

Welcome to NGSPipes’ documentation!

NGSPipes [http://ngspipes.github.io] is a framework to easily design and use pipelines, relying on state of the art cloud technologies to execute them without users need to configure, install and manage tools, servers and complex workflow management systems.

	NGSPipes overview
	NGSPipes Team

	NGSPipes DSL
	Primitives

	Full NGSPipes DSL syntax

	Examples

	NGSPipes repository
	Tool names

	Tool descriptors

	Tool configurators

	Defining your own tool repository

	Tool Types

	NGSPipes Editor
	Download NGSPipes Editor

	Execute NGSPipes Editor

	NGSPipes Editor Sections

	Select the tools repository

	Creating a new Pipeline

	Generate the final pipeline version to execute

	Loading an existing pipeline

	Multiple loaded pipelines

	Error Reporting

	Multiple inputs

	Engines
	Engine for workstation

	Engine for cloud

	Running Examples
	A pipeline used on epidemiological surveillance

	A pipeline used on ChiP-Seq analysis

	A pipeline using listing tools

NGSPipes overview

NGSPipes is a framework to easily design and use pipelines, relying on state of the art cloud technologies to execute them without users need to configure, install and manage tools, servers and complex workflow management systems.

[image: Overview of NGSPipes System]
Figure 1.1: Overview of NGSPipes System.

NGSPipes Team

	Alexandre Almeida, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Bruno Dantas, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Calmenelias Fleitas, ADEETC, ISEL, Instituto Politécnico de Lisboa

	João Forja, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Alexandre P. Francisco, INESC-ID / CSE Dept, IST, Universidade de Lisboa [https://web.ist.utl.pt/aplf/]

	José Simão, INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa [http://www.cc.isel.ipl.pt/membros/paginas-pessoais/jose-simao/]

	Cátia Vaz , INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa [http://pwp.net.ipl.pt/cc.isel/cvaz/]

For more information please contact us at ngspipes_at_gmail.com

NGSPipes DSL

The NGSPipes DSL is a domain specific language for describing pipelines. The syntax is described following a EBNF notation alike. As a programming language, it has some primitive building blocks with the expressiveness to define data processing, namely flow processing can be modeled as a direct acyclic graph. These primitives are defined by syntactic and semantic rules which describe their structure and meaning respectively.
The primitives and the full syntax will be presented in this section. For further explaining the expressiveness of each primitive, we also incrementally introduce an example in this section, as well as the full example.

Primitives

The primitives of NGSPipes DSL are Pipeline, tool, command, argument and chain. In the folowing subsections it will be introduced the purpose of this primitives, ilustrating with some examples.

Pipeline

Since a Pipeline is composed by the execution of one or more tools, it must be defined the tools repository, i.e., all the information necessary with respect to the available tools. To define this repository in the pipeline it is necessary to identify not only where it is stored, but also the type of storage (localy ou remotely, like github) to know how to process that information. In Example 2.1 is depicted a part of a pipeline specification.

Pipeline "Github" "https://github.com/ngspipes/tools"{

Example 2.1: A partial pipeline specification, using a remote repository.

In the example of listing 2.1, “Github” is the repository type and “https://github.com/ngspipes/tools” is the location of the tool repository.
The case of being a local repository is very similar, as it can be observed in Example 2.2.

Pipeline "Local" "E:\ngspipes" {

Example 2.2: A partial pipeline specification, using a local repository.

In the previous example, the tool repository is on the directory named as “ngspipes”, found at drive “E:”.
Formally, the pipeline must follow the grammar in Listing 2.1.

pipeline: ’Pipeline’ repositoryType repositoryLocation ’{’ (tool)+ ’}’ ;

Listing 2.1: Partial specification of the DSL grammar: pipeline specification grammar

In Listing 2.1, (tool)+ represents that a pipeline is composed by the execution of one or more tools (notice that, as will be further explained, the tool execution may include the execution of one or more commands).

tool

Each tool is specified in the pipeline by its name, its configuration file name (without extension) and by the set of commands within the tool that will be executed within this pipeline. For instance, in Example 2.3 the pipeline is composed only by one tool, which only includes a command.

javascript
Pipeline "Github" "https://github.com/ngspipes/tools" {
 tool "Trimmomatic" "DockerConfig" {
 command "trimmomatic" {
 argument "mode" "SE"
 argument "quality" "-phred33"
 argument "inputFile" "ERR406040.fastq"
 argument "outputFile" "ERR406040.filtered.fastq"
 argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
 argument "seed mismatches" "2"
 argument "palindrome clip threshold" "30"
 argument "simple clip threshold" "10"
 argument "windowSize" "4"
 argument "requiredQuality" "15"
 argument "leading quality" "3"
 argument "trailing quality" "3"
 argument "minlen length" "36"
 }
 }
 }

Example 2.3: A pipeline specification composed only by one tool, including only one command.

