
nitpicker Documentation
Release 0.3.0

Kenneth Reitz

Sep 15, 2018

Contents

1 About Nitpicker 3

2 Test Storing 5

3 Nitpicker’s Workflow 7

4 Continuous Integration 11

5 Indices and tables 13

i

ii

nitpicker Documentation, Release 0.3.0

Contents:

Contents 1

nitpicker Documentation, Release 0.3.0

2 Contents

CHAPTER 1

About Nitpicker

1.1 Nitpicker

Nitpicker is a CLI tool for QA written in Python

1.1.1 Motivation

The project has been started to fix some problems that many developers and testers might be familiar to:

1. QA tests are not under version control with the code. Why not? As developers, we would like to do some review of
tests like code review. As a manger I would be calm knowing that all QA plans and cases are stored with the code on
Git repository always available.

2. QA tests stay apart from the develop cycle. I can ban a merge request if it breaks my unit or integration tests because
I see it at once by using CI tools. I believe it is possible for manual tests too. I want my CI tool to check if a tester do
all the needed tests.

3. A QA tool should be interactive. When you see a whole test case with all the steps it is hard not to jump between
them trying to do test as fast as possible. When a tester is in a dialogue with a tool and goes step-by-step, they can test
more carefully. Especially, if the tool keep time tracking automatically.

1.1.2 How does it work?

All your tests and run reports are stored in YAML format with the code which they test.

project
|-src/
|-docs/
|-qa/

|-feature_1/
|-feature_2/
|-plan_1/

(continues on next page)

3

https://travis-ci.org/flipback/nitpicker

nitpicker Documentation, Release 0.3.0

(continued from previous page)

|-test_case1.yml
|-test_case2.yml
|-test_case3.yml
|-runs/

|-20180820_232000_run.report
|-20180820_232010_run.report

Nitpicker provides command to create a test case:

python -m nitpicker add test_case -p feature_1.plan_1

Then you should write the case by using your favourite text editor. It is a not bad idea to commit and push it, so your
teammate can review the case before you run the plan which the case belongs to.

Now you can run the test plan:

python -m nitpicker run feature_1.plan_1

The program runs all the cases in the interactive mode leading the tester step by step. The results of the run will be
written in directory runs in YAML format.

After all the test cases have been run you can push the reports into the git repo, so your CI server can check if all the
test runs are passed

python -m nitpicker check --all-runs-passed

The project uses itself for testing. You can find qa directory in the repo. Also you can run some plans for demonstra-
tion.

1.1.3 Installation

pip install nitpicker

or

python -m install nitpicker

Currently Nitpicker supports Python 3.3 and newer

1.1.4 Documentation

See the last documentation here.

4 Chapter 1. About Nitpicker

https://nitpicker.readthedocs.io/en/latest/

CHAPTER 2

Test Storing

Nitpicker provides storing test cases as files in YAML format:

project
|-qa/

|-feature_1/
|-feature_2/
|-plan_1/

|-test_case1.yml
|-test_case2.yml
|-test_case3.yml
|-runs/

|-20180820_232000_run.report
|-20180820_232010_run.report

Directory qa is the root directory of all the QA tests (QA directory). It contains all tests plans and its test cases and test
run reports as well. Test plans are represented by directories which include other test plans directory and test cases.
So we have some hierarchy of the test plans.

Each plan contains all its run reports in directory runs.

Currently Nitpicker uses the name convention:

• A test case must have extension .yml

• A test run must end with _run and have extension .report

2.1 Test Case Format

A test case file is written in YAML format and has these following structure:

created: 2018-09-15 04:54:39
author: Aleksey Timin
email: atimin@gmail.com

(continues on next page)

5

nitpicker Documentation, Release 0.3.0

(continued from previous page)

description: Checking if all the last runs are passed is success
tags: commands, fuzzy
setup:

- Run command 'python -m nitpicker -d test_qa add test_test_case -p commands'
- Save the case without changes and close the editor
- Run command 'python -m nitpicker -d test_qa run commands' and passed all steps

steps:
- Run command 'python -m nitpicker -d test_qa check --all-runs-passed'
=> It should be success

teardown:
- Delete test_qa directory

All test case files should have the following mapping:

• created - The time when the test case was created in format %Y-%m-%d %H:%M:%S

• author - The author’s name

• email - The author’s email

• description - The short description of the case that should be displayed in all reports

• tags - The tags separated by comma (not implemented yet)

