

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	nmeta2dpae 0.3.5 documentation

nmeta2dpae

The nmeta2 project is a research platform for distributed scalable traffic
classification on Software Defined Networking (SDN).
Read More

Contents:

	Introduction
	Distributed System

	Limitations

	Feature Enhancement Wishlist

	Privacy Considerations

	Disclaimer

	How to Contribute to the Code

	Install
	Pre-Work

	Install Packages Required by nmeta

	Install MongoDB

	Install nmeta2dpae

	Aliases

	Edit Config

	Create Custom Classifiers

	Run nmeta2dpae

	Module Documentation
	nmeta2dpae package

	nmeta2dpae.classifiers package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta2dpae 0.3.5 documentation

Introduction

The nmeta2dpae project is a sub-system of the
nmeta2 project [https://github.com/mattjhayes/nmeta2]

Distributed System

Nmeta2dpae is the code that runs the distributed heavy-lifting work of traffic
classification on auxiliary devices, called a Data Plane Auxiliary Engines
(DPAE), that scale horizontally.

Limitations

Nmeta2dpae code is under construction, so a number of features are not implemented
yet, or not finished.

Feature Enhancement Wishlist

See Issues [https://github.com/mattjhayes/nmeta2/issues] for list of
enhancements and bugs

Privacy Considerations

Collecting network metadata brings with it ethical and legal considerations
around privacy. Please ensure that you have permission to monitor traffic
before deploying this software.

Disclaimer

This code carries no warrantee whatsoever. Use at your own risk.

How to Contribute to the Code

Code contributions and suggestions are welcome. Enhancement or bug fixes
can be raised as issues through GitHub.

Please get in touch if you want to be added as a contributor to the project:

Email: Nmeta Maintainer

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta2dpae 0.3.5 documentation

Install

This guide is for installing nmeta2dpae on Ubuntu OS.

Pre-Work

Ensure packages are up-to-date

sudo apt-get update
sudo apt-get upgrade

Install Python pip

sudo apt-get install python-pip

Install git

Install git and git-flow for software version control:

sudo apt-get install git git-flow

Install Packages Required by nmeta

Install coloredlogs

Install coloredlogs to improve readability of terminal logs by colour-coding:

sudo pip install coloredlogs

Install dpkt Python Packet Library

Install dpkt for parsing packets:

sudo pip install dpkt

Install scapy

sudo pip install scapy

Install pytest

Pytest is used to run unit tests:

sudo apt-get install python-pytest

Install YAML

Install Python YAML (“YAML Ain’t Markup Language”) for parsing config
and policy files:

sudo apt-get install python-yaml

Install simplejson

sudo pip install simplejson

Install mock

sudo pip install -U mock

Install MongoDB

MongoDB is the database used by nmeta2. Install MongoDB as per their instructions [https://docs.mongodb.org/manual/tutorial/install-mongodb-on-ubuntu/] :

Import the MongoDB public GPG Key:

sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv EA312927

Create a list file for MongoDB:

echo "deb http://repo.mongodb.org/apt/ubuntu trusty/mongodb-org/3.2 multiverse" | sudo tee /etc/apt/sources.list.d/mongodb-org-3.2.list

Reload local package database:

sudo apt-get update

Install MongoDB:

sudo apt-get install -y mongodb-org

Add pymongo for a Python API into MongoDB:

sudo apt-get install build-essential python-dev
sudo pip install pymongo

Turn on smallfiles to cope with small file system size:

sudo vi /etc/mongod.conf

Add this to the storage section of the config:

mmapv1:
 smallFiles: true

Start MongoDB (if required) with:

sudo service mongod start

Install nmeta2dpae

Clone nmeta2dpae

cd
git clone https://github.com/mattjhayes/nmeta2dpae.git

Aliases

Aliases can be used to make it easier to run common commands.
To add the aliases, edit the .bash_aliases file in your home directory:

cd
sudo vi .bash_aliases

Paste in the following:

