

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/node-gcm/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/node-gcm/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

node-gcm

[image: npm] [https://www.npmjs.com/package/node-gcm]

The goal of this project is providing the best and most easily used interface for Google’s Cloud Messaging service (now called Firebase Cloud Messaging, FCM).
We appreciate all the help we can get!
If you want to help out, check out the Guidelines for Contributing section.

If you are developing an open-source project with a broader scope (like a full Firebase suite), we would love for you to use node-gcm internally.

See the official FCM documentation [https://firebase.google.com/docs/cloud-messaging/] for more information.

This is the README for the v1 branch, and it is currently work in progress.
Version 1.0.0 is only available in an alpha version.
Follow PR #238 [https://github.com/ToothlessGear/node-gcm/pull/238] to see current status.
We currently recommend you use the mainline version of node-gcm (found on the master branch) for production.

Installation

$ npm install node-gcm

Requirements

This library provides the server-side implementation of GCM.
You need to generate an API Key [https://developers.google.com/cloud-messaging/gcm#apikey].

GCM notifications can be sent to both Android [https://developers.google.com/cloud-messaging/android/start] and iOS [https://developers.google.com/cloud-messaging/ios/start].
If you are new to GCM you should probably look into the documentation [https://developers.google.com/cloud-messaging/gcm].

Example application

According to below Usage reference, we could create such application:

var gcm = require('node-gcm')('YOUR_API_KEY_HERE');

var message = {
 data: { key1: 'msg1' }
};
var recipient = 'YOUR_REG_TOKEN_HERE';

gcm.send(message, recipient, function (err, response) {
 if(err) console.error(err);
 else console.log(response);
});

Usage

var gcm = require('node-gcm')('insert Google Server API Key here');

// Create a message (all possible values shown)
var message = {
 collapse_key: 'demo',
 priority: 'high',
 content_available: true,
 delay_while_idle: true,
 time_to_live: 3,
 restricted_package_name: "somePackageName",
 dry_run: true,
 data: {
 key1: 'message1',
 key2: 'message2'
 },
 notification: {
 title: "Hello, World",
 icon: "ic_launcher",
 body: "This is a notification that will be displayed ASAP."
 }
};

// Add the registration tokens of the devices you want to send to
var registrationTokens = [];
registrationTokens.push('regToken1');
registrationTokens.push('regToken2');

// Send the message
// ... trying only once
gcm.send(message, registrationTokens, { retries: 0 }, function(err, response) {
 if(err) console.error(err);
 else console.log(response);
});

// ... or retrying
gcm.send(message, registrationTokens, function (err, response) {
 if(err) console.error(err);
 else console.log(response);
});

// ... or retrying a specific number of times (10)
gcm.send(message, registrationTokens, 10, function (err, response) {
 if(err) console.error(err);
 else console.log(response);
});

Recipients

You can send a push notification to various recipient or topic, by providing a notification key, registration token or topic as a string.
Alternatively, you can send it to several recipients at once, by providing an array of registration tokens.

Notice that you can at most send notifications to 1000 registration tokens at a time [https://github.com/ToothlessGear/node-gcm/issues/42].
This is due to a restriction [http://developer.android.com/training/cloudsync/gcm.html] on the side of the GCM API.

Notification usage

var message = {
 notification: {
 title: 'Alert!!!',
 body: 'Abnormal data access',
 icon: 'ic_launcher'
 }
};

