

Slack API Models

JS model objects for the Slack API objects.

There are two flavors:

		Slack: objects directly representing Slack API Types [https://api.slack.com/types]

		Intermediary: objects that are used in this library, but which don’t exist in the Slack API Types

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

CHANGELOG.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

v3.6.0 (2016-09-06)

		Adds support for Incoming Webhooks

		Fixes a bug around User IDs

v3.5.4 (2016-07-29)

		Fixes a bug whereby events with fields not recognized cause a crash. Wow.

		Updated some logic around what user ids look like.

v3.5.3 (2016-07-25)

		Fixes a bug in the package.json published by 3.5.2.

v3.5.2 (2016-07-25)

		Updating the links in package.json so that you don’t need SSL credentials to pull down the github repo.

v3.5.1 (2016-07-06)

		Updates lodash from ^3.10.1 to ^4.13.1. And means it.

		Minor tweaks to existing documentation and example code to make them consistent with each other. Because hobgoblins are friendly and love you.

v3.5.0 (2016-06-14)

		Adds the team.billableInfo [https://api.slack.com/methods/team.billableInfo] endpoint to the team facet

		Adds the bots.info [https://api.slack.com/methods/bots.info] endpoint and creates the bots facet

		Removes the user optional argument from the stars.list [https://api.slack.com/methods/stars.list] method

v3.4.0 (2016-05-31)

		Adds the chat.meMessage [https://api.slack.com/methods/chat.meMessage] endpoint to the chat facet

v3.3.1 (2016-05-26)

		Doesn’t crash the RTM client if a message with a reply_to ID with no response handler is received

v3.3.0 (2016-05-24)

		Creates a memory data store by default if an undefined, but not false|null value is passed for opts.dataStore

		Aliases the retry policies to be human readable

v3.2.1 (2016-05-24)

		Updates the RTM client to emit an UNABLE_TO_RTM_START event when all reconnection attempts are exhausted, rather than throwing an error

		Suppresses some spurious log lines when tests are run

v3.2.0 (2016-05-23)

		Updates the _makeAPICall method to make the optional API args param optional to pass in, so the third param to this function can be either an opts object or a cb. This is to allow us to add optional arguments to API methods without it being a breaking change.

		Fixes the retry-after header name and adds a numeric fallback if the retry-after value can’t be parsed, thanks @foiseworth!

		Adds new API methods to various facets
		auth.revoke

		users.identify

		Adds optional arguments to:
		files.comments.add: adds a channel param, for the channel id of the location to associate with the new comment

		chat.delete: adds a boolean as_user param, to support deleting a message as the authed user

v3.1.1 (2016-05-19)

		Removes the DM facet

		Updates the aliasing approach for IM / DM to correctly alias DM to the IM Facet

v3.1.0 (2016-05-01)

		Updates the lib/clients/web/facets/index.js to reference the new facets added in the 3.0.0 update, thanks @ekmartin

		Adds in a reminders client facet

		MemoryDataStore.getUserByEmail now looks at the correct part of the user object for the email, thanks @SimantovYousoufov

		Adds docs and examples for the data store and sending DMs, thanks @PaulAsjes!

v3.0.0 (2016-04-24)

		Adds a number of new web client API facets:
		dnd

		files.comments

		mpim

		usergroups

		usergroups.users

		BREAKING Changes the function signatures for some facet methods:
		channels.list: exclude_archived moves to an opts object, instead of being a separate argument

		groups.list: exclude_archived moves to an opts object, instead of being a separate argument

		chat.delete: The ts and channel arguments are re-ordered to be alphabetical

		stars.list: user moves to an opts object, instead of being a separate argument

		users.list: presence moves to an opts object, instead of being a separate argument

		BREAKING Updates the function signature for BaseAPIClient.prototype.makeAPICall to take required API args and optional API args as separate params, from makeAPICall(endpoint, optData, optCb) to makeAPICall(endpoint, apiArgs, apiOptArgs, optCb)

		New methods are added to various facets:
		files.revokePublicURL

		files.sharedPublicURL

		team.integrationLogs

		team.integrationLogs

v2.3.0 (2016-02-28)

		Caches messages on the RTM client, to improve handling in cases where message send fails

		Removes the handler for the websocket level ping handler (not the RTM API level ping handler)

		Refactors the logic for handling ws send responses to a single function

v2.2.1 (2016-03-12)

		Adds an im alias for the dm facet to the web client, to match the API endpoint naming

v2.2.0 (2016-03-12)

		Adds promise support to the RTM client send and sendMessage methods

		Fixes the way message response callbacks work, so that the success case is only called when the websocket receives a message with a reply_to matching the id of the dispatched message, instead of when the ws instance signals message send success

		Fixes the way getAPICallArgs works, to correctly pull data out of the opts arg

v2.1.0 (2016-03-05)

		Adds promises to the Slack clients. If no callback is passed to an API call, a promise will be created and returned instead.