Run nmeta2dpae:
alias nm2="sudo python ~/nmeta2dpae/nmeta2dpae/nmeta2dpae.py"
#
Run tests on nmeta2dpae:
alias nm2t="cd ~/nmeta2dpae/test/; py.test"

Re-read the Aliases

Read the aliases file in so that new command is available for use:

. ~/.bashrc

Edit Config

Edit the config file ~/nmeta2dpae/nmeta2dpae/config/config.yaml and update
values as appropriate. You should check:

	URL for nmeta2 under key nmeta_controller_address

	Which interfaces should sniff under key sniff_if_names

	MongoDB settings under keys mongo_addr and mongo_port

Create Custom Classifiers

Custom classifiers can be installed into the
~/nmeta2dpae/nmeta2dpae/classifiers directory. They operate per packet and are
passed a flow class object that has variables and methods that are in the
context of the current packet and the flow that it belongs to. Check out
flow.py for more information. Custom classifiers are called by declaring
them in main_policy.yaml in nmeta2 on the controller.

Run nmeta2dpae

nm2

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta2dpae 0.3.5 documentation

Module Documentation

	nmeta2dpae package
	Submodules

	nmeta2dpae.config module

	nmeta2dpae.controlchannel module

	nmeta2dpae.dp module

	nmeta2dpae.flow module

	nmeta2dpae.nmeta2dpae module

	nmeta2dpae.sniff module

	nmeta2dpae.tc module

	nmeta2dpae.tc_policy_dpae module

	Module contents

	nmeta2dpae.classifiers package
	Submodules

	nmeta2dpae.classifiers.payload_uri_1 module

	nmeta2dpae.classifiers.statistical_qos_bandwidth_1 module

	Module contents

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	nmeta2dpae 0.3.5 documentation

 	Module Documentation

nmeta2dpae package

Submodules

nmeta2dpae.config module

This module is part of the nmeta2 suite
.
It represents the configuration data for a
Data Plane Auxiliary Engine (DPAE).
.
It expects a file called “config.yaml” to be in a subdirectory called
config, and this file to contain properly formed YAML

	
class nmeta2dpae.config.Config

	Bases: object

This class is instantiated by nmeta_dpae.py and provides methods to
ingest the configuration file and provides access to the
keys/values that it contains.
Config file is in YAML in config subdirectory and is
called ‘config.yaml’

	
get_value(config_key)

	Passed a key and see if it exists in the config YAML. If it does
then return the value, if not return 0

nmeta2dpae.controlchannel module

This module is part of the nmeta2 suite
.
It is provides control channel services between the nmeta
Data Plane Auxiliary Engine (DPAE) and the OpenFlow controller
using REST API calls

	
class nmeta2dpae.controlchannel.ControlChannel(_nmeta2dpae, _config, if_name, dp)

	Bases: object

This class is instantiated by nmeta_dpae.py and provides methods to
interact with the nmeta control plane

	
get_policy(location)

	Get the a policy from
the Controller (YAML in string format)

	
keepalive(event_flag, location, if_name)

	Do regular keepalive polls to the DPAE to check
if is still available, in dedicated process.
If keepalive fails, then set an event flag
for parent process.

	
phase1(api_base, if_name)

	Phase 1 (global to DPAE) connection to the control plane,
as an active data plane auxiliary device

	
phase2(api_base, if_name, dpae2ctrl_mac, ctrl2dpae_mac, dpae_ethertype)

	Phase 2 (per DPAE sniffing interface)
switch/port discovery

	
phase3(api_base, if_name, dpae2ctrl_mac, ctrl2dpae_mac, dpae_ethertype)

	Phase 3 (per DPAE sniffing interface)
confirmation of sniffing packets

	
phase4(api_base, if_name)

	Phase 4 (per DPAE sniffing interface)
Negotiate what services will be run by the DPAE

	
tc_advise_controller(location, tc_result)

