

Welcome to nlp-data-py’s documentation!

Indices and tables

	Quick Start

	Module Index

	Search Page

 Python Module Index

 n

 		 	

 		
 n	

 	[image: -]
 	
 nlp_data_py	

 	
 	
 nlp_data_py.commons	

 	
 	
 nlp_data_py.commons.bookdef	

 	
 	
 nlp_data_py.commons.splitter	

 	
 	
 nlp_data_py.commons.utils	

 	
 	
 nlp_data_py.commons.utils.fileutils	

 	
 	
 nlp_data_py.commons.utils.helpers	

 	
 	
 nlp_data_py.commons.utils.logging	

 	
 	
 nlp_data_py.dataset	

 	
 	
 nlp_data_py.dataset.command_line	

 	
 	
 nlp_data_py.dataset.constants	

 	
 	
 nlp_data_py.dataset.dataset	

 	
 	
 nlp_data_py.dataset.wiki	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | W

B

 	
 	Book (class in nlp_data_py.commons.bookdef)

C

 	
 	create_dataset_from_wiki() (nlp_data_py.dataset.wiki.WikiDataset class method)

D

 	
 	Dataset (class in nlp_data_py.dataset.dataset)

 	DEFAULT_HANDLERS (nlp_data_py.commons.utils.logging.Logging attribute)

 	
 	DEFAULT_LEVEL (nlp_data_py.commons.utils.logging.Logging attribute)

 	DEFAULT_STREAM (nlp_data_py.commons.utils.logging.Logging attribute)

E

 	
 	extend_list() (nlp_data_py.commons.utils.helpers.Helpers static method)

 	
 	extend_shorter_list() (nlp_data_py.commons.utils.helpers.Helpers static method)

 	extend_shorter_lists() (nlp_data_py.commons.utils.helpers.Helpers static method)

F

 	
 	file_exist() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

 	
 	FileUtils (class in nlp_data_py.commons.utils.fileutils)

 	filter_scannable() (nlp_data_py.dataset.dataset.Dataset method)

G

 	
 	generate_datasets() (nlp_data_py.dataset.dataset.Dataset method)

 	
 	generate_random_shuffle() (nlp_data_py.commons.utils.helpers.Helpers static method)

 	get_logger() (nlp_data_py.commons.utils.logging.Logging static method)

H

 	
 	handle_contents() (nlp_data_py.dataset.dataset.Dataset method)

 	(nlp_data_py.dataset.wiki.WikiDataset method)

 	
 	Helpers (class in nlp_data_py.commons.utils.helpers)

L

 	
 	load_scanned_tracker() (nlp_data_py.dataset.dataset.Dataset method)

 	logger (nlp_data_py.commons.splitter.Splitter attribute)

 	(nlp_data_py.commons.utils.fileutils.FileUtils attribute)

 	(nlp_data_py.commons.utils.helpers.Helpers attribute)

 	
 	Logging (class in nlp_data_py.commons.utils.logging)

M

 	
 	match_splitratios_and_datasetnames() (nlp_data_py.commons.splitter.Splitter static method)

 	
 	mkdir() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

N

 	
 	nlp_data_py (module)

 	nlp_data_py.commons (module)

 	nlp_data_py.commons.bookdef (module)

 	nlp_data_py.commons.splitter (module)

 	nlp_data_py.commons.utils (module)

 	nlp_data_py.commons.utils.fileutils (module)

 	nlp_data_py.commons.utils.helpers (module)

 	
 	nlp_data_py.commons.utils.logging (module)

 	nlp_data_py.dataset (module)

 	nlp_data_py.dataset.command_line (module)

 	nlp_data_py.dataset.constants (module)

 	nlp_data_py.dataset.dataset (module)

 	nlp_data_py.dataset.wiki (module)

 	normalize_ratios() (nlp_data_py.commons.utils.helpers.Helpers static method)

 	num_of_pages (nlp_data_py.commons.splitter.Splitter attribute)

P

 	
 	pages_to_datasets() (nlp_data_py.commons.splitter.Splitter method)

R

 	
 	read_file() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

 	
 	read_page() (nlp_data_py.commons.bookdef.Book method)

 	read_pickle() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

S

 	
 	shuffled_pages (nlp_data_py.commons.splitter.Splitter attribute)

