

 Navigation

 	
 index

 	
 next |

 	NimCfitsio 0.1 documentation

Welcome to NimCfitsio’s documentation!

A set of Nim bindings to the CFITSIO [http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html] library.

	Introduction

	Installation

	Basic access to FITS files
	Opening FITS files for read/write

	Creating files

	Closing files

	Other file-related functions

	HDU functions
	Moving through the HDUs

	Table functions
	Creating tables

	Reading columns

	Writing columns

	Image functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NimCfitsio 0.1 documentation

Introduction

This manual describes NimCfitsio, a set of bindings to the CFITSIO [http://heasarc.gsfc.nasa.gov/fitsio/fitsio.html] library for the
Nim language.

The purpose of NimCfitsio is to allow the creation/reading/writing of
FITS files (either containing images or tables) from Nim programs. The
interface matches the underlying C library quite close, but in a
number of cases the syntax is nicer, thanks to Nim’s richer and more
expressive syntax.

So far the library provides an extensive, albeit not complete,
coverage of the functions to read/write keywords and ASCII/binary
tables. More extensive support for reading/writing images (i.e., 2D
matrices of numbers) is yet to come.

The specification of the FITS file format is provided in the article
Definition of the Flexible Image Transport System (FITS), version
3.0 [http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201015362&Itemid=129]
(Astronomy & Astrophysics, 524, A42, 2010).

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NimCfitsio 0.1 documentation

Installation

[I plan to add support for Nimble very soon. At the moment, you’re on
your own, sorry...]

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NimCfitsio 0.1 documentation

Basic access to FITS files

In this section we describe the functions used to access FITS files
and get general information about their content.

All the code from now on can be used only if the NimCfitsio module is
imported with the following command:

import cfitsio

Virtually every function in NimCfitsio requires as its first argument
a variable of type FitsFile.

	
objectFitsFile

	This object contains the following fields:

	Name
	Type
	Meaning

	file
	InternalFitsStruct (private)
	Used internally by CFITSIO

	fileName
	string
	Name of the file

In case of error, all the NimCfitsio functions raise an exception of
type EFitsException:

	
objectEFitsException

	The fields of this object are the following:

	Field name
	Type
	Meaning

	code
	int
	CFITSIO error code identifier

	message
	string
	Descriptive error message

	errorStack
	seq[string]
	List of all the CFITSIO error messages raised

Opening FITS files for read/write

The CFITSIO library provides several functions to open a file for
reading/writing, and NimCfitsio provides a wrapper to each of them.
Here is a general overview of their purpose:

	Function
	Purpose

	openFile()
	Open a generic file. Access through FTP and HTTP is allowed

	openData()
	Open a file and move to the first HDU containing some data

	openTable()
	Like openData, but the HDU must contain a table

	openImage()
	Like openData, but the HDU must contain an image

All the prototypes of these functions accept the same parameters and
return the same result. Here is a short example that shows how to use
them:

import cfitsio

var f = cfitsio.openFile("test.fits", ReadOnly)
try:
 # Read data from "f"
finally:
 cfitsio.closeFile(f)

If the underlying CFITSIO function fails when opening the file (e.g,
because the file does not exist), a EFitsException will
be raised.

	
enumIoMode= ReadOnly, ReadWrite

	This enumeration is used by all the procedures that open an existing
FITS file.

	
procopenFile(fileName : string, ioMode : IoMode) FitsFile

	Open the FITS file whose path is fileName. If ioMode is
ReadOnly, the file is opened in read-only mode and any
modification is forbidden; if ioMode is ReadWrite, then write
operations are allowed as well as read operations.

If the file cannot be opened, a EFitsException is raised.

If the underlying CFITSIO library supports them, protocols like
ftp:// or http:// can be used for fileName. Compressed
files (e.g. .gz) may be supported as well.

You must call closeFile() once the file is no longer
needed, in order to close the file and flush any pending write
operation.

	
procopenData(fileName : string, ioMode : IoMode) FitsFile

	This function can be used instead of openData() when the
user wants to move to the first HDU containing either an image or a
table. Its usage is the same as openFile().

	
procopenTable(fileName : string, ioMode : IoMode) FitsFile

	This function is equivalent to openData(), but it moves to
the first HDU containing either a binary or ASCII table.

If the file cannot be opened, or it does not contain any table, a
EFitsException is raised.

	
procopenImage(fileName : string, ioMode : IoMode) FitsFile

	This function is equivalent to openData(), but it moves to
the first HDU containing an image.

If the file cannot be opened, or it does not contain any image, a
EFitsException is raised.

Creating files

	
enumOverwriteMode= Overwrite, DoNotOverwrite

	

	
proccreateFile(fileName : string, overwriteMode : OverwriteMode = Overwrite) FitsFile

	Create a new file at the path specified by fileName. If a file
already exists, the behavior of the function is specified by the
overwriteMode parameter: if it is equal to DoNotOverwrite, a
EFitsException exception is raised, otherwise the file
is silently overwritten.

The return value is a FitsFile object that should be
closed using either closeFile() or deleteFile().