	Pass Traffic Classification (TC) information to
the controller via the API

	
tc_start(location)

	Tell the Controller to start sending us packets that
need traffic classification

	
class nmeta2dpae.controlchannel.JSON_Body(req_body)

	Bases: object

Represents a JSON-encoded body of an HTTP request.
Doesn’t do logging, but does set .error when things
don’t go to plan with a friendly message.

	
decode(req_body)

	Passed an allegedly JSON body and see if it
decodes. Set error variable for exceptions

	
validate(key_list)

	Passed a list of keys and check that they exist in the
JSON. If they don’t return 0 and set error to description
of first missing key that was found

nmeta2dpae.dp module

This module is part of the nmeta2 suite
.
It provides an object for data plane coordination services
.
Version 2.x Toulouse Code

	
class nmeta2dpae.dp.DP(_config)

	Bases: object

This class is instantiated by nmeta2_dpae.py and provides methods
to run the data plane services.

	
dp_discover(queue, if_name, dpae2ctrl_mac, ctrl2dpae_mac, dpae_ethertype, timeout, uuid_dpae, uuid_controller)

	Data plane service for DPAE Join Discover Packet Sniffing

	
dp_run(interplane_queue, tc_policy, if_name)

	Run Data Plane (DP) Traffic Classification for an interface

	
class nmeta2dpae.dp.JSON_Body(req_body)

	Bases: object

Represents a JSON-encoded body of an HTTP request.
Doesn’t do logging, but does set .error when things
don’t go to plan with a friendly message.

	
decode(req_body)

	Passed an allegedly JSON body and see if it
decodes. Set error variable for exceptions

	
validate(key_list)

	Passed a list of keys and check that they exist in the
JSON. If they don’t return 0 and set error to description
of first missing key that was found

nmeta2dpae.flow module

This module is part of the nmeta2 suite
.
It provides an abstraction for a TCP flow that links to
a MongoDB database and changes to the context of the flow
that a supplied packet belongs to
.
Version 2.x Toulouse Code

	
class nmeta2dpae.flow.Flow(logger, mongo_addr, mongo_port)

	Bases: object

An object that represents a flow that we are classifying

Intended to provide an abstraction of a flow that classifiers
can use to make determinations without having to understand
implementations such as database lookups etc.

Be aware that this module is not very mature yet. It does not
cover some basic corner cases such as packet retransmissions and
out of order or missing packets.

Variables available for Classifiers (assumes class instantiated as
an object called ‘flow’):

Variables for the current packet:

	flow.ip_src

	IP source address of latest packet in flow

	flow.ip_dst

	IP dest address of latest packet in flow

	flow.tcp_src

	TCP source port of latest packet in flow

	flow.tcp_dst

	TCP dest port of latest packet in flow

	flow.tcp_seq

	TCP sequence number of latest packet in flow

	flow.tcp_acq

	TCP acknowledgement number of latest packet in flow

	flow.tcp_fin()

	True if TCP FIN flag is set in the current packet

	flow.tcp_syn()

	True if TCP SYN flag is set in the current packet

	flow.tcp_rst()

	True if TCP RST flag is set in the current packet

	flow.tcp_psh()

	True if TCP PSH flag is set in the current packet

	flow.tcp_ack()

	True if TCP ACK flag is set in the current packet

	flow.tcp_urg()

	True if TCP URG flag is set in the current packet

	flow.tcp_ece()

	True if TCP ECE flag is set in the current packet

	flow.tcp_cwr()

	True if TCP CWR flag is set in the current packet

	flow.payload

	Payload of TCP of latest packet in flow

	flow.packet_length

	Length in bytes of the current packet on wire

	flow.packet_direction

	c2s (client to server) or s2c directionality based on first observed
packet having SYN or SYN+ACK flag, otherwise client assumed as source
IP of first packet and verified_direction set to 0 (i.e.
don’t trust packet_direction unless verified_direction is set)