 	
 	Splitter (class in nlp_data_py.commons.splitter)

 	str2bool() (in module nlp_data_py.dataset.command_line)

T

 	
 	text (nlp_data_py.commons.bookdef.Book attribute)

W

 	
 	wiki_dataset() (in module nlp_data_py.dataset.command_line)

 	WikiDataset (class in nlp_data_py.dataset.wiki)

 	
 	write_content_tofile() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

 	write_pickle() (nlp_data_py.commons.utils.fileutils.FileUtils static method)

 	write_scanned_tracker() (nlp_data_py.dataset.dataset.Dataset method)

nlp_data_py

	nlp_data_py package
	Subpackages
	nlp_data_py.commons package
	Subpackages

	Submodules

	nlp_data_py.commons.bookdef module

	nlp_data_py.commons.splitter module

	Module contents

	nlp_data_py.dataset package
	Submodules

	nlp_data_py.dataset.command_line module

	nlp_data_py.dataset.constants module

	nlp_data_py.dataset.dataset module

	nlp_data_py.dataset.wiki module

	Module contents

	Module contents

nlp_data_py.commons.utils package

Submodules

nlp_data_py.commons.utils.fileutils module

	
class nlp_data_py.commons.utils.fileutils.FileUtils

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Simple util to quickly read and write files.
Nothing much here

	
static file_exist(path)

	Checks if file exists

	
logger = <Logger FileUtils (WARNING)>

	

	
static mkdir(path)

	Make directory if it dose not already exists

	
static read_file(file)

	Read contents from file.

	Parameters

	file – str: Path of file to read

	Returns

	contents of file as strin

	Raises

	Usual file handling exceptions

	
static read_pickle(path)

	Read Pickled file and return read object

	Parameters

	path – str: Path to Pickle file

	Raises

	Usual file ops and pickle Exceptions

	
static write_content_tofile(content, file, mode='a')

	Write content to file. By default it writes in append mode

	Parameters

	
	content – str: Contents to write to file

	file – str: Path where to write

	mode – str: Mode in which to write. Default
is append mode

	Returns

	Nothing

	Raises

	Usual file handling exceptions

	
static write_pickle(obj, path)

	Write object as pickle file

	Parameters

	
	obj – Any: Object to write

	path – str: Path to write

	Raises

	Usual file and pickle exceptions

nlp_data_py.commons.utils.helpers module

	
class nlp_data_py.commons.utils.helpers.Helpers

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic helper methods.

	
static extend_list(lst: List, ext_with, times)

	Extends given list with elements. This is with
side effects

	Parameters

	
	lst (List) – List to be extended

	ext_with (Any) – Element with which to extend
the list

	times (Int) – ext_with with be added to list
times times

	Returns

	None

Example:

extend_list([1,2,3], 0, 5) will produce [1, 2, 3, 0, 0, 0, 0, 0]

	
static extend_shorter_list(list1: List, list2: List, ext_with)

	Compares 2 lists and extends the shorter with to
longer ones length. Shorter list is extended by the
element provided in ext_with parameter

	Parameters

	
	list1 (List) – First list

	list2 (List) – Second list

	ext_with (Any) – Element with which to extend
the list

	Returns

	None

Example:

extend_shorter_list([1,2,3], [1, 2], 0) will
produce keep first the same but changes 2nd one to [1, 2, 0]

	
static extend_shorter_lists(lists: [typing.List[typing.List]], ext_with)

	Compares lists of lists and extends shorter lists with
ext_with to match the length of largest list.

	Parameters

	
	lists (List[List]) – List of lists

	ext_with (Any) – Element with which to extend the list

	Returns

	None

Example:

list1 = [1, 3, 4, 5, 8]
list2 = [1, 3]
list3 = [5]
list4 = [3, 4, 2, 2, 2]
Helpers.extend_shorter_lists([list1, list2, list3, list4], 9)
assert list1 == [1, 3, 4, 5, 8]
assert list2 == [1, 3, 9, 9, 9]
assert list3 == [5, 9, 9, 9, 9]
assert list4 == [3, 4, 2, 2, 2]

	
static generate_random_shuffle(length: int)

	Randomly shuffles the range from 0 to given length

	Parameters

	length – Length for range

	Returns

	Shuffled list of length = length

Example:

generate_random_shuffle(10) may produce
shuffled list rangning from 0 and 9

	
logger = <Logger Helpers (WARNING)>

	

	
static normalize_ratios(ratio_list: List)

	Softmax of list.