The tool configuration file name in Listing 2.4 is “DockerConfig”, i.e., it must exist in the tool repository “https://github.com/ngspipes/tools”, within the tool information “https://github.com/ngspipes/tools/tree/master/Trimmomatic” (notice that this repository structure is directory based, as explained in https://github.com/ngspipes/tools/wiki), a configuration file named “DockerConfig”, with JSON Format. This file must define a JSON object with the property builder set as “DockerConfig”. In this case, this JSON file is https://github.com/ngspipes/tools/blob/master/Trimmomatic/DockerConfig.json.
With this information together with the repository information, the environment for executing the Trimmomatic command is specified.

command

As mentioned before, there may exist a set of commands within the tool that should be executed within a pipeline. Example 2.4 depicts an example with this feature.

Pipeline "Github" "https://github.com/ngspipes/Repository" {
 tool "Trimmomatic" "DockerConfig" {
 command "trimmomatic" {
 argument "mode" "SE"
 argument "quality" "-phred33"
 argument "inputFile" "ERR406040.fastq"
 argument "outputFile" "ERR406040.filtered.fastq"
 argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
 argument "seed mismatches" "2"
 argument "palindrome clip threshold" "30"
 argument "simple clip threshold" "10"
 argument "windowSize" "4"
 argument "requiredQuality" "15"
 argument "leading quality" "3"
 argument "trailing quality" "3"
 argument "minlen length" "36"
 }
 }
 tool "Velvet" "DockerConfig" {
 command "velveth" {
 argument "output_directory" "velvetdir"
 argument "hash_length" "21"
 argument "file_format" "-fastq"
 chain "filename" "outputFile"
 }
 command "velvetg" {
 argument "output_directory" "velvetdir"
 argument "-cov_cutoff" "5"
 }
 }

Example 2.4: A pipeline specification composed by more than one tool and more than one command.

In example depicted in Example 2.4, the pipeline will run two tools, where the second one executes two commands of the Velvet tool, namely velvethand velvetg.

Therefore, the tools specification must follow the grammar presented in Listing 2.2.

tool: 'tool' toolName configurationName '{' (command)+ '}'

Listing 2.2: Partial specification of the DSL grammar: tool specification grammar

In Listing 2.2 (command)+ represents that there may exist set of commands with at least a command, within the tool that should be executed within a pipeline.

For executing each command, it is necessary to identify its name, which is unique in the tool context and to set the values for each required parameters (optional parameters may not be specified). We refer the command parameters in NGSPipes language as arguments, since we only specify in the pipeline the parameters which we have values to set. For instance,
in the previous pipeline example, the argument filename of the command velveth has as value -fastq, i.e., the input file for this command has a FASTQ format.

Thus, the command specification must follow the grammar in Listing 2.3.

command : 'command' commandName '{' (argument | chain)+ '}';

Listing 2.3: Partial specification of the DSL grammar: command specification grammar

In Listing 2.3 (argument | chain)+
represents that there may exist a list of arguments within this command as well as a list of chains. Chain is also a primitive in NGSPipes, as we will further explain in the subsection chain.

argument

As defined in the previous example, the argument definition has the syntax
presented in Listing 2.4.

argument : 'argument' argumentName argumentValue;

Listing 2.4: argument syntax.

For instance, in the previous pipeline specification the format_file is an argument for the velveth tool, namely:

argument "file_format" "-fastq"

chain

The chain primitive allows to set an argument of a command with the produced output of other command.
Sometimes the produced output is returned as files with names given internally by the command. Alternatively the output files name may be given explicitly as an argument to the command.
In both situations, it is common that other commands use these output files for continue processing the pipeline. For instance,
consider the following example:

Pipeline "Github" "https://github.com/ngspipes/Repository" {
 tool "Trimmomatic" "DockerConfig" {
 command "trimmomatic" {
 argument "mode" "SE"
 argument "quality" "-phred33"
 argument "inputFile" "ERR406040.fastq"
 argument "outputFile" "ERR406040.filtered.fastq"
 argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
 argument "seed mismatches" "2"
 argument "palindrome clip threshold" "30"
 argument "simple clip threshold" "10"
 argument "windowSize" "4"
 argument "requiredQuality" "15"
 argument "leading quality" "3"
 argument "trailing quality" "3"
 argument "minlen length" "36"
 }
 }
 tool "Velvet" "DockerConfig" {
 command "velveth" {
 argument "output_directory" "velvetdir"
 argument "hash_length" "21"
 argument "file_format" "-fastq"
 chain "filename" "outputFile"
 }
 command "velvetg" {
 argument "output_directory" "velvetdir"
 argument "-cov_cutoff" "5"
 }
 }
 tool "Blast" "DockerConfig" {
 command "makeblastdb" {
 argument "-dbtype" "prot"
 argument "-out" "allrefs"
 argument "-title" "allrefs"
 argument "-in" "allrefs.fna.pro"
 }
 command "blastx" {
 chain "-db" "-out"
 chain "-query" "Velvet" "velvetg" "contigs_fa"
 argument "-out" "blast.out"
 }
 }
}

Example 2.5: A pipeline specificaton using the chain primitive.

As it can be seen in Example 2.5, in command blastx, the argument query receives as value the file ``contigs_fa’‘, which is an output of the command \verb+velvetg+ of the tool velvet (notice that in this case, the name of the file is given internally by the command).

The primitive chain has a simplified version, which can be used when the output is from a the previous command in the pipeline specification. In this case, we only specify the name of the output file to chain with the given argument. As an example, we can see the argument filename of the velveth command chained with the output file, named as outputFile, of the command trimmomatic.

A last version of the primitive chain is when the name of the tool can be omitted, but it is necessary to specify the name of the command, of the argument and also the output. This apply to cases where the chain occurs between two commands of the same tool.

Thus, the chain specification must follow the grammar depicted in Listing 2.5.

chain : 'chain' argumentName ((toolName)? commandName)? outputName;

Listing 2.5: Partial specification of the DSL grammar: chain specification grammar

Full NGSPipes DSL syntax

In Listing 2.6 is depicted the full NGSPipes DSL grammar.

pipeline: 'Pipeline' repositoryType repositoryLocation '{' (tool)+ '}' ;

tool: 'tool' toolName configurationName '{' (command)+ '}';

command : 'command' commandName '{' (argument | chain)+ '}';

argument : 'argument' argumentName argumentValue;

chain : 'chain' argumentName ((toolName)? commandName)? outputName;

repositoryType : String;

repositoryLocation : String;

toolName : String;

configurationName : String;

commandName : String;

argumentName : String;

argumentValue : String;

outputName : String;

toolPos: Digit;

commandPos : Digit;

String : ’"’ (ESC | ~["\\])* '"';

Digit : [0-9]+;

fragment ESC : '\\' (["\\/bfnrt] | UNICODE);

fragment UNICODE : 'u' HEX HEX HEX HEX;

fragment HEX : [0-9a-fA-F];

WS : [\t\r\n]+ -> skip ;

Listing 2.6: Specification of the NGSPipes Full DSL grammar.

Examples

A pipeline used on epidemiological surveillance

In this section we present a pipeline used on epidemiological surveillance.
The aim is to characterize bacterial strains through allelic profiles .
When sequencing a bacterial strain by paired end methods with desired depth of coverage of 100x (in average each position in the genome will be covered by 100 reads), the output from the sequencer will be two FASTQ files containing the reads. Each read typically will have 90-250 nucleotides length, using Illumina technology. The first data processing step is to trim the reads for removing the adapters used in the sequencing process and any tags used to identify the experiment in a run.

In de novo assembly, software such as Velvet is used to obtain a draft genome composed of contigs, longer DNA sequences resulting from assembling multiple reads. The draft genome can be compared to databases of gene alleles for multiple loci using BLAST. Given BLAST results we can create an allelic profile characterizing the strain.