Variables for the whole flow:

	flow.verified_direction

	Describes how the directionality of the flow was ascertained.
Values can be verified-SYN, verified-SYNACK or 0 (unverified)

	flow.finalised

	A classification has been made

	flow.suppressed

	The flow packet count number when a request was made to controller
to not see further packets in this flow. 0 is not suppressed

	flow.packet_count

	Unique packets registered for the flow

	flow.client

	The IP that is the originator of the TCP session (if known,
otherwise 0)

	flow.server

	The IP that is the destination of the TCP session
session (if known, otherwise 0)

Methods available for Classifiers:
(assumes class instantiated as an object called ‘flow’)

	flow.max_packet_size()

	Size of largest packet in the flow

	flow.max_interpacket_interval()

	TBD

	flow.min_interpacket_interval()

	TBD

	Challenges:

	
	duplicate packets

	IP fragments (not handled)

	Flow reuse - TCP source port reused (not handled - yet)

	
ingest_packet(pkt, pkt_receive_timestamp)

	Ingest a packet and put the flow object into the context
of the flow that the packet belongs to.

	
max_interpacket_interval()

	Return the size of the largest inter-packet time interval
in the flow (assessed per direction in flow).
.
Note: slightly inaccurate due to floating point rounding.

	
max_packet_size()

	Return the size of the largest packet in the flow (in either direction)

	
min_interpacket_interval()

	Return the size of the smallest inter-packet time interval
in the flow (assessed per direction in flow)
.
Note: slightly inaccurate due to floating point rounding.

	
set_suppress_flow()

	Set the suppressed attribute in the flow database
object to the current packet count so that future
suppressions of the same flow can be backed off
to prevent overwhelming the controller

	
tcp_ack()

	Does the current packet have the TCP ACK flag set?

	
tcp_cwr()

	Does the current packet have the TCP CWR flag set?

	
tcp_ece()

	Does the current packet have the TCP ECE flag set?

	
tcp_fin()

	Does the current packet have the TCP FIN flag set?

	
tcp_psh()

	Does the current packet have the TCP PSH flag set?

	
tcp_rst()

	Does the current packet have the TCP RST flag set?

	
tcp_syn()

	Does the current packet have the TCP SYN flag set?

	
tcp_urg()

	Does the current packet have the TCP URG flag set?

nmeta2dpae.nmeta2dpae module

This module is part of the nmeta2 suite
.
nmeta Data Plane Auxiliary Engine (DPAE)
Used as an auxilary data plane component for functions such as
offloading packet-intensive traffic classification
from the controller.

	
class nmeta2dpae.nmeta2dpae.DPAE

	Bases: object

This class provides methods for a Data Plane Auxiliary Engine (DPAE),
an auxiliary entity that provides services to nmeta.

	
cp_run(if_name, controlchannel, location)

	Run Control Plane (CP) Traffic Classification for an interface

	
per_interface(if_name)

	Run per interface that sniffing will run on as separate process

	
run()

	Run the DPAE instance

nmeta2dpae.sniff module

This module is part of the nmeta2 suite
.
It provides packet sniffing services

	
class nmeta2dpae.sniff.Ifreq

	Bases: _ctypes.Structure

Class used in setting Ethernet interface promiscuous mode

	
ifr_flags

	Structure/Union member

	
ifr_ifrn

	Structure/Union member

	
class nmeta2dpae.sniff.Sniff(_config, tc)

	Bases: object

This class is instantiated by nmeta_dpae.py and provides methods to
sniff and process inbound packets on a given interface

	
discover_confirm(if_name, dpae2ctrl_mac, ctrl2dpae_mac, dpae_ethertype, timeout)

	This function processes sniffs for a discover confirm packet
and returns 1 if seen and valid, otherwise 0 after expiry of
timeout period

	
get_promiscuous_mode(if_name)

	Return the promiscuous mode of an interface.
1 is promiscuous mode enabled
0 is promiscuous mode disabled

	
set_promiscuous_mode(if_name)

	Set a given Ethernet interface to promiscuous mode
so that it can receive packets destined for any
MAC address.

	
sniff_run(if_name, tc, tc_policy, queue)

	This function sniffs packets from a NIC.
It passes the packets to the tc module for classification and
returns any TC results to parent process via a queue.