	Parameters

	ratio_list – List of numbers

	Returns

	Softmaxed list

Example:

normalize_ratios([8, 2, 2]) will produce
[0.8, 0.2, 0.2]

nlp_data_py.commons.utils.logging module

	
class nlp_data_py.commons.utils.logging.Logging

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Generic Logging with logging module.
This class has a property: DEFAULT_LEVEL.
which is a Log Level variable. Global level will be used
when no specific log levels are specified with get_logger.
Default global level is DEBUG. This can be overridden

	
DEFAULT_HANDLERS = [<class 'logging.StreamHandler'>]

	

	
DEFAULT_LEVEL = 30

	

	
DEFAULT_STREAM = <_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>

	

	
static get_logger(name: str, level=None, propagate=False, handlers=[<class 'logging.StreamHandler'>], args=[[<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>]])

	Returns a logger of the name provided.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the logger to be created.

	level (int [https://docs.python.org/3/library/functions.html#int]) – Level at which logs should be
written. (same as logging.Levels) default
value is None. If None, Logging.global_level
be used

	propagate (Boolean) – Propagate logs to parent.
Default value is False

	handlers (List of functions) – Function that
returns a logging handler. These
functions will be called with logger.addHandler.
default value is [logging.StreamHandler].

	args (List[List]) – List of parameters for the handlers.
It should match with the number of handlers.
If the function takes no parameters leave an empty
list. default value: empty list of empty list.
default value is args=[[DEFAULT_STREAM]]

Returns: logger

Module contents

nlp_data_py.commons package

Subpackages

	nlp_data_py.commons.utils package
	Submodules

	nlp_data_py.commons.utils.fileutils module

	nlp_data_py.commons.utils.helpers module

	nlp_data_py.commons.utils.logging module

	Module contents

Submodules

nlp_data_py.commons.bookdef module

	
class nlp_data_py.commons.bookdef.Book(chunk_splitter='(?<=[.!?]) +', chunks_per_page=5)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

For managing data spliting, contents are added to Book class. This
will manage things like spliting the contents, based on delimiter,
chunking contents into pages. These pages can then be used to create
train, test and val sets.

	Parameters

	
	chunk_splitter – regular expression. Pattern on which to split the text

	chunks_per_page – int: Number of chunks that make up a page

Example:

book_def: Book = Book(chunk_splitter='(?<=[.!?]) +', chunks_per_page=2)
book_def.text = "This is. A Simple. Book! That makes. No Sense?"

println(book_def.num_of_chunks)
>>> 5
println(book_def.num_of_pages)
>>> 3

	
read_page(page_number)

	Reads the content of the page.

	Parameters

	page_number – int: Number of the page to be read

	Returns

	Contents of the asked page

	
text

	This is content of entire book and has to be set before reading pages.
Once this property is set, below properties will be availableself.

chucks: Array[str]: Actual chunks after splitting text on reg_ex

num_of_chunks: Number of chunks in the book

num_of_pages: pages in the book. num_of_chunks/chunks_per_page

nlp_data_py.commons.splitter module

	
class nlp_data_py.commons.splitter.Splitter(split_ratios: List[float] = [0.8, 0.1, 0.1], dataset_names: List[str] = ['train', 'val', 'test'], shuffle=True)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Splits pages in a book to datasets. This class will simple determine
what page numbers make each datasets.

	Parameters

	
	num_of_pages – Book.

	split_ratios – ratio to split the book. Default
ratio is 90% train, 5% val and 5% test

	dataset_names – dataset names to be split to

	shuffle – shuffle pages

	Properties:

	ds_to_pages: Contains the dict of datasets and page number in
each of the datasets.

