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NODAL provides tools for implementing parallel and distributed program autotuners. This Julia package provides
tools and optimization algorithms for implementing different Stochastic Local Search methods, such as Simulated
Annealing and Tabu Search. NODAL is an ongoing project, and will implement more optimization and local search
algorithms.

You can use NODAL to optimize user-defined functions with a few Stochastic Local Search basic methods, that are
composed by building blocks also provided in the package. The package distributes evaluations of functions and
technique executions between Julia workers. It is possible to have multiple instances of search techniques running on
the same problem.
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CHAPTER 1

Manual

1.1 Introduction

This page will give an overview of the functionalities in the package, how they work, and describe the manual.

1.2 Getting Started

This page will tell you how to install, test and contribute to the package.

1.2.1 Installing

NODAL.jl runs on Julia nightly. To get the latest version run:

julia> Pkg.clone("NODAL")

1.2.2 Running Tests

Run all tests with:

$ julia --color=yes test/runtests.jl

1.2.3 Contributing

You will need Julia nightly. Check the project’s REQUIRE file for an up-to-date dependency list. Please, feel free to
fork the repository and submit a pull request. You can also check the GitHub issues page for things that need to be
done.
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1.3 Examples

This page provides examples that will help you learn the package’s API.

Note: The package is in heavy development. If something does not work as is show here, it is likely the API changed
but the docs didn’t. Submit an issue at the GitHub repository and the docs will be updated.

1.3.1 The Rosenbrock Function

The following is a very simple example, and you can find the source code for its latest version in the GitHub repository.

We will optimize the Rosenbrock cost function. For this we must define a Configuration that represents the
arguments to be tuned. We also have to create and configure a tuning run. First, let’s import NODAL.jl and define the
cost function:

addprocs()

import NODAL

@everywhere begin
using NODAL
function rosenbrock(x::Configuration, parameters::Dict{Symbol, Any})

return (1.0 - x["i0"].value)^2 + 100.0 * (x["i1"].value - x["i0"].value^2)^2
end

end

We use the addprocs() function to add the default number of Julia workers, one per processing core, to our
application. The import statement loads NODAL.jl in the current Julia worker, and the @everywhere macro
defines the rosenbrock function and the module in all Julia workers available.

Cost functions must accept a Configuration and a Dict{Symbol, Any} as input. The Configuration is
used to define the autotuner’s search space, and the parameter dictionary can store data or function configurations.

Our cost function simply ignores the parameter dictionary, and uses the "i0" and "i1" parameters of the received
configuration to calculate a value. There is no restriction on the names of Configuration parameter.

Our configuration will have two FloatParameters, which will be Float64 values constrained to an interval.
The intervals are [-2.0, 2.0] for both parameters, and their values start at 0.0. Since we already used the names
"i0" and "i1", we name the parameters the same way:

configuration = Configuration([FloatParameter(-2.0, 2.0, 0.0, "i0"),
FloatParameter(-2.0, 2.0, 0.0, "i1")],
"rosenbrock_config")

Now we must configure a new tuning run using the Run type. There are many parameters to configure, but they all
have default values. Since we won’t be using them all, please see Run’s source for further details:

tuning_run = Run(cost = rosenbrock,
starting_point = configuration,
stopping_criterion = elapsed_time_criterion,
report_after = 10,
reporting_criterion = elapsed_time_reporting_criterion,
duration = 60,
methods = [[:simulated_annealing 1];

[:iterative_first_improvement 1];
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[:iterated_local_search 1];
[:randomized_first_improvement 1];
[:iterative_greedy_construction 1];])

The methods array defines the search methods, and their respective number of instances, that will be used in this
tuning run. This example uses one instance of every implemented search technique. The search will start at the point
defined by starting_point.

The stopping_criterion parameter is a function. It tells your autotuner when to stop iterating.
The two default criteria implemented are elapsed_time_criterion and iterations_criterion.
The reporting_criterion parameter is also function, but it tells your autotuner when to report
the current results. The two default implementations are elapsed_time_reporting_criterion and
iterations_reporting_criterion. Take a look at the code if you want to dive deeper.