Pipeline "Github" "https://github.com/ngspipes/tools" {
 tool "Trimmomatic" "DockerConfig" {
 command "trimmomatic" {
 argument "mode" "SE"
 argument "quality" "-phred33"
 argument "inputFile" "ERR406040.fastq"
 argument "outputFile" "ERR406040.filtered.fastq"
 argument "fastaWithAdaptersEtc" "adapters/TruSeq3-SE.fa"
 argument "seed mismatches" "2"
 argument "palindrome clip threshold" "30"
 argument "simple clip threshold" "10"
 argument "windowSize" "4"
 argument "requiredQuality" "15"
 argument "leading quality" "3"
 argument "trailing quality" "3"
 argument "minlen length" "36"
 }
 }
 tool "Velvet" "DockerConfig" {
 command "velveth" {
 argument "output_directory" "velvetdir"
 argument "hash_length" "21"
 argument "file_format" "-fastq"
 chain "filename" "outputFile"
 }
 command "velvetg" {
 argument "output_directory" "velvetdir"
 argument "-cov_cutoff" "5"
 }
 }
 tool "Blast" "DockerConfig" {
 command "makeblastdb" {
 argument "-dbtype" "prot"
 argument "-out" "allrefs"
 argument "-title" "allrefs"
 argument "-in" "allrefs.fna.pro"
 }
 command "blastx" {
 chain "-db" "-out"
 chain "-query" "Velvet" "velvetg" "contigs_fa"
 argument "-out" "blast.out"
 }
 }
}

Example 2.6: A pipeline used on epidemiological surveillance.

A visual representation of this pipeline described in Example 2.6 is presented in the Figure 2.1. Moreover, in this figure is also possible to observe other execution orders that are feasible to execute this pipeline in the engine for workstation.

[image: image]

Figure 2.1: Visual representation of the execution, in the engine for workstation, of the pipeline described in Example 2.6.

In the engine for cloud, different steps of the pipeline can be executed in different machines, it is only necessary to respect its depedencies, as it is shown in the Figure 2.2.

[image: image]

Figure 2.2: Visual representation of the execution, in the engine for cloud, of the pipeline described in Example 2.6.

A pipeline used on ChiP-Seq analysis

In this section we present a pipeline used on ChiP-Seq analysis. This
pipeline includes mapping with bowtie2, converting the output to bam format, sorting the bam file, creating a bam index file, running flagstat command, and removing duplicates with picard. So, this pipeline can be used in a ChiP-Seq pipeline that uses the resulting bam file for peak calling and creating heatmaps. Since those steps are generic that can be used for ATAC-Seq analysis too.

Pipeline "Github" "https://github.com/ngspipes/tools" {
 tool "Bowtie2" "DockerConfig" {
 command "bowtie2-build" {
 argument "reference_in" "sequence.fasta"
 argument "bt2_base" "sequence"
 }
 }
 tool "Bowtie2" "DockerConfig" {
 command "bowtie2" {
 argument "-U" "SRR386886.fastq"
 argument "-x" "sequence"
 argument "--trim3" "1"
 argument "-S" "eg2.sam"
 }
 }
 tool "SAMTools" "DockerConfig" {
 command "view" {
 argument "-b" "-b"
 argument "-o" "eg2.bam"
 chain "input" "-S"
 }
 }
 tool "SAMTools" "DockerConfig" {
 command "sort" {
 argument "-o" "eg2.sorted.bam"
 chain "input" "-o"
 }
 }
 tool "Picard" "DockerConfig" {
 command "MarkDuplicates" {
 chain "INPUT" "-o"
 argument "OUTPUT" "marked_duplicates.bam"
 argument "REMOVE_DUPLICATES" "true"
 argument "METRICS_FILE" "metrics.txt"
 }
 }
}

Example 2.7: A pipeline used on ChiP-Seq analysis.

A visual representation of this pipeline is presented in the next figure.

[image: image]

Figure 2.3: Visual representation of the execution, in both engines, of the pipeline described in Example 2.6.

A pipeline using listing tools (for executing only with Engine for Cloud)

A specific use of NGS data in public health is the determination of the relationship between samples potentially associated with a foodborne pathogen outbreak. This relationship can be determined from the phylogenetic analysis of a DNA sequence alignment containing only variable positions, which we refer to as a SNP matrix. The applications of such a matrix include inferring a phylogeny for systematic studies and determining within traceback investigations whether a clinical sample is significantly different from environmental/product samples.

This case study is a pipeline which combines all the steps necessary to construct a reference-based SNP matrix from an NGS sample data set.The pipeline starts with the mapping of NGS reads to a reference genome using Bowtie2, then it continues with the processing of those mapping (BAM) files using SAMtools, identification of variant sites using VarScan3, and ends with the production of a SNP matrix using custom Python scripts (calling of SNPs at each variant site, combining the SNPs into a SNP matrix). The Python scripts are reused from the CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20.
As it can be observed in this data set, there are four samples, whose dataflow process is more detailed in the documentation page [http://snp-pipeline.readthedocs.io/en/latest/dataflow.html] of this pipeline.