Example:

splitter: Splitter = Splitter(split_ratios=[0.8, 0.1, 0.1], dataset_names=['train', 'val', 'test'], shuffle=True)
splitter.num_of_pages = 10

print(splitter.shuffled_pages)
>>> [4, 3, 1, 0, 8, 6, 9, 7, 2, 5]
print(splitter.ds_to_page)
>>> {
 'train': [4, 3, 1, 0, 8, 6, 9, 7]
 'val': [2]
 'test': [5]
 }

	
logger = <Logger SplitBook (WARNING)>

	

	
static match_splitratios_and_datasetnames(split_ratios=[], dataset_names=[])

	If parameters passed to split and datasets are not even, this expands
the shorter one. If the dataset_name is shorter, it creates default
dataset name as ‘set_{position of missing item}. If ratio is shorter
its set to 0 and no pages for it are created

	Parameters

	
	split_ratios – list of ratios for pages

	dataset_names – list of names for the datasets

	Returns

	Normalized ratio and datasetnames

	
num_of_pages

	Number of pages for splitting. Once num_of_pages is set ds_to_page dict will be availabe.

ds_to_pages: Contains the dict of datasets and page number in each of the datasets.

	
pages_to_datasets()

	creates a dict of dataset names and page numbers.

Example:

This returns somethings like
{
 "train": [0, 1, 4, 8, 9, 3, 6]
 "val" : [2, 5]
 "test": [7]
}
In the above example, train set will contain pages in its list
and so on for val and test

	
shuffled_pages

	List of shuffled page number if shuffle is true, else just ordered page numbers.

Module contents

nlp_data_py.dataset package

Submodules

nlp_data_py.dataset.command_line module

	
nlp_data_py.dataset.command_line.str2bool(v)

	

	
nlp_data_py.dataset.command_line.wiki_dataset()

	

nlp_data_py.dataset.constants module

nlp_data_py.dataset.dataset module

	
class nlp_data_py.dataset.dataset.Dataset(name, scanned_pickle, match, save_dataset_path, book_def: nlp_data_py.commons.bookdef.Book, splitter: nlp_data_py.commons.splitter.Splitter)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Abstract class to create datasets like train, test and val

	Parameters

	
	scanned_pickle – Path to pickle file tracking items that are read.
This enables to incrementally read items. Pickle file
stores a dict. Example:
{

”item1”: 1,
“item2”: 0,
“item3”: -1

}
In the above example, item1 was read previously hence, wont
be read again. item2 was not read and will be consider in
future reads. item3 errored out in previous reads and will
be attempted to read again

	match – regular expression as string. Only items matching
regular expression will be read for creating datasets

	save_dataset_path – Path to folder where the datasets will
be saved.

	book_def – Book. This object defines a book. Default is
5 sentences per page. Each sentence is by default defined
as string ending in . ! or ?

	splitter – Splitter: Defines how to split datasets.
Default is to create train, val and test sets in the
ratio of 80%, 10% & 10% respectively. Also, by default
shuffle is set to true. With shuffle set to true, pages,
as defined by book_def will be shuffled before creating
datasets

Once the datasets are created, the items that are covered is
tracked as self.scanned. This is written to a pickle file. This
helps in continuing to update dataset at a latter point in time

	
filter_scannable(items)

	filters items that meet the criteria for creating this dataset.
For the item to meet the criteia, it should match the regular exp
specified. And it should be an unread item as tracked by self.scanned

	Parameters

	items – List of items to be considered for scanning.

	Returns

	items that meet the criteria.

	
generate_datasets(text)

	Main method for creating datasets. This method takes care of:
- splitting text as defined by book and splitter.
- writting the contents into datasets such as train, test and val

	
handle_contents(seed)

	Abstract method that handles contents of items. This mainly
includes creating datasets

	
load_scanned_tracker()

	checks if scanned_pickle file is provided. If so, its read
and contents are returned. Otherwise and empty dict is returned

	Returns

	dict of scanned items or empty dict.

	
write_scanned_tracker()

	write self.scanned which is tracking items for this run
into a pickle file

nlp_data_py.dataset.wiki module

	
class nlp_data_py.dataset.wiki.WikiDataset(book_def, splitter, seeds=[], match='', recursive=True, limit=20, scanned_pickle='./vars/scanned.pkl', save_dataset_path='./vars/')

	Bases: nlp_data_py.dataset.dataset.Dataset

Create datasets such as train, test and val from wikipedia. This is an
implemention of Dataset class

	Parameters

	
	book_def – Book. This object defines a book. Default is
5 sentences per page. Each sentence is by default defined
as string ending in . ! or ?