Here is an example about how to use this procedure:

import cfitsio

var f = cfitsio.createFile("test.fits")
try:
 # Write data into "f"
finally:
 cfitsio.closeFile(f)

	
proccreateDiskFile*(fileName : string, overwriteMode : OverwriteMode = Overwrite) FitsFile

	This function is equivalent to :nim:proc::createFile, but it does
not attempt to interpret fileName according to CFITSIO’s extended
syntax rules.

Closing files

	
proccloseFile(fileObj : var FitsFile)

	Close the file and flush any pending write operation on it. The
variable fileObj can no longer be used after a call to
closeFile.

See also deleteFile().

	
procdeleteFile(fileObj : var FitsFile)

	This procedure is similar to closeFile(), but the file is
deleted after having been closed. It is mainly useful for testing
purposes.

Other file-related functions

In this section we list all the other functions that work on the file
as a whole, but do not fit in any of the previous sections.

	
procgetFileName(fileObj : var FitsFile) string

	Return the name of the file associated with the FITS file variable
fileObj. Since this variable calls CFITSIO instead of simply
returning the file field of FitsFile, it could fail.
In the latter case, it will throw a EFitsException
exception.

	
procgetFileMode(fileObj : var FitsFile) IoMode

	Return the I/O mode of the file.

	
procgetUrlType(fileObj : var FitsFile) string

	Return the kind of URL of the file. Possible values are e.g.
file://, ftp://, http://.

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NimCfitsio 0.1 documentation

HDU functions

Moving through the HDUs

A FITS files is composed by one or more HDUs. NimCfitsio provides a
number of functions to know how many HDUs are present in a FITS file
and what is their content. (To create a new HDU you have first to
decide which kind of HDU you want. Depending on the answer, you should
read Table functions or Image functions.)

	
enumHduType= Any = -1, Image = 0, AsciiTable = 1, BinaryTable = 2

	HDU types recognized by NimCfitsio. The Any type is used by
functions which perform searches on the available HDUs in a file.
See the FITS specification documents for further information about
the other types.

NimCfitsio (and CFITSIO itself) uses the concept of “current HDU”.
Each FitsFile variable is a stateful object. Instead of
specifying on which HDU a NimCfitsio procedure should operate, the
user must first select the HDU and then call the desired procedure.

	
procmoveToAbsHdu(fileObj : var FitsFile, num : int) HduType

	Select the HDU at position idx as the HDU to be used for any
following operation on the FITS file. The value of num must be
between 1 and the value returned by getNumberOfHdus().

	
procmoveToRelHdu(fileObj : var FitsFile, num : int) HduType

	Move the current HDU by num positions. If num is 0, this is a
no-op. Positive as well as negative values are allowed.

	
procmoveToNamedHdu(fileObj : var FitsFile, hduType : HduType, name : string, ver : int = 0)

	Move to the HDU whose name is name. If ver is not zero, then the
HDU must match the version number as well as the name.

If no matching HDU are found, a EFitsException is raised.

	
procgetNumberOfHdus(fileObj : var FitsFile) int

	Return the number of HDUs in the FITS file.

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	NimCfitsio 0.1 documentation

Table functions

Creating tables

	
enumTableType= AsciiTable, BinaryTable

	This enumeration lists the two types of tables that can be found in
a FITS file. Binary tables have the advantage of allowing any
datatype supported by CFITSIO; moreover, they are more efficient in
terms of required storage.

	
enumDataType= dtBit, dtInt8, dtUint8, dtInt16, dtUint16, dtInt32, dtInt64, dtFloat32, dtFloat64, dtComplex32, dtComplex64, dtLogical, dtString

	Data types recognized by NimCfitsio.

	
objectTableColumn

	This type describes one column in a table HDU. It is used by
createTable(). Its fields are listed in the following
table:

	Field
	Type
	Description

	name
	string
	Name of the column (not longer than 8 chars)

	dataType
	DataType
	Data type

	width
	int
	For strings, this gives the maximum number of chars

	repeatCount
	int
	Number of items per row

	unit
	string
	Measure unit

	
proccreateTable(fileObj : var FitsFile, tableType : TableType, numOfElements : int64, fields : openArray[TableColumn], extname : string)

	Create a new table HDU after the current HDU. The file must have
been opened in ReadWrite mode (this is automatically the case if
f has been returned by a call to createFile()).

The value of numOfElements is used to allocate some space, but it
can be set to zero: calls to functions like writeColumn()
will make room if needed.

Reading columns

The NimCfitsio library provides an extensive set of functions to read
data from FITS table HDUs. Each of them initializes an “open array”
type that is passed as a var argument: this allows to initialize
arrays as well as seq types.