• setup - The actions that should be done before the test starts

• steps - The steps that contains the tester’s actions and the expectations separated by symbol ‘=>’

• teardown - The actions that should be done after the test has been run

2.2 Test Run Format

A test run report file is generated by Nitpicker’s command run in YAML format and has the following structure:

cases:
add_new_case.yml:
comment: ''
description: Add a new case
failed_action: 'Run command ''python -m nitpicker -r test_qa add test_test_case
-p commands'' '

failed_reaction: ' The new case should be opened in the editor'
failed_step: 1
finished: '2018-09-15 05:10:52'
started: '2018-09-15 05:08:52'
status: failed

add_new_case_in_force.yml:
description: Add a new case in force mode
finished: '2018-09-15 05:10:56'
started: '2018-09-15 05:10:53'
status: passed

email: atimin@gmail.com
finished: '2018-09-15 05:10:56'
started: '2018-09-15 05:08:52'
tester: Aleksey Timin

6 Chapter 2. Test Storing

CHAPTER 3

Nitpicker’s Workflow

Nitpicker is created to testers and developer have common workflow and it’s supposed that the QA tests are stored
with the source code in CVS repository and new features are developed in the separated branches:

new_feature master
| |

* *
| |

* |
| |
+---------*

3.1 Step 1. Add new test cases

The tester starts their a new branch from new_feature for the new test cases and add a new case in plan test_new_feature

git checkout -b qa_new_feature
python -m nitpicker add some_new_case -p test_new_feature

The new case is opened in a text editor and the tester fills in it with some steps (see Test Storing). Then the new case
can be committed and pushed to the repository

git add qa/test_new_feature/some_new_case.yml
git commit -m "Add some_new_case.yml"
git push origin qa_new_feature

If your team practices the code review (I hope it does), then the developer can have a look at the cases:

qa_new_feature
|

* - ("Add some_new_case.yml")
|

(continues on next page)

7

nitpicker Documentation, Release 0.3.0

(continued from previous page)

| new_feature
| |
| * master
| | |
------* *

| |

* |
| |
+---------*

A test plan can contain test cases as many as you wants. And the tester can repeat command python -m nitpicker add
for each test case or copy and rename the file of the first one.

3.2 Step 2. Run new test cases

In order to run all the created test cases in the test plan the tester must run command:

python -m nitpicker run test_new_feature

Nitpicker runs each test case in the interactive mode and the tester should answer if each step of the test
case is passed or failed. After all the cases have been run, Nitpicker creates a new run report in directory
qa/test_new_feature/runs/20180820_232000_run.report. (Note: The new report’s name contains the time when the
run was finished)

Then the tester commits the run report and push to the repository:

git add qa/test_new_feature/runs/20180820_232000_run.report
git commit -m "Run test plane 'test_new_feature'"
git push origin qa_new_feature

Wait a minute.. Why do we need to commit autogenerated data!? Because we have a CI server and Nitpicker provides
some features for it too (see Continuous Integration).

3.3 Step 3. Merging

After step 2 the repository has the following graph:

qa_new_feature
|

* - ("Run test plane 'test_new_feature'")
|

* - ("Add some_new_case.yml")
|
| new_feature
| |
| * master
| | |
------* *

| |

* |
| |
+---------*

8 Chapter 3. Nitpicker’s Workflow

nitpicker Documentation, Release 0.3.0

If all the tests are passed and the CI pipeline has no errors the maintainer can merge the branches in two steps:

git fetch origin

Merge the QA branch
git checkout new_feature
git merge origin/qa_new_feature

Merge the feature branch
git checkout master
git merge qa_new_feature

git push origin master

3.3. Step 3. Merging 9

nitpicker Documentation, Release 0.3.0

10 Chapter 3. Nitpicker’s Workflow

CHAPTER 4

Continuous Integration

Nitpicker has a special command to run on the side of the CI server:

python -m nitpicker check --all-runs-passed --has-new-runs

Flag –all-runs-passed provides a check if all the last run reports of the project have only passed tests. If the check
failed the program exists with error 1.

Flag –has-new-runs provides a check if the current branch has some new runs comparing the main branch (master by
default). If the check failed the program exists with error 1.

11

nitpicker Documentation, Release 0.3.0

12 Chapter 4. Continuous Integration

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

13

	About Nitpicker
	Test Storing
	Nitpicker’s Workflow
	Continuous Integration
	Indices and tables