	splitter – Splitter: Defines how to split datasets.
Default is to create train, val and test sets in the
ratio of 80%, 10% & 10% respectively. Also, by default
shuffle is set to true. With shuffle set to true, pages,
as defined by book_def will be shuffled before creating
datasets

	seeds – List of dataset pages. If seeds are specified and recursive
is false, only items in seeds will be read.
If seeds are specified and recursive is True, seeds will be
read first and then additional pages upto limit will be read

	match – regular expression as string. Only items matching
regular expression will be read for creating datasets

	recursive – Boolean: Default True. This flag indicates if
additional should be read or tracked.
i.e. Links in the wikipages will be tracked extracted and
tracked in scanned variable which will then be written to
pickle file

	limit – int: default 20. Number of additional pages to be
read in addition to seeds. These pages are read from
self.scanned variable

	scanned_pickle – Path to pickle file tracking items that are
read. This enables to incrementally read items. Pickle file
stores a dict. Example:
{

”item1”: 1,
“item2”: 0,
“item3”: -1

}
In the above example, item1 was read previously hence, wont
be read again. item2 was not read and will be consider in
future reads. item3 errored out in previous reads and will
be attempted to read again

	save_dataset_path – Path to folder where the datasets will
be saved.

	
classmethod create_dataset_from_wiki(seeds=[], match='', recursive=True, limit=20, scanned_pickle='./vars/scanned.pkl', save_dataset_path='./vars/', book_def: nlp_data_py.commons.bookdef.Book = <nlp_data_py.commons.bookdef.Book object>, splitter: nlp_data_py.commons.splitter.Splitter = <nlp_data_py.commons.splitter.Splitter object>)

	class method to read from wikipedia anc create datasets

	Parameters

	
	seeds – List of dataset pages. If seeds are specified and recursive
is false, only items in seeds will be read.
If seeds are specified and recursive is True, seeds will be
read first and then additional pages upto limit will be read

	match – regular expression as string. Only items matching
regular expression will be read for creating datasets

	recursive – Boolean: Default True. This flag indicates if
additional should be read or tracked.
i.e. Links in the wikipages will be tracked extracted and
tracked in scanned variable which will then be written to
pickle file

	limit – int: default 20. Number of additional pages to be
read in addition to seeds. These pages are read from
self.scanned variable

	scanned_pickle – Path to pickle file tracking items that are
read. This enables to incrementally read items. Pickle file
stores a dict. Example:
{

”item1”: 1,
“item2”: 0,
“item3”: -1

}
In the above example, item1 was read previously hence, wont
be read again. item2 was not read and will be consider in
future reads. item3 errored out in previous reads and will
be attempted to read again

	save_dataset_path – Path to folder where the datasets will
be saved.

	book_def – Book. This object defines a book. Default is
5 sentences per page. Each sentence is by default defined
as string ending in . ! or ?

	splitter – Splitter: Defines how to split datasets.
Default is to create train, val and test sets in the
ratio of 80%, 10% & 10% respectively. Also, by default
shuffle is set to true. With shuffle set to true, pages,
as defined by book_def will be shuffled before creating
datasets

Example

create_dataset_from_wiki([‘Brain’, ‘Medulla_oblongata’])

	In the above example,

	
	Brain will be read from wikipedia

	contents will be broken to pages as defined by default book

	pages will be shuffled

	pages will be split as defined by default splitter

	links will be extracted from the page

	links matching patter in match (in this case all links)
will be added to self.scanned if they are not already there

	Brain will be set to 1 in self.scanned to indicate that this
page is already read

	same steps are repeated with ‘Medulla_oblongata’

	since recursive is set to true, and limit is 20, next
20 unread items from self.scanned will be read and their
links will be tracked in self.scanned

	finally self.scanned is written to a pickle file

	if the same code is run again, pickle file will be read
and since Brain and Medulla oblangata are already read,
they will be skipped and next 20 items from self.scanned
are read

	
handle_contents(seed)

	This method is responsible for reading contents from wikipedia,
extracting links from page, adds links to self.

Module contents

nlp_data_py package

Subpackages

	nlp_data_py.commons package
	Subpackages
	nlp_data_py.commons.utils package
	Submodules

	nlp_data_py.commons.utils.fileutils module

	nlp_data_py.commons.utils.helpers module

	nlp_data_py.commons.utils.logging module

	Module contents

	Submodules

	nlp_data_py.commons.bookdef module

	nlp_data_py.commons.splitter module

	Module contents

	nlp_data_py.dataset package
	Submodules

	nlp_data_py.dataset.command_line module

	nlp_data_py.dataset.constants module

	nlp_data_py.dataset.dataset module

	nlp_data_py.dataset.wiki module

	Module contents

Module contents

Quick Start

Create Train, Test and Validation Datasets from wikipedia.