Notification payload option table

Parameter	Platform	Usage	Description
—	—	—	—
title	Android, iOS (Watch)	Required (Android), Optional (iOS), string	Indicates notification title. This field is not visible on iOS phones and tablets.
body	Android, iOS	Optional, string	Indicates notification body text.
icon	Android	Required, string	Indicates notification icon. On Android: sets value to myicon for drawable resource myicon.png.
sound	Android, iOS	Optional, string	Indicates sound to be played. Supports only default currently.
badge	iOS	Optional, string	Indicates the badge on client app home icon.
tag	Android	Optional, string	Indicates whether each notification message results in a new entry on the notification center on Android. If not set, each request creates a new notification. If set, and a notification with the same tag is already being shown, the new notification replaces the existing one in notification center.
color	Android	Optional, string	Indicates color of the icon, expressed in #rrggbb format
click_action	Android, iOS	Optional, string	The action associated with a user click on the notification. On Android, if this is set, an activity with a matching intent filter is launched when user clicks the notification. For example, if one of your Activities includes the intent filter: (Appendix:1)Set click_action to OPEN_ACTIVITY_1 to open it. If set, corresponds to category in APNS payload.
body_loc_key	iOS	Optional, string	Indicates the key to the body string for localization. On iOS, this corresponds to “loc-key” in APNS payload.
body_loc_args	iOS	Optional, JSON array as string	Indicates the string value to replace format specifiers in body string for localization. On iOS, this corresponds to “loc-args” in APNS payload.
title_loc_args	iOS	Optional, JSON array as string	Indicates the string value to replace format specifiers in title string for localization. On iOS, this corresponds to “title-loc-args” in APNS payload.
title_loc_key	iOS	Optional, string	Indicates the key to the title string for localization. On iOS, this corresponds to “title-loc-key” in APNS payload.

Notice notification payload defined in GCM Connection Server Reference [https://developers.google.com/cloud-messaging/server-ref#table1]

Custom GCM request options

You can provide custom request options such as proxy and timeout for the GCM request. For more information, refer to the complete list of request options [https://github.com/request/request#requestoptions-callback]. Note that the following options cannot be overriden: method, uri, body, as well as the following headers: Authorization, Content-Type, and Content-Length.

// Set custom request options
var requestOptions = {
 proxy: 'http://127.0.0.1:8888',
 timeout: 5000
};

// Set up gcm with your API key and request options
var gcm = require("node-gcm")('YOUR_API_KEY_HERE', requestOptions);

// Prepare a GCM message...

// Send it to GCM endpoint with modified request options
gcm.send(message, regTokens, function (err, response) {
 if(err) console.error(err);
 else console.log(response);
});

GCM client compatibility

As of January 9th, 2016, there are a few known compatibility issues with 3rd-party GCM client libraries:

phonegap-plugin-push

	No support for subscribing to PubSub topics [https://github.com/phonegap/phonegap-plugin-push/issues/79]

	Requirement for data payload object when sending a notification object [https://github.com/phonegap/phonegap-plugin-push/issues/387]

	Requirement for all 3 notification fields when sending a notification object (title, icon, message) [https://github.com/ToothlessGear/node-gcm/issues/180]

These issues are out of this project’s context and can only be fixed by the respective 3rd-party project maintainers.

Debug

To enable debug mode (print requests and responses to and from GCM),
set the DEBUG environment flag when running your app (assuming you use node app.js to run your app):

DEBUG=node-gcm node app.js

Donate

Bitcoin: 13iTQf7tDhrKgibw2Y3U5SyPJa7R8sQmHQ [https://blockchain.info/address/13iTQf7tDhrKgibw2Y3U5SyPJa7R8sQmHQ]

Contributing

We appreciate any help we can get!
If you spot something that is wrong, please create an issue [https://github.com/ToothlessGear/node-gcm/issues/new].
If you want to fix something, feel free to submit a Pull Request [https://github.com/ToothlessGear/node-gcm/compare].

But before you do so please read these guidelines for contributing.

Contents

	Creating an issue

	Submitting a Pull Request

	Development

	Become a Collaborator!

Creating an issue

Nothing is too small for an issue.
Issues are a great way to start a discussion of which direction the project should move in, what it should and should not cover, etc.

When submitting an issue, remember to be thorough and precise with the question you are asking.

A good issue would be...

	A bug report, including details of the conditions under which the bug is experienced.Please be specific with the exact environment you are using.
If the client-side might be relevant, remember to include details about what kind of app you are writing.

	A feature request.If we are missing some feature from the GCM reference [https://developers.google.com/cloud-messaging/server-ref], please let us know.
Remember to include a link to the relevant section in the reference.A feature request may also be a request for a new kind of abstraction that would make it easier to work with notifications.