The functions implemented by NimCfitsio to read columns of data are
the following:

	Function name
	Type

	readColumnOfInt8()
	int8

	readColumnOfInt16()
	int16

	readColumnOfInt32()
	int32

	readColumnOfInt64()
	int64

	readColumnOfFloat32()
	float32

	readColumnOfFloat64()
	float64

	readColumnOfString()
	string

We describe here the many incarnations of a function
readColumn() which operates on a generic type T. Such
function however does not exist: such description should be applied to
any of the procedures listed in the table above.

	
procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int, dest : var openArray[T], destNull : var openArray[bool], destFirstIdx : int)

	Read a number of elements equal to numOfElements from the column
at position colNum (the position of the first column is 1),
starting from the row number firstRow (starting from 1) and the
element firstElem (within the row; this also starts from 1). The
destination is saved in the dest array, starting from the index
destFirstIdx. The array destNull must be defined on the same
indexes as the array dest; readColumn() initializes it
with either true or false, according to the nullity of the
corresponding element in dest.

As an example, the following call reads 3 elements from the first
column of file f. The values read from the file are saved in
dest[2], dest[3], and dest[4], because destFirstIdx
is 2. Note that nullFlag is not as long as dest (4 elements
instead of 10): this is ok, as the upper limit of the indexes used
by the procedure is 4.

var dest : array[int32, 10]
var nullFlag : array[int32, 4]
f.readColumnOfInt32(1, 4, 1, 3, dest, destNull, 2)

	
procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int, dest : var openArray[T], destFirstIdx : int, nullValue : T)

	This second version of the procedure allows for quickly substitute
null values with the value nullValue.

	
procreadColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, dest : var openArray[T], nullValue : T)

	In many cases it is not needed to save data in the middle of the
dest array. This version of readColumn uses the length of
dest as the value to be used for numOfElements. The implicit
value of firstElem is low(dest).

	
procreadColumn(fileObj : var FitsFile, colNum : int, dest : var openArray[T], nullValue : T)

	This is the simplest possible version of readColumn. It reads
as many values as they fit in dest, starting from the first one
(i.e., firstRow and firstElem are implicitly set to 1).

Writing columns

The functions implemented by NimCfitsio to write columns of data are
the following:

	Function name
	Type

	writeColumnOfInt8()
	int8

	writeColumnOfInt16()
	int16

	writeColumnOfInt32()
	int32

	writeColumnOfInt64()
	int64

	writeColumnOfFloat32()
	float32

	writeColumnOfFloat64()
	float64

	writeColumnOfString()
	string

	
procwriteColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, numOfElements : int, values : var openArray[T], valueFirstIdx : int, nullPtr : ptr T = nil)

	Write numOfElements values taken from values into the column at
position colNum in the current HDU of the FITS file f. The
elements will be written starting from the row with number
firstRow (the first row is 1) and from the element in the row at
position firstElem (the first element is 1). The values that are
saved in the file start from the index valueFirstIdx, i.e., they
are values[valueFirstIdx], values[valueFirstIdx+1] and so
on.

The nullPtr argument is a pointer to a variable that contains
the “null” value: any value in values that is going to be written
is compared with nullPtr[] and, if it is equal, it is set to
NULL.

	
procwriteColumn(fileObj : var FitsFile, colNum : int, firstRow : int, firstElem : int, values : var openArray[T], nullPtr : ptr T = nil)

	This is a wrapper around the previous definition of
writeColumn(). It assumes that valueFirstIdx =
low(values).

	
procwriteColumn(fileObj : var FitsFile, colNum : int, values : var openArray[T], nullPtr : ptr T = nil)

	This function is a wrapper around the previous definition of
writeColumn(). It writes all the elements of the values
array into the column colNum.

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	NimCfitsio 0.1 documentation

Image functions

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	NimCfitsio 0.1 documentation

Index

 C
 | D
 | G
 | H
 | I
 | M
 | O
 | R
 | T
 | W

C

 	

 	closeFile (Nim procedure)

 	createDiskFile* (Nim procedure)

 	

 	createFile (Nim procedure)

 	createTable (Nim procedure)

D

 	

 	DataType (Nim enumeration)

 	

 	deleteFile (Nim procedure)

G

 	

 	getFileMode (Nim procedure)

 	getFileName (Nim procedure)

 	

 	getNumberOfHdus (Nim procedure)

 	getUrlType (Nim procedure)

H

 	

 	HduType (Nim enumeration)

I

 	

 	IoMode (Nim enumeration)

M

 	

 	moveToAbsHdu (Nim procedure)

 	moveToNamedHdu (Nim procedure)

 	

 	moveToRelHdu (Nim procedure)

O

 	

 	openData (Nim procedure)

 	openFile (Nim procedure)

 	openImage (Nim procedure)

 	

 	openTable (Nim procedure)

 	OverwriteMode (Nim enumeration)

R

 	

 	readColumn (Nim procedure), [1], [2], [3]

T

 	

 	TableType (Nim enumeration)

W

 	

 	writeColumn (Nim procedure), [1], [2]

 Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment-bright.png

_static/down-pressed.png

_static/comment-close.png

_static/up.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/minus.png

_static/comment.png

_static/down.png

search.html

 Navigation

 		
 index

 		NimCfitsio 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Maurizio Tomasi.
 Created using Sphinx 1.3.1.

_static/file.png