Create Train, Test and Validation Datasets for NLP from wikipedia. Datasets are created
using provided seed WikiPages and also by traversing links within pages that meet the
specified match pattern. Idea is to leverage links within wiki pages to create more data.
The thought is, wikipedia will already contain links to additional pages that are
relevant and links within pages can be narrowed through pattern matching.

Installation

pip install nlp-data-py

Usage

	Command line

	Programatic

Command line

QuickStart Example

wiki_dataset --seed Brain Human_Brain --match .*neuro|.*neural

In short the above command:

	Read Wiki: Reads Brain and Human_Brain pages from wikipedia

	Shuffle: Shuffles data based on some default criteria
(see, chunk_splitter &
chunks_per_page for defaults)

	Create Datasets: Creates train, validation and test datasets in ./vars/ folder.
By default, split ratio is 80%, 10% and 10% for train, val and test datasets

	Extract Links: Extracts any link that match the pattern mentioned
in –match option. In this example, links containing
‘neuro’ or ‘neural’ are tracked

	Read More: Additional 20 pages from the above “Extract Links” are read
and appended to datasets and the links in those pages that match pattern
are also tracked.

	Track Read: Pages that are read are tracked and written to a pickle
file at ./vars/scanned.pkl. This will be useful when the same command
is run again. i.e. if the above command is re-run, Brain & Human_brain
& 20 pages from “Read More” will not be read again. Instead, the next
20 pages due to “Extract Links” will be read and appended to datasets
in ./vars/

Command Line Options

	–seed or -s

	–match or -m

	–recursive or -r

	–limit or -l

	–pickle or -p

	–output or -o

	–chunk_splitter or -cs

	–chunks_per_page or -cp

	–split_ratio or -sr

	–datasets or -ds

	–shuffle or -sf

–seed or -s:

Description: List of initial Wiki Page names to start with.

Default: None. If nothing is specified, items in pickle
file will be read. If pickle file also dose not exists, nothing will be done and
the code exits.

Example:

wiki_dataset --seed Brain Human_Brain

–match or -m:

Description: This option serves 2 purpose. One to track links in WikiPages
and another to read additional pages either from links or saved pickle
file. Links that match the pattern will be considered to be added to datasets.
Also see limit

Default: “”. All links from a wikipage will be considered and tracked.

Example: In the below example, any links that match neuro or neural will be tracked
and/or read to create datasets.

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural"

–recursive or -r:

Description: If this option is true, then additional pages will be read
either based on links or previously scanned pickle file. This option will
be used in conjunction with limit to determine number of additional
pages to read.
Also see limit

Default: true

Example: In the below example, only Brain and Human_Brain wiki pages will be read.
However, links that match the match patter from these pages will be tracked
and stored in a pickle file which may be used later on.

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -r false

–limit or -l:

Description: Wikipedia may contain too many links especially when looking
at pages recursively. This option limits the number of additional pages to be read.
This option will only be relevant if recursive is set to true.

Default 20

Example: In the below example, along with reading Brain & Human_Brain
and tracking links that match the match pattern, 100 additional pages
are read either based on links or pickle file.

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -l 100

–pickle or -p:

Description: Path to pickle file tracking items that are read. This enables to
incrementally read items. Pickle file stores a dict. Example:

{
 "item1": 1,
 "item2": 0,
 "item3": -1
}

In the above example, item1 was read previously hence, wont be read again. item2 was
not read and will be consider in future reads. item3 errored out in previous reads
and will not be attempted again

Default: ./vars/scanned.pkl

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -p scanned.pkl

In the above example:

	Brain & Human_Brain and 20 pages matching pattern are read and stored as read
in the pickle file. Any additional links that were not read due to reaching
the limit will be stored as unread in the pickle file

	If the above command is re-run, all the read pages including seed will not
be read again. Instead, additional unread pages from pickle file will
be read and pickle file will be updated to track read pages and any additional
links that were encountered in the newly traversed pages

–output or -o:

Description: Path for datasets.