	An open question.If you are wondering about a particular use case for the library, or if there is something you find unclear, there are probably plenty more people like you.
Let us know, and together we can find a way to make better documentation, so fewer people will be in your position in the future.

You get the gist: pretty much anything goes, but remember an adequate amount of details.

Submitting a Pull Request

A pull request is the most tangible way to contribute.
You change some code, submit a request, and poof, you’re a contributor (granted that your code is useful).

When submitting a pull request there are a couple of things to watch out for:

	Your commits will be read by others.
It will be easier to understand them if you keep them clear and concise.
Do one thing in each commit.

	Your code will be read by others.
Strive to make it as clear as possible, while still following the code conventions seen elsewhere in the code.

	If you have several ideas for changes, create several pull requests.
It is in no way a given that we will find all of your proposals for change perfect in the first go, so if you want your changes in quickly separate them into several pull requests.
For example, one pull request could refactor the way we send messages, and the next could add a new type of message.
Doing both in one PR will likely make discussion of the code longer.

	You should write tests for your changes.

	Anything you contribute will be subject to the license.

A good pull request would be...

	A bug fix, fixing a bug you found, or fixing a bug someone else reported in an issue.

	A new feature from the GCM reference [https://developers.google.com/cloud-messaging/server-ref] that had not yet been included in the library, or a new feature that you would like to introduce.
Bear in mind that new features may be subject to a lot of discussion, depending on how good your initial arguments are.
It is important in an open source library like this to move in the right direction, not just any direction.
Otherwise, the library would quickly become messy and hard to use.

	Some refactoring of code that you think could be improved.
Refactoring takes many forms.
You could change the name of a variable for clarity, juggle around some code to get something that is more easily understandable, or anything else you think will improve the code base.

	Improving documentation, either by introducing a new section or fixing some typos.
No fix is too small!

When you’re creating a pull request don’t forget to add yourself to the list of collaborators in package.json.

Development

After forking the repo in your account you can clone it with

git clone https://github.com/<your-username>/node-gcm.git

cd node-gcm

Install the dependencies

npm install

run the tests

npm test

Become a Collaborator!

A collaborator can merge pull requests, close issues and push to the master branch.
Collaborators are the ones that make sure the project keeps going and doesn’t grind to a halt.

We are always interested in getting more collaborators!

The best way to move towards becoming one is submitting some pull requests and maybe dropping an existing collaborator a note.

Versioning

This project uses Semantic Versioning [http://semver.org/] on its external interface.
This means that a breaking change if methods of classes, what is exported, etc. can only happen with major version bump (x.-.-).

The semantic versioning, however, does not apply to internal interfaces and state.
For example, how a Message chooses to store its state is subject to change without a major version bump.
In fact, it may change in either minor (-.x.-) or patch (-.-.x) version bumps.

A major version bump means that some interface has been broken by the changes added.

A new minor version bump means that new functionality has been added without breaking the existing interfaces.

A patch version bump means that something has been fixed, or some internals have changed, without adding new functionality.

Changelog

1.0.0-alpha.1

	Removed the Message abstraction, now expect plain objects.

	Smaller lodash dependency (only depending on the part that is used).

	Simplified the recipient argument so it is now closer to the actual API interface.

	Removed sendNoRetry method on sender — use send with the option retries: 0 instead.

1.0.0-alpha.0

	Removed deprecated things: constants, Result, MulticastResult, Message#addDataWith...

0.14.2

	Updated README, added note on v1 development

0.14.1

	Major refactorings of internals.

	Marked some constants, Result, and MulticastResult as deprecated.

	Changed to using new Firebase Cloud Messaging URL.

	Small README fixes.

0.14.0

	Added support for to recipient keys.
This means that it is now possible to explicitly set something that should go in the to field in the request sent to GCM.

	Added some compatibility documentation.

0.13.1

	Improvements to the way we set the recipient arguments before sending requests to GCM.
We now prefer the to field whenever applicable.

	Simplified parsing of recipient objects, and added documentation of supported keys in README [https://github.com/ToothlessGear/node-gcm/blob/master/README.md#recipients].

	Sender#send will now fail faster (never retry) if a 4xx error code is returned from GCM: something was wrong with the request.

