nlpy Documentation
Release 1.0.0

sunyan

Feb 28, 2019

Contents

Embedding

Text classification
Reference

Dataset and Model

Pretrained Vector

CHAPTER 1

Embedding

* CharEmbedding:
* PositionEmbedding:

* WordEmbedding:

nlpy Documentation, Release 1.0.0

2 Chapter 1. Embedding

CHAPTER 2

Text classification

2.1

Available models

All the following models includes Dropout, Pooling and Dense layers with hyperparameters tuned for reasonable
performance across standard text classification tasks. If necessary, they are good basis for further performance tuning.

2.2

text_cnn:
text_rnn:
attention_rnn:
text_rcnn:

text_han:

Examples

Choose a pre-trained word embedding by setting the embedding type and the corresponding embedding
dimensions. Set embedding_type=None to initialize the word embeddings randomly (but make sure to set
trainable_embeddings=True so you actually train the embeddings).

2.2.1 FastText

Several pre-trained FastText embeddings are included. For now, we only have the word embeddings and not the n-gram
features. All embedding have 300 dimensions.

English Vectors: e.g. fasttext.wn.1M.300d, check out all avaiable embeddings
Multilang Vectors: in the format fasttext.cc.LANG_CODE e.g. fasttext.cc.en

Wikipedia Vectors: in the format fasttext .wiki.LANG_CODE e.g. fasttext.wiki.en.en

##Dataset

https://fasttext.cc/docs/en/english-vectors.html
https://github.com/jfilter/text-classification-keras/blob/master/texcla/embeddings.py#L19
https://fasttext.cc/docs/en/crawl-vectors.html
https://fasttext.cc/docs/en/pretrained-vectors.html

nlpy Documentation, Release 1.0.0

2.3 segment

4 Chapter 2. Text classification

CHAPTER 3

Reference

® N A »d

keras-text

keras_contrib

talos

delft

Keras-Project-Template

text-classification-keras

Practical Text Classification With Python and Keras
NLPMetrics

https://github.com/raghakot/keras-text
https://github.com/keras-team/keras-contrib
https://github.com/autonomio/talos
https://github.com/kermitt2/delft
https://github.com/Ahmkel/Keras-Project-Template
https://github.com/jfilter/text-classification-keras
https://realpython.com/python-keras-text-classification/
https://github.com/gcunhase/NLPMetrics

nlpy Documentation, Release 1.0.0

6 Chapter 3. Reference

CHAPTER 4

Dataset and Model

4.1 Reading Comprehension

4.1.1 Dataset

 HistoryQA: Joseon History Question Answering Dataset (SQuAD Style)

e KorQuAD: KorQuAD Machine Reading Comprehension . Wikipedia . Stanford Question Answering
Dataset(SQuAD) v1.0 .

* SQuAD: Stanford Question Answering Dataset is a reading comprehension dataset, consisting of questions
posed by crowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text,
or span, from the corresponding reading passage, or the question might be unanswerable.

4.1.2 Model

* BiDAF: Birectional Attention Flow for Machine Comprehension + No Answer

DrQA: Reading Wikipedia to Answer Open-Domain Questions
* DocQA: Simple and Effective Multi-Paragraph Reading Comprehension + No Answer
* QANet: Combining Local Convolution with Global Self-Attention for Reading Comprehension

e BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

4.2 Semantic Parsing

4.2.1 Dataset

* WikiSQL: A large crowd-sourced dataset for developing natural language interfaces for relational databases.
WikiSQL is the dataset released along with our work Seq2SQL: Generating Structured Queries from Natural

https://oss.navercorp.com/ClovaAI-PJT/HistoryQA
https://korquad.github.io/
https://rajpurkar.github.io/SQuAD-explorer/
https://arxiv.org/abs/1611.01603
https://arxiv.org/abs/1704.00051
https://arxiv.org/abs/1710.10723
https://arxiv.org/abs/1804.09541
https://arxiv.org/abs/1810.04805
https://github.com/salesforce/WikiSQL
http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103

nlpy Documentation, Release 1.0.0

Language using Reinforcement Learning.

4.2.2 Model

* SQLNet: SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning

4.3 Sequence Classification

4.3.1 Dataset

4.3.2 Model

* A Structured Self-attentive Sentence Embedding

* BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

4.4 Token Classification

4.4.1 Dataset

4.4.2 Model

e BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

8 Chapter 4. Dataset and Model

http://arxiv.org/abs/1709.00103
http://arxiv.org/abs/1709.00103
https://arxiv.org/abs/1711.04436
https://arxiv.org/abs/1703.03130
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805

CHAPTER B

Pretrained Vector

e List on DataServer

5.1 English

* Counter Fitting: Counter-fitting Word Vectors to Linguistic Constraints
— counter_fitted_glove.300d.txt

e Cove: Learned in Translation: Contextualized Word Vectors (McCann et. al. 2017)
— wmtlstm-b142a7f2.pth

* fastText: Enriching Word Vectors with Subword Information
— fasttext.wiki.en.300d.txt

* GloVe: GloVe: Global Vectors for Word Representation
— glove.6B.50d.txt

glove.6B.100d.txt

glove.6B.200d.txt

glove.6B.300d.txt

glove.840B.300d.txt

* ELMo: Deep contextualized word representations
— elmo_2x4096_512_2048cnn_2xhighway_weights.hdf5
— elmo_2x4096_512_2048cnn_2xhighway_options
* Word2Vec: Distributed Representations of Words and Phrases and their Compositionality

— GoogleNews-vectors-negative300.txt

http://dev-reasoning-qa-data-ncl.nfra.io:7778/
http://mi.eng.cam.ac.uk/~nm480/naaclhlt2016.pdf
https://github.com/salesforce/cove
https://github.com/facebookresearch/fastText
https://nlp.stanford.edu/projects/glove/
https://github.com/allenai/allennlp/blob/master/allennlp/modules/elmo.py
https://code.google.com/archive/p/word2vec/

	Embedding
	Text classification
	Reference
	Dataset and Model
	Pretrained Vector