		Logs a warning if an API response with a warning key is received

v2.0.6 (2016-03-01)

		Fixes a crash introduce in 2.0.5 if you try and instantiate a WebClient without passing in any options

v2.0.5 (2016-03-01)

		Updates the way that API requests are throttled to:
		avoid a condition where the request queue callback could be called multiple times, causing a crash

		refactor the logic in _callTransport into multiple functions to make it easier to follow

		Updates dev dependencies:
		eslint

		nock

		eslint-config-airbnb

v2.0.4 (2016-02-28)

		Passes through the logLevel param to the getLogger function

v2.0.3 (2016-02-28)

		The RTM AUTHENTICATED event now also emits the rtm.start payload

		Fixes the way that loggers are instantiated and used, so that the JSDoc for opts.logger is correct

v2.0.2 (2016-02-15)

		Adds coveralls to the repo, to track code coverage and display a badge in the README

		Updates the disconnect function on the RTM client to support both an error message and a code or reason for the disconnect, e.g. account_inactive

		Updates the message-handlers for team_xxx events to set the team back to the data-store once changes are made

v2.0.1 (2016-02-13)

		Updates to ws@1.0.1

		Fixes a bad variable name in example-web-client

v2.0.0 (2016-02-13)

Refactors the library to javascript, adds a lot of tests and restructures it to improve maintainability and extend functionality.

		Creates two separate clients:
		RTM; manages connection to Slack’s RTM API, including reconnects

		Web; provideas a callback interface to all of Slack’s Web API endpoints

		Moves the memory data store implementation off the clients and into its own class

		Uncouples the model objects from the clients; model functions to send messages to channels etc are now accessed via the web and RTM client

		Moves the transport layer (websockets and HTTP) to a pluggable model, so that complex transports (through request proxies etc) can be handled

		Adds test coverage on most core functionality in the library

v1.5.1 (2015-12-15)

		Adds support for a request-proxy URL to use the client from behind a proxy

v1.5.0 (2015-12-01):

		Updates the ws library from 0.4.3 to 0.8.1

		Reconnects when a team_migration_started event is received

		Supports finding users by email from the memory data store

		Fixes the getUnreadCount and getChannelsWithUnreads functions

		Emits error code and message when the ws closes

		Removes no-op call when a ping is received on the websocket

v1.4.0 (2015-02-25):

		Added callbacks to all API calls (#20 [https://github.com/slackhq/node-slack-client/pull/20])

		Added support for star added/delete events (#27 [https://github.com/slackhq/node-slack-client/pull/27]

		Fixed sample code (#18 [https://github.com/slackhq/node-slack-client/issues/18])

		getChannelByName now strips leading hash marks (#9 [https://github.com/slackhq/node-slack-client/pull/9])

		Dropped support for Node 0.8 (#25 [https://github.com/slackhq/node-slack-client/pull/25])

		Fix duplicate scripts entries in package.json (230c7f74 [https://github.com/slackhq/node-slack-client/commit/230c7f743a48f600aff5660367cf1e6816cc67e2])

v1.3.1 (2015-02-03):

		Added ability to call chat.postMessage web API method (#15 [https://github.com/slackhq/node-slack-client/pull/15])

		Added ability to update and delete messages (#14 [https://github.com/slackhq/node-slack-client/pull/14] and #17 [https://github.com/slackhq/node-slack-client/pull/17])

		Added sample code (7ee93a7b [https://github.com/slackhq/node-slack-client/commit/7ee93a7bd51c97519d6d5deb54bd8058612a9b19])

		Fixed getChannelsWithUnreads (#8 [https://github.com/slackhq/node-slack-client/pull/8])

		Fixed race condition when emitting open event (#19 [https://github.com/slackhq/node-slack-client/pull/19])

v1.2.2 (2014-12-16):

		Compile coffeescript to JS before publishing to NPM (#6 [https://github.com/slackhq/node-slack-client/pull/6])

		Fixed typo in docs (#2 [https://github.com/slackhq/node-slack-client/pull/2/files])

v1.2.0 (2014-12-08)

		First public release

 © Copyright 2016.
 Created using Sphinx 1.3.5.

