

Welcome to node-irc-dcc’s documentation!

	API
	DCC

	Chat

API

irc-dcc [https://github.com/tritium21/node-irc-dcc] extends
irc [https://github.com/martynsmith/node-irc/] with Direct Client-to-Client [https://en.wikipedia.org/wiki/Direct_Client-to-Client] support. Currently,
sending and receiving files, as well as chat sessions are supported.

DCC

	
DCC(client[, options])

	client is the instance of irc.Client that you want to enable DCC support on.
The second optional argument is an object, that looks something like the following:

{
 ports: [2000, 2020],
 localAddress: '10.0.0.125',
 timeout: 30000
}

ports is a length-2 array. The first and second objects in that
array should be the start and end of a port range that you want incoming DCC connections
to bind to. If undefined or null, the default of 0 is used (the OS picks a port).

localAddress is the source address for all outgoing connections and the IP to which
all listening connections are bound. If unset, an attempt will be made to get this
information off the client object. If that is unset or undefined, a local ip address
will be picked by the library.

timeout is the idle time an uninitiated DCC connection will wait before erring out.
It is set in milliseconds.

	
DCC.sendFile(to, filename, length, callback)

	DCC.sendFile does not do any disk IO – it is your responsibility to open the file, and
send the data. The library takes care of the CTCP messaging and establishing connections.

	Arguments

	
	to (string) – The nick to send the file to

	filename (string) – The filename to send in the CTCP message

	length (number) – The length of the file in bytes

	callback –
	
DCC.(err, connection, position)

	
	Arguments

	
	err – Error, if there is an error, null otherwise

	connection – The net.Socket object

	position (number) – The offset from the start of the file to begin reading from

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	// A minimal example.
// Adjust the arguments to irc.Client as per the node-irc docs
//
// When your client connects to IRC, issue /ctcp <botnick> send
//
const fs = require("fs");
const irc = require("irc");
const DCC = require("irc-dcc");

client = new irc.Client(...);
dcc = new DCC(client);

client.addListener('ctcp-privmsg', (from, to, text, message) => {
 if (text.split(" ")[0].toLowerCase() == "send") {
 fs.stat(__dirname + '/data.txt', (err, filestat) => {
 if (err) {
 client.notice(from, err);
 return;
 }
 dcc.sendFile(from, 'data.txt', filestat.size,
 (err, con, position) => {
 if (err) {
 client.notice(from, err);
 return;
 }
 rs = fs.createReadStream(__dirname + '/data.txt', {
 start: position
 });
 rs.pipe(con);
 });
 });
 }
});

	
DCC.acceptFile(from, host, port, filename, length, [position,]callback)

	DCC.acceptFile does not do any disk IO – it is your responsibility to open the file, and
send the data. The library takes care of the CTCP messaging and establishing connections.

	Arguments

	
	from (string) – The nick sending the file

	host (string) – The IP address to connect to

	port (number) – The port to connect to

	filename (string) – The filename suggested by the other side

	length (number) – The length of the file in bytes

	position (number) – The offset from the beginning of the file, if you wish to resume

	callback –
	
DCC.(err, filename, connection)

	
	Arguments

	
	err – Error, if there is an error, null otherwise

	filename (string) – Name of the file

	connection – The net.Socket object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	// A minimal example.
// Adjust the arguments to irc.Client as per the node-irc docs
//
// When your client connects to IRC, send it a file.
//
const fs = require("fs");
const irc = require("irc");
const DCC = require("irc-dcc");

client = new irc.Client(...);
dcc = new DCC(client);

client.on('dcc-send', (from, args, message) => {
 var ws = fs.createWriteStream(__dirname + "/" + args.filename)
 dcc.acceptFile(from, args.host, args.port, args.filename,
 args.length, (err, filename, con) => {
 if (err) {
 client.notice(from, err);
 return;
 }
 con.pipe(ws);
 });
});

	
DCC.sendChat(to, callback)

	
	Arguments

	
	to (string) – The nick to open a chat session to

	calback –
	
DCC.(err, chat)

	
	Arguments

	
	err – Error, if there is an error, null otherwise

	chat (Chat) – The chat connection object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	// A minimal example.
// Adjust the arguments to irc.Client as per the node-irc docs
//
// When your client connects to IRC, issue /ctcp <botnick> chat
//
const fs = require("fs");
const irc = require("irc");
const DCC = require("irc-dcc");

client = new irc.Client(...);
dcc = new DCC(client);

client.addListener('ctcp-privmsg', (from, to, text, message) => {
 if (text.split(" ")[0].toLowerCase() == "chat") {
 dcc.sendChat(from, (err, chat) => {
 chat.on("line", (err, chat) => {
 chat.say("You said: " + line);
 });
 });
 }
});

	
DCC.acceptChat(host, port, callback)

	
	Arguments

	
	host (string) – The IP address to connect to

	port (number) – The port to connect to

	callback –
	
DCC.(err, chat)

	
	Arguments

	
	err – Error, if there is an error, null otherwise

	chat (Chat) – The chat connection object

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	// A minimal example.
// Adjust the arguments to irc.Client as per the node-irc docs
//
// When your client connects to IRC, initiate a DCC chat with the bot
//
const fs = require("fs");
const irc = require("irc");
const DCC = require("irc-dcc");

client = new irc.Client(...);
dcc = new DCC(client);

client.on('dcc-chat', (from, args, message) => {
 dcc.acceptChat(args.host, args.port, (err, chat) => {
 chat.on("line", (err, chat) => {
 chat.say("You said: " + line);
 });
 });
});

Events

irc-dcc emits four new events from irc.Client. Two events are intended for
public use, and two are internal. All four of the events are in the form
of function (from, args, message) {}. See the irc documentation for the details
of message. args is an object of the parsed CTCP message, and is described
for each of the public events.

	
'dcc-send'

	{
 type: "send",
 filename: <string>, // The filename
 long: <number>, // IP address to connect to as a long integer
 host: <string>, // IP address to connect to as a string
 port: <number>, // Port to connect to
 length: <number>, // Length of file, in bytes
}

	
'dcc-chat'

	{
 type: "chat",
 long: <number>, // IP address to connect to as a long integer
 host: <string>, // IP address to connect to as a string
 port: <number>, // Port to connect to
}

Chat

The library provides a very basic type for interacting with DCC chat
sessions, with two public method, and one event. They are both stupendously
straight forward.

	
Chat.say(message)

	
	Arguments

	
	message (string) – Message to send

	
Chat.disconnect()

	Ends the chat session.

Events

	
'line'

	This is in the format of function (line), and is simply the raw line
of text from the connection.

Index

 Symbols
 | C
 | D

Symbols

 	
 	'dcc-chat' (global variable or constant)

 	
 	'dcc-send' (global variable or constant)

 	'line' (global variable or constant)

C

 	
 	Chat.disconnect() (Chat method)

 	
 	Chat.say() (Chat method)

D

 	
 	DCC() (built-in function)

 	DCC.() (DCC method), [1], [2], [3]

 	DCC.acceptChat() (DCC method)

 	
 	DCC.acceptFile() (DCC method)

 	DCC.sendChat() (DCC method)

 	DCC.sendFile() (DCC method)

 nav.xhtml

 Table of Contents

 		
 Welcome to node-irc-dcc’s documentation!

 		
 API

 		
 DCC

 		
 Events

 		
 Chat

 		
 Events

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