In active mode it also sends the processed packet back to
the switch

	
nmeta2dpae.sniff.mac_addr(address)

	Convert a MAC address to a readable/printable string

nmeta2dpae.tc module

This module is part of the nmeta2 suite
.
It provides an object for traffic classification
and includes ingesting the policy from YAML and checking
packets against policy, calling appropriate classifiers
and returning actions.
.
Version 2.x Toulouse Code

	
class nmeta2dpae.tc.TC(_config)

	Bases: object

This class is instantiated by nmeta2_dpae.py and provides methods
to ingest the policy as yaml and check
packets against policy, calling appropriate classifiers
and returning actions.

	
classify_dpkt(pkt, pkt_receive_timestamp, if_name)

	Perform traffic classification on a packet
using dpkt for packet parsing

	
classify_dpkt_wrapper(pkt, pkt_receive_timestamp, if_name)

	Used to catch and handle exceptions in classify_dpkt otherwise
it can just hang with no explaination... TBD: turn this into
a decorator...

	
instantiate_classifiers(_classifiers)

	Dynamically import and instantiate classes for any
dynamic classifiers specified in the controller
nmeta2 main_policy.yaml
.
Passed a list of tuples of classifier type / classifer name
.
Classifier modules live in the ‘classifiers’ subdirectory
.

	
nmeta2dpae.tc.mac_addr(address)

	Convert a MAC address to a readable/printable string

nmeta2dpae.tc_policy_dpae module

This module is part of nmeta Data Plane Auxiliary Engine (DPAE)
.
It is used to contain the Traffic Classification (TC) policy and provide
methods and direct variables to access it
.
Version 2.x Toulouse Code

	
class nmeta2dpae.tc_policy_dpae.TCPolicy(_config)

	Bases: object

This class is instantiated by nmeta2.py and provides methods
to ingest the policy file main_policy.yaml and validate
that it is correctly structured

	
get_id_flag(if_name, id_key)

	Get a value for an Identity Indicator harvesting flag

	
get_tc_classifiers(if_name)

	Return a list of traffic classifiers
that should be run against ingress packets on a sniff interface.
Each entry is a tuple of type (statistical or payload) and
classifier name, example:
[(‘statistical’, ‘statistical_qos_bandwidth_1’)]

	
ingest_main_policy(main_policy_text, if_name)

	Turn a plain text main policy file object into a YAML object
and store it as a class variable

	
ingest_optimised_rules(opt_rules_text, if_name)

	Turn a plain optimised TC rules file object into a YAML object
and store it as a class variable

	
tc_mode(if_name)

	Return the tc mode for the policy (active or passive)

Module contents

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	nmeta2dpae 0.3.5 documentation

 	Module Documentation

nmeta2dpae.classifiers package

Submodules

nmeta2dpae.classifiers.payload_uri_1 module

This module is part of the nmeta2 suite
.
It defines a custom traffic classifier
.
To create your own custom classifier, copy this example to a new
file in the same directory and update the code as required.
Call it from nmeta by specifying the name of the file (without the
.py) in main_policy.yaml
.
Classifiers are called per packet, so performance is important
.

	
class nmeta2dpae.classifiers.payload_uri_1.Classifier(logger)

	Bases: object

A custom classifier module for import by nmeta2

	
classifier(flow)

	A really basic HTTP URI classifier to demonstrate ability
to differentiate based on a payload characteristic.
.
This method is passed a Flow class object that holds the
current context of the flow
.
It returns a dictionary specifying a key/value of QoS treatment to
take (or not if no classification determination made).
.
Only works on TCP.