CONTRIBUTING.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

Contributing at Slack

[image: Header Image]

Before Contributing

Before contributing, please read our Code of Conduct. We take it very seriously, and expect that you will as well.

New Issues

Before opening a new issue, please consider:

		Reading the documentation and the changelog first.

		Searching for any related issues and avoid creating duplicated issues.

		Adding details, diagnoses, screenshots or any type of useful information in existing issues, even if they are marked as closed. The team will still review it.

		Trying out the examples provided in this repository [https://github.com/slackhq/node-slack-sdk/tree/master/examples].

		Taking the time to think of a solution and open a pull request for either improving the documentation, fixing a bug or suggesting a feature.

		Finally, open an issue [https://github.com/slackhq/node-slack-sdk/issues/new] to report a bug, ask for help or suggest a feature. The more information you give, the better people can help you.

New Pull Requests

We love pull requests and we are generally very receptive to contributions. Things to keep in mind:

		Fork the repository [https://github.com/slackhq/node-slack-sdk] and make sure to work on a branch up to date with origin master.

		Do your thing!

		Be mindful about doing atomic commits, adding documentation to your changes, not refactoring too much.

		Add tests covering the new code or functionality you are adding.

		Add a descriptive title and add any useful information for the reviewer. If your contribution is a user facing thing, please attach a screenshot and/or screencast (gif preferrably).

		Read and agree to our Contributor License Agreement (CLA) [https://docs.google.com/a/slack-corp.com/forms/d/1q_w8rlJG_x_xJOoSUMNl7R35rkpA7N6pUkKhfHHMD9c/viewform]. We cannot accept your PR without your agreement to our CLA.

		Create your pull request (yay!). If it is in relation to an existing issue, please mention it on the title or description.

Interested in knowing more about about pull requests at Slack? [https://slack.engineering/on-empathy-pull-requests-979e4257d158#.awxtvmb2z]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_images/contributing_header_slack.png

PULL_REQUEST_TEMPLATE.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

		[] I’ve read and understood the Contributing guidelines and have done my best effort to follow them.

		[] I’ve read and agree to the Code of Conduct.

		[] I’ve been mindful about doing atomic commits, adding documentation to my changes, not refactoring too much.

		[] I’ve a descriptive title and added any useful information for the reviewer. Where appropriate, I’ve attached a screenshot and/or screencast (gif preferrably).

		[] I’ve written tests to cover the new code and functionality included in this PR.

		[] I’ve read, agree to, and signed the Contributor License Agreement (CLA) [https://docs.google.com/a/slack-corp.com/forms/d/1q_w8rlJG_x_xJOoSUMNl7R35rkpA7N6pUkKhfHHMD9c/viewform].

PR Summary

e.g. New functionality for producing whatsits.

Related Issues

e.g. Fixes #206 and closes #230

Test strategy

e.g. Add tests around whatsit production.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment.png

ISSUE_TEMPLATE.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

		[] I’ve read and understood the Contributing guidelines and have done my best effort to follow them.

		[] I’ve read and agree to the Code of Conduct.

		[] I’ve searched for any related issues and avoided creating a duplicate issue.

Description

e.g. Description of the bug or feature

Reproducible in:

{project_name} version:
OS version(s):
Device(s):

Steps to reproduce:

		

		

		

Expected result:

e.g. What you expected to happen

Actual result:

e.g. What actually happened

Attachments:

e.g. Logs, screenshots, screencast, sample project, funny gif, etc.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down.png

CODE_OF_CONDUCT.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

Slack open source code of conduct

Introduction

Diversity and inclusion make our community strong. We encourage participation from the most varied and diverse backgrounds possible and want to be very clear about where we stand.

Our goal is to maintain a safe, helpful and friendly community for everyone, regardless of experience, gender identity and expression, sexual orientation, disability, personal appearance, body size, race, ethnicity, age, religion, nationality, or other defining characteristic.

This code and related procedures also apply to unacceptable behavior occurring outside the scope of community activities, in all community venues (online and in-person) as well as in all one-on-one communications, and anywhere such behavior has the potential to adversely affect the safety and well-being of community members.

Expected Behavior

		Be welcoming.

		Be kind.

		Look out for each other.

Unacceptable Behavior

		Conduct or speech which might be considered sexist, racist, homophobic, transphobic, ableist or otherwise discriminatory or offensive in nature.

		Unwelcome, suggestive, derogatory or inappropriate nicknames or terms.

		Disrespect towards others. (Jokes, innuendo, dismissive attitudes.)

		Intimidation or harassment (online or in-person). Please read the Citizen Code of Conduct [http://citizencodeofconduct.org/] for how we interpret harassment.