We are ready to start autotuning, using the @spawn macro. For more information on how parallel and distributed
computing works in Julia, please check the Julia Docs. This macro call will run the optimize method, which
receives a tuning run configuration and runs the search techniques in the background. The autotuner will write its
results to a RemoteChannel stored in the tuning run configuration:

@spawn optimize(tuning_run)
result = take!(tuning_run.channel)

The tuning run will use the default neighboring and perturbation methods implemented by NODAL.jl to find new
results. Now we can process the current result. In this example we just print it and loop until optimize is done:

print(result)
while !result.is_final

result = take!(tuning_run.channel)
print(result)

end

Running the complete example, we get:

$ julia --color=yes rosenbrock.jl
[Result]
Cost : 1.0
Found in Iteration: 1
Current Iteration : 1
Technique : Initialize
Function Calls : 1

***
[Result]
Cost : 1.0
Found in Iteration: 1
Current Iteration : 3973
Technique : Initialize
Function Calls : 1

***
[Result]
Current Iteration : 52289
Technique : Iterative First Improvement
Function Calls : 455

***
[Result]
Cost : 0.01301071782455056
Found in Iteration: 10
Current Iteration : 70282
Technique : Randomized First Improvement
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Function Calls : 3940

***
[Result]
Cost : 0.009463518035824526
Found in Iteration: 11
Current Iteration : 87723
Technique : Randomized First Improvement
Function Calls : 4594

***
[Final Result]
Cost : 0.009463518035824526
Found in Iteration : 11
Current Iteration : 104261
Technique : Randomized First Improvement
Function Calls : 4594
Starting Configuration:

[Configuration]
name : rosenbrock_config
parameters:
[NumberParameter]
name : i0
min : -2.000000
max : 2.000000
value: 1.100740

***
[NumberParameter]
name : i1
min : -2.000000
max : 2.000000
value: 1.216979

Minimum Configuration :
[Configuration]
name : rosenbrock_config
parameters:
[NumberParameter]
name : i0
min : -2.000000
max : 2.000000
value: 0.954995

***
[NumberParameter]
name : i1
min : -2.000000
max : 2.000000
value: 0.920639

Note: The Rosenbrock function is by no means a good autotuning objetive, although it is a good tool to help you get
familiar with the API. NODAL.jl certainly performs worse than most tools for this kind of function. Look at further
examples is this page for more fitting applications.

1.3.2 Autotuning Genetic Algorithms

1.3.3 Autotuning LLVM Pass Ordering and Parameters
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CHAPTER 2

Library

2.1 Core

This page will describes core and utility functions.

2.1.1 Run - mutable struct

The Run type encapsulates the configuration parameters of a tuning run. All parameters of Run are named and have
default values, so it is possible to call its constructor with no parameters.

cost::Function

The cost parameter is the function that computes your program’s fitness value, or cost, for a given
Configuration. This function must receive a Configuration. Optionally, it can also receive a Dict with
extra invariant parameters. The cost default value is a constant function:

cost::Function = (c(x) = 0)

cost_arguments::Dict{Symbol, Any}

cost_arguments::Dict{Symbol, Any} = Dict{Symbol, Any}()

cost_evaluations::Integer

cost_evaluations::Integer = 1
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cost_values::Array{AbstractFloat, 1}

cost_values::Array{AbstractFloat, 1} = [0.0]

starting_point::Configuration

starting_point::Configuration = Configuration("empty")

starting_cost::AbstractFloat = 0.0

starting_cost::AbstractFloat = 0.0

report_after::Integer

report_after::Integer = 100

reporting_criterion::Function

reporting_criterion::Function = iterations_reporting_criterion

measurement_method::Function

measurement_method::Function = measure_mean!

stopping_criterion::Function

stopping_criterion::Function = iterations_criterion

duration::Integer

duration::Integer = 1_000

methods::Array{Any, 2}

methods::Array{Any, 2} = [[:simulated_annealing 2];]

channel::RemoteChannel

channel::RemoteChannel = RemoteChannel(()->Channel{Any}(128))
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2.2 Types

This page will describe all Julia types defined by the package.

2.2.1 Abstract Types

2.2.2 Concrete Types

2.3 Search

This page will describe all search techniques, building blocks, and the search module execution flow.

2.3.1 Building Blocks

2.3.2 Techniques

2.4 Measurent

This page will describe the measurement module.

2.4.1 Parallel and Distributed Execution
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