nmeta2dpae.classifiers.statistical_qos_bandwidth_1 module

This module is part of the nmeta2 suite
.
It defines a custom traffic classifier
.
To create your own custom classifier, copy this example to a new
file in the same directory and update the code as required.
Call it from nmeta by specifying the name of the file (without the
.py) in main_policy.yaml
.
Classifiers are called per packet, so performance is important
.

	
class nmeta2dpae.classifiers.statistical_qos_bandwidth_1.Classifier(logger)

	Bases: object

A custom classifier module for import by nmeta2

	
classifier(flow)

	A really basic statistical classifier to demonstrate ability
to differentiate ‘bandwidth hog’ flows from ones that are
more interactive so that appropriate classification metadata
can be passed to QoS for differential treatment.
.
This method is passed a Flow class object that holds the
current context of the flow
.
It returns a dictionary specifying a key/value of QoS treatment to
take (or not if no classification determination made).
.
Only works on TCP.

Module contents

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nmeta2dpae 0.3.5 documentation

 Python Module Index

 n

 			

 		
 n	

 	[image: -]
 	
 nmeta2dpae	

 	
 	
 nmeta2dpae.classifiers	

 	
 	
 nmeta2dpae.classifiers.payload_uri_1	

 	
 	
 nmeta2dpae.classifiers.statistical_qos_bandwidth_1	

 	
 	
 nmeta2dpae.config	

 	
 	
 nmeta2dpae.controlchannel	

 	
 	
 nmeta2dpae.dp	

 	
 	
 nmeta2dpae.flow	

 	
 	
 nmeta2dpae.nmeta2dpae	

 	
 	
 nmeta2dpae.sniff	

 	
 	
 nmeta2dpae.tc	

 	
 	
 nmeta2dpae.tc_policy_dpae	

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	nmeta2dpae 0.3.5 documentation

Index

 C
 | D
 | F
 | G
 | I
 | J
 | K
 | M
 | N
 | P
 | R
 | S
 | T
 | V

C

 	

 	Classifier (class in nmeta2dpae.classifiers.payload_uri_1)

 	

 	(class in nmeta2dpae.classifiers.statistical_qos_bandwidth_1)

 	classifier() (nmeta2dpae.classifiers.payload_uri_1.Classifier method)

 	

 	(nmeta2dpae.classifiers.statistical_qos_bandwidth_1.Classifier method)

 	classify_dpkt() (nmeta2dpae.tc.TC method)

 	classify_dpkt_wrapper() (nmeta2dpae.tc.TC method)

 	

 	Config (class in nmeta2dpae.config)

 	ControlChannel (class in nmeta2dpae.controlchannel)

 	cp_run() (nmeta2dpae.nmeta2dpae.DPAE method)

D

 	

 	decode() (nmeta2dpae.controlchannel.JSON_Body method)

 	

 	(nmeta2dpae.dp.JSON_Body method)

 	discover_confirm() (nmeta2dpae.sniff.Sniff method)

 	DP (class in nmeta2dpae.dp)

 	

 	dp_discover() (nmeta2dpae.dp.DP method)

 	dp_run() (nmeta2dpae.dp.DP method)

 	DPAE (class in nmeta2dpae.nmeta2dpae)

F

 	

 	Flow (class in nmeta2dpae.flow)

G

 	

 	get_id_flag() (nmeta2dpae.tc_policy_dpae.TCPolicy method)

 	get_policy() (nmeta2dpae.controlchannel.ControlChannel method)

 	get_promiscuous_mode() (nmeta2dpae.sniff.Sniff method)

 	

 	get_tc_classifiers() (nmeta2dpae.tc_policy_dpae.TCPolicy method)

 	get_value() (nmeta2dpae.config.Config method)

I

 	

 	ifr_flags (nmeta2dpae.sniff.Ifreq attribute)

 	ifr_ifrn (nmeta2dpae.sniff.Ifreq attribute)