		Disrespect towards differences of opinion.

		Inappropriate attention or contact. Be aware of how your actions affect others. If it makes someone uncomfortable, stop.

		Not understanding the differences between constructive criticism and disparagement.

		Sustained disruptions.

		Violence, threats of violence or violent language.

Enforcement

Understand that speech and actions have consequences, and unacceptable behavior will not be tolerated.

If you are the subject of, or witness to any violations of this Code of Conduct, please contact us by submitting a form here [https://docs.google.com/a/slack-corp.com/forms/d/1NVqj2S2Q49XVIOT5N3L6Tx1oihvk9CpMa_UX8T_6ESo/viewform], or email conduct@slack.com.

If violations occur, organizers will take any action they deem appropriate for the infraction, up to and including expulsion.

Thanks to the Django Code of Conduct [https://www.djangoproject.com/conduct/], The Citizen Code of Conduct [http://citizencodeofconduct.org/], The Rust Code of Conduct [https://www.rust-lang.org/conduct.html] and The Ada Initiative [http://adainitiative.org/2014/02/18/howto-design-a-code-of-conduct-for-your-community/].

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

README.html

 Navigation

 		
 index

 		node-slack-sdk latest documentation »

Node Library for the Slack APIs

[image: Build Status] [https://travis-ci.org/slackhq/node-slack-sdk]
[image: Coverage Status] [https://coveralls.io/github/slackhq/node-slack-sdk?branch=master]

Motivation

This is a wrapper around the Slack RTM [https://api.slack.com/rtm] and Web [https://api.slack.com/web] APIs.

This library will provide the low level functionality you need to build reliable apps and projects on top of Slack’s APIs. It:

		handles reconnection logic and request retries

		provides reasonable defaults for events and logging

		defines a basic model layer and data-store for caching Slack RTM API responses

This library does not attempt to provide application level support, e.g. regex matching and filtering of the conversation stream. If you’re looking for those kinds of features, you should check out one of the great libraries built on top of this.

Installation

npm install @slack/client --save

Usage

		Examples

		RTM Client
		Creating an RTM client

		Listen to messages

		Send messages

		Update messages

		[Data stores] (#data-stores)

		[Send direct messages] (#send-direct-messages)

		RTM Client Lifecycle

		Web Client
		Uploading a file

		Incoming Webhook

		Migrating from earlier versions

		Models

Examples

There are some examples for using this package in the examples directory, these include:

		connecting to the RTM API

		connecting to the RTM API and using a datastore

		using the web client

		uploading a file via the web client

		using incoming webhooks

RTM Client

The Real Time Messaging client connects to Slack’s RTM API [https://api.slack.com/rtm] over a websocket.

It allows you to listen for activity in the Slack team you’ve connected to and push simple messages back to that team over the websocket.

Creating an RTM client

var RtmClient = require('@slack/client').RtmClient;

var token = process.env.SLACK_API_TOKEN || '';

var rtm = new RtmClient(token, {logLevel: 'debug'});
rtm.start();

Capturing the rtm.start payload

The RTM client will emit a RTM.AUTHENTICATED event, with the rtm.start payload.

var CLIENT_EVENTS = require('@slack/client').CLIENT_EVENTS;

rtm.on(CLIENT_EVENTS.RTM.AUTHENTICATED, function (rtmStartData) {
 console.log(`Logged in as ${rtmStartData.self.name} of team ${rtmStartData.team.name}, but not yet connected to a channel`);
});

Listen to messages

var RTM_EVENTS = require('@slack/client').RTM_EVENTS;

rtm.on(RTM_EVENTS.MESSAGE, function (message) {
 // Listens to all `message` events from the team
});

rtm.on(RTM_EVENTS.CHANNEL_CREATED, function (message) {
 // Listens to all `channel_created` events from the team
});

Send messages

var RTM_CLIENT_EVENTS = require('@slack/client').CLIENT_EVENTS.RTM;

// you need to wait for the client to fully connect before you can send messages
rtm.on(RTM_CLIENT_EVENTS.RTM_CONNECTION_OPENED, function () {
 // This will send the message 'this is a test message' to the channel identified by id 'C0CHZA86Q'
 rtm.sendMessage('this is a test message', 'C0CHZA86Q', function messageSent() {
 // optionally, you can supply a callback to execute once the message has been sent
 });
});

Update messages

rtm.sendMessage('doing stuff!', channel.id, function (err, msg) {
 msg.text = "Updated!";