Default: ./vars/datasets/

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -o ./datasets/

In the above example, train, val and test datasets will be created in datasets/
folder. Future re-runs will append to these files

–chunk_splitter or -cs:

Description: This option, along with chunks_per_page
defines a page. This comes in handy when creating datasets, especially, if the
data needs to be shuffled.

Default: ‘(?<=[.!?]) +’

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -cs '(?<=[.!?]) +'

In the above example, text from wiki pages are split into sentences (chunks) based on ., ! or ?
Note: On windows, use double quotes like -cs “(?<=[.!?]) +”

–chunks_per_page or -cp:

Description: This defines pages. i.e. this defines number of chunks for a page.
This comes in handy when data needs to be shuffled for creating test, train and val datasets.

Default: 5

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -cs '(?<=[.!?]) +' -cp 10

In the above example, wiki page is split into chunks based on ., ? or !. And 10 contiguous
chunks form a page. For example, if wiki page has 100 sentences, in the above example,
groups of 10s are considered to form a page. So, this wiki page contain 10 pages.

–split_ratio or -sr:

Description: Ratio to split the train, val and test datasets. Split happens based on
number of pages.

Default: 80%, 10% and 10% for train, val and test

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -cs '(?<=[.!?]) +' -cp 10 -sr .8 0.1 0.1

If a wiki page has 10 pages (as defined by chuck_splitter and
chunks_per_page), then in the above example, train will contain
8, val and test will contain 1 each. Note that the actual page in each of these datasets depend
on if shuffle is on. If shuffle is on, pages are shuffled and any 8 page
can make train dataset and any of the remaining 2 pages can be val and test. If shuffle is
off, then first 8 pages will be train, next 1 is val and final page is test

–datasets or -ds:

Description: Names the datasets

Default: train, val and test

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -sr 80 20 -ds set1 set2

In the above example, 2 datasets: set1 & set2 will be created

–shuffle or -sf:

Description: Shuffle pages (see chuck_splitter and
chunks_per_page for pages) before creating datasets

Default: True

Example:

wiki_dataset --seed Brain Human_Brain -m ".*neuro|.*neural" -sf false

Since shuffle is false in the above example, pages in wiki page will be taken in order. i.e.
since default ratio is 80%, 10% and 10%, first 80% of this wiki page will be in train, next 10%
in val and final 10% in test.

Actual pages in each of the datasets depend on if shuffle is on.
If shuffle is on, pages are shuffled and any 80% page can make train dataset
and any of the remaining 20% pages can be val and test.
If shuffle is off, then first 80% will be train, next 10% val and final 10% is test

Programmatic Usage

Below is a simple example:

from nlp_data_py import WikiDataset

WikiDataset.create_dataset_from_wiki(seeds=['Brain', 'Human_brain'], match=".*neuro")

In the above example,

	Brain will be read from wikipedia

	contents will be broken to pages as defined by default book. (chuck_splitter and
chunks_per_page)

	pages will be shuffled

	pages will be split as defined by default splitter
(split_ratio, datasets, shuffle)

	links will be extracted from the page

	links matching patter in match (in this case links containing ‘neuro’)
will be added to self.scanned if they are not already there

	Brain will be set to 1 in self.scanned to indicate that this
page is already read

	same steps are repeated with ‘Medulla_oblongata’

	since recursive is set to true, and limit is 20, next
20 unread items from self.scanned will be read and their
links will be tracked in self.scanned

	finally self.scanned is written to a pickle file

	if the same code is run again, pickle file will be read
and since Brain and Medulla oblangata are already read,
they will be skipped and next 20 items from self.scanned
are read

Below is an example where default options are overridden:

from nlp_data_py import WikiDataset
from nlp_data_py import Book, Splitter

scanned_pickle = "./scanned.pkl"
save_dataset_path = "./datasets/"

book_def: Book = Book(chunk_splitter='(?<=[.!?]) +', chunks_per_page=2)
splitter: Splitter = Splitter(split_ratios=[0.5, 0.25, 0.25], dataset_names=['train', 'val', 'test'], shuffle=False)

wiki = WikiDataset.create_dataset_from_wiki(seeds=['Brain', 'Human_brain'],
 match=".*neuro",
 recursive=True, limit=2,
 scanned_pickle=scanned_pickle,
 save_dataset_path=save_dataset_path,
 book_def=book_def,
 splitter=splitter)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to nlp-data-py’s documentation!

_static/up-pressed.png

_static/up.png