	Fixed support for using node-gcm through a proxy.

0.13.0

	It is now possible to set any option that can be set in request [https://github.com/request/request].
See the Custom GCM request options [https://github.com/ToothlessGear/node-gcm#custom-gcm-request-options] section of the README.

	We have changed the recommended name for what the Sender returns from result to response.

0.12.1

	Updates to the README

	Changed terminology from “Registration ID” to “Registration Token” to be consistent with the GCM documentation.

	Updated GCM service endpoint (was changed by Google, old one is deprecated)

0.12.0

	Added support of explicit recipients (registration_ids, topic, notification_key) in Sender.

0.11.1

	Fixed support for priority and corresponding documentation.

0.11.0

	Added support for the new parameters [https://developers.google.com/cloud-messaging/server-ref]:
priority, content_available, restricted_package_name.

	If only a single registration token is passed to Sender#send*, it will be sent in the to field.
This is in accordance with the best practice of the current documentation, and allows users to send messages to notification keys.

	It is no longer possible to change internal state of Messages by changing the variables directly.
For example, message.collapseKey = "New Key" is now illegal (won’t work).
This is not considered a breaking change, because fiddling with internal state should not happen outside of the provided interface.
In this case, the correct way to set message variables is on construction of the Message.

0.10.0

	Deprecated Message#addDataWithKeyValue and Message#addDataWithObject:
both of these now print a message to the log when used.

	Fixed some typos and improved the README.

	Updated dependencies.

	Limited files included in package as a dependency (test-files are no longer gotten with npm install).

	Fixed a bug which caused errors in the provided callback to result in retries.

	Added Message#addNotification, which allows the user to use the new Notification Payload API [https://developers.google.com/cloud-messaging/server-ref#notification-payload-support].
This allows the server to define a notification that will be shown directly on the receiving device.

0.9.15

	Updated Contributing section in README

	Rewrote Sender#send, so it returns the correct result ordered as expected, even after retrying.
The initial backoff time can now be specified, by passing an options object to the function.

	Updated Sender#send and Sender#sendNoRetry to allow passing a single Registration Token without wrapping it in an array.

0.9.14

	Message#addData is now multi-purpose (works as either Message#addDataWithObject or Message#addDataWithKeyValue)

	clarified README usage example

	clarified README debug section

	made Sender#send have a default of 5 retries (if none provided)

0.9.13

	print server responses on invalid requests while in debug mode

	fixed engine version in package.json (now correctly states >= 10)

	callbacks to Sender#send and Sender#sendNoRetry are now optional

0.9.12

	added debug module and removed console-logs

	use exponential retry instead of linear

	update request module with most recent compatible one

	remove require on global timers

	various cleanups

	add maxSockets option

	keep ‘this’ on Sender object in retries

	updated README

	updated contributors

0.9.11

	check >= 500 error status

	just reassign id array on err, don’t iterate

	send err to callback

	resend if send multiple errs

	check for not result instead of result === undefined

	updated README

	updated contributors

0.9.10

	Added dryRun message parameter

	updated README

	updated contributors

0.9.9

	fix statusCode logging

	Added a call of a callback function in case when no registration tokens were given

	updated contributors

0.9.8

	Added support for sending POSTs to GCM through http/https proxies.

	updated contributors

0.9.7

	move callback outside of try catch block

	updated README

	updated contributors

0.9.6:

	fixed undefined “data” var

	made constructor argument optional

	added back addData method

	updated README

	updated contributors

0.9.5:

	change addData to addDataWithKeyValue

	add new function addDataWithObject

	message object can be initialised with another object

	updated contributors

0.9.4:

	fix TypeError

	updated contributors

	updated README

0.9.3:

	new callback-style (Please check the example above)

	fixes various issues (Read commit messages)

	not making a distinction between a single and multiple result makes it easier for application-land code to handle

0.9.2:

	added error handler to HTTPS request to handle DNS exceptions

	added multicast-messaging

0.9.1:

	first release

License

(The MIT License)

Copyright (c) 2013 Marcus Farkas <

toothlessgear@finitebox.com>

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
‘Software’), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED ‘AS IS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