 /* msg is an object which contains:
 * ts (string) Timestamp of the message to be updated
 * channel (string) ID of the channel the original message was sent in
 * text (string) New text to be displayed
 * opts (object) Additional options, see here: https://api.slack.com/methods/chat.update
 */
 rtm.updateMessage(msg, function (err, res) {
 console.log(err, res);
 });
});

Data stores

var RtmClient = require('@slack/client').RtmClient;

// The memory data store is a collection of useful functions we can include in our RtmClient
var MemoryDataStore = require('@slack/client').MemoryDataStore;

var CLIENT_EVENTS = require('@slack/client').CLIENT_EVENTS;

var token = process.env.SLACK_API_TOKEN;

var rtm = new RtmClient(token, {
 // Sets the level of logging we require
 logLevel: 'error',
 // Initialise a data store for our client, this will load additional helper functions for the storing and retrieval of data
 dataStore: new MemoryDataStore()
});

rtm.start();

// Wait for the client to connect
rtm.on(CLIENT_EVENTS.RTM.RTM_CONNECTION_OPENED, function() {
 // Get the user's name
 var user = rtm.dataStore.getUserById(rtm.activeUserId);

 // Get the team's name
 var team = rtm.dataStore.getTeamById(rtm.activeTeamId);

 // Log the slack team name and the bot's name
 console.log('Connected to ' + team.name + ' as ' + user.name);
});

Send Direct Messages

var RTM_EVENTS = require('@slack/client').RTM_EVENTS;

// Responds to a message with a 'hello' DM
rtm.on(RTM_EVENTS.MESSAGE, function(message) {
 var user = rtm.dataStore.getUserById(message.user)

 var dm = rtm.dataStore.getDMByName(user.name);

 rtm.sendMessage('Hello ' + user.name + '!', dm.id);
});

RTM Client Lifecycle

The RTM client has its own lifecycle events. These reflect the different states the RTM client can be in as it connects to Slack’s RTM API.

The full details of the client lifecycle are in the RTM client events file

The most important events are:

		RTM_CONNECTION_OPENED: the remote server has acked the socket and sent a hello message, the connection is now live and can be used to send messages

		DISCONNECT: the RTM client has disconnected and will not try to reconnect again automatically

Web Client

Uploading a file

See examples/upload-a-file.js

Incoming Webhook

Setup

Go to https://slack.com/apps/manage/A0F7XDUAZ-incoming-webhooks and configure an incoming webhook. Grab the url.

Sending Basic Text

var IncomingWebhooks = require('@slack/client').IncomingWebhook;
// Anyone who has access to this url will be able to post your
// slack org without authentication. So don't save this value in version control
var url = process.env.SLACK_WEBHOOK_URL;

var wh = new IncomingWebhooks(url);

// This will send a message "Some Text" using the configuration
// chosen when creating the webhook
wh.send('Some text');

// You can pass an optional callback
wh.send('More text', function () {
 console.log('done sending');
});

Sending More than Text

// This will send a message "Some Text" and override
// the configuration values chosen when creating the webhook.
wh.send({
 text: 'Some text',
 channel: 'custom-channel',
 iconEmoji: ':robot_face:',
 username: 'Custom Name'
});

// You can send attachments as well
// See https://api.slack.com/docs/attachments
wh.send({
 text: 'Some text',
 attachments: [
 // attachment data
]
});

Pre-Configure Defaults

var wh = new IncomingWebhooks(url, {
 username: 'Custom Username',
 channel: 'custom-channel',
 iconEmoji: ':robot_face:',
 text: 'Default Text'
});

// This will send a message "Some Text" using the configuration
// that was passed in when the wh object was initialized
wh.send('Some text');

// This will send a message "Some Text" and override
// the values chosen when initializing the wh object
wh.send({
 text: 'Some text',
 channel: 'custom-channel',
 iconEmoji: ':robot_face:',
 username: 'Custom Name'
});

Migrating from earlier versions

This is an incomplete list of items to consider when you migrate from earlier versions. As issues and PRs are raised for things that don’t work as expected we’ll fill this out.

Models

The model objects no longer provide utility functions for working with the API. This is to decouple them from the client implementation. There should be functions on each of the clients that allow you to take the same actions you took from the model via the clients instead. The most common of these are below.

Sending a message

channel.sendMessage('test message');

becomes

rtmClient.sendMessage('test message', channel.id);

Posting a message

channel.postMessage({
 attachments: [...]
});

becomes

var data = {
 attachments: [...]
};
webClient.chat.postMessage(channelId, 'test message', data, function() {});

Copyright

Copyright

©

 Slack Technologies, Inc. MIT License; see LICENSE for further details.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