 	Ifreq (class in nmeta2dpae.sniff)

 	ingest_main_policy() (nmeta2dpae.tc_policy_dpae.TCPolicy method)

 	

 	ingest_optimised_rules() (nmeta2dpae.tc_policy_dpae.TCPolicy method)

 	ingest_packet() (nmeta2dpae.flow.Flow method)

 	instantiate_classifiers() (nmeta2dpae.tc.TC method)

J

 	

 	JSON_Body (class in nmeta2dpae.controlchannel)

 	

 	(class in nmeta2dpae.dp)

K

 	

 	keepalive() (nmeta2dpae.controlchannel.ControlChannel method)

M

 	

 	mac_addr() (in module nmeta2dpae.sniff)

 	

 	(in module nmeta2dpae.tc)

 	max_interpacket_interval() (nmeta2dpae.flow.Flow method)

 	

 	max_packet_size() (nmeta2dpae.flow.Flow method)

 	min_interpacket_interval() (nmeta2dpae.flow.Flow method)

N

 	

 	nmeta2dpae (module)

 	nmeta2dpae.classifiers (module)

 	nmeta2dpae.classifiers.payload_uri_1 (module)

 	nmeta2dpae.classifiers.statistical_qos_bandwidth_1 (module)

 	nmeta2dpae.config (module)

 	nmeta2dpae.controlchannel (module)

 	

 	nmeta2dpae.dp (module)

 	nmeta2dpae.flow (module)

 	nmeta2dpae.nmeta2dpae (module)

 	nmeta2dpae.sniff (module)

 	nmeta2dpae.tc (module)

 	nmeta2dpae.tc_policy_dpae (module)

P

 	

 	per_interface() (nmeta2dpae.nmeta2dpae.DPAE method)

 	phase1() (nmeta2dpae.controlchannel.ControlChannel method)

 	phase2() (nmeta2dpae.controlchannel.ControlChannel method)

 	

 	phase3() (nmeta2dpae.controlchannel.ControlChannel method)

 	phase4() (nmeta2dpae.controlchannel.ControlChannel method)

R

 	

 	run() (nmeta2dpae.nmeta2dpae.DPAE method)

S

 	

 	set_promiscuous_mode() (nmeta2dpae.sniff.Sniff method)

 	set_suppress_flow() (nmeta2dpae.flow.Flow method)

 	

 	Sniff (class in nmeta2dpae.sniff)

 	sniff_run() (nmeta2dpae.sniff.Sniff method)

T

 	

 	TC (class in nmeta2dpae.tc)

 	tc_advise_controller() (nmeta2dpae.controlchannel.ControlChannel method)

 	tc_mode() (nmeta2dpae.tc_policy_dpae.TCPolicy method)

 	tc_start() (nmeta2dpae.controlchannel.ControlChannel method)

 	tcp_ack() (nmeta2dpae.flow.Flow method)

 	tcp_cwr() (nmeta2dpae.flow.Flow method)

 	tcp_ece() (nmeta2dpae.flow.Flow method)

 	

 	tcp_fin() (nmeta2dpae.flow.Flow method)

 	tcp_psh() (nmeta2dpae.flow.Flow method)

 	tcp_rst() (nmeta2dpae.flow.Flow method)

 	tcp_syn() (nmeta2dpae.flow.Flow method)

 	tcp_urg() (nmeta2dpae.flow.Flow method)

 	TCPolicy (class in nmeta2dpae.tc_policy_dpae)

V

 	

 	validate() (nmeta2dpae.controlchannel.JSON_Body method)

 	

 	(nmeta2dpae.dp.JSON_Body method)

 Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

 _static/minus.png

search.html

 Navigation

 		
 index

 		
 modules |

 		nmeta2dpae 0.3.5 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Matthew John Hayes.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/comment.png

_static/up.png

_static/down.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