Pipeline "Github" "https://github.com/Vacalexis/tools" {
 tool "snp-pipeline" "DockerConfig" {
 command "create_sample_dirs" {
 argument "-d" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/*"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 }
 }

 tool "Bowtie2" "DockerConfig" {
 command "bowtie2-build" {
 argument "reference_in" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta"
 argument "bt2_base" "reference"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads1.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"
 }

 }
 tool "Listing" "DockerConfig" {
 command "startListing" {
 argument "referenceName" "reads.sam"
 argument "filesList" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"
 }
 }
 tool "Samtools" "DockerConfig" {

 command "view" {
 argument "-b" "-b"
 argument "-S" "-S"
 argument "-F" "4"
 argument "-o" "reads.unsorted.bam"
 argument "input" "reads.sam"
 }
 command "sort" {
 argument "-o" "reads.sorted.bam"
 argument "input" "reads.unsorted.bam"
 }
 command "mpileup" {
 argument "--fasta-ref" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta"
 argument "input" "reads.sorted.bam"
 argument "--output" "reads.pileup"
 }
 }
 tool "VarScan" "DockerConfig" {
 command "mpileup2snp" {
 argument "mpileupFile" "reads.pileup"
 argument "--min-var-freq" "0.90"
 argument "--output-vcf" "1"
 argument "output" "var.flt.vcf"
 }
 }
 tool "Listing" "DockerConfig" {
 command "stopListing" {
 argument "referenceName" "var.flt.vcf"
 argument "destinationFiles" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/var.flt.vcf"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "create_snp_list" {
 argument "--vcfname" "var.flt.vcf"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt"
 argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 }
 }
 tool "Listing" "DockerConfig" {
 command "restartListing" {
 argument "referenceName" "reads.pileup"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "call_consensus" {
 argument "--snpListFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt"
 argument "--output" "consensus.fasta"
 argument "--vcfFileName" "consensus.vcf "
 argument "allPileupFile" "reads.pileup"
 }
 }
 tool "Listing" "DockerConfig" {
 command "stopListing" {
 argument "referenceName" "consensus.fasta"
 argument "destinationFiles" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/consensus.fasta"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "create_snp_matrix" {
 argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 argument "--consFileName" "consensus.fasta"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snpma.fasta"
 }
 }
}

[image: image]

Figure 2.4: Figure from Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20

NGSPipes repository

The NGSPipes repository is a component of NGSPipes system that contains all the information related to the available tools which can be used when defining a pipeline. We provide a repository prototype that contains some tools to test our system, which can be found in https://github.com/ngspipes/tools. User made repositories can be used, as it will be explained in this section. This component has to supply the following information:

	a list of tool names;

	a list of tool descriptors;

	a list of tool logotypes (optional);

	a list of configurators of a given tool;

	a list of the names of the configurators available for a given tool.

For defining the tool descriptors and configurators, we have defined JSON schemas, as well as for specify all the tools that are available in the repository.

Tool names

The repository is composed by a list of tools. All the tools names that are available in a given repository, are described in a file with a JSON format designed by Tools.json.
In NGSPipes repository example this file appears at the root of the repository (please, see the tool’s repository [https://github.com/ngspipes/tools]). Moreover, the presented repository structure is one of the possible structures that is supported by the repository support library used in the NGSPIpes framework. The format of the Tools.json file is given by the JSON schema presented in Listing 3.1.

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "toolsName": {
 "type": "array",
 "items":{ "type": "string" }
 },
 "required": ["toolsName"]
 }
 }

Listing 3.1: JSON schema for specifying the names of the tools included in the repository.

Tool descriptors

To each available tool in our framework, we have a tool descriptor, i.e., a JSON file responsible for supplying all the information needed about the tool, such as the memory needed to execute it, the commands and the arguments of each command.
The format of this file is given by the JSON schema presented in Listing 3.2.

 {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "author": {"type": "string"},
 "version": { "type": "string"},
 "description": {"type": "string"},
 "documentation": {
 "type": "array",
 "items": { "type": "string" }
 },
 "setup": {
 "type": "array",
 "items": { "type": "string" }
 },
 "toolType": {
 "type": "string",
 "enum": ["Unit", "splitting", "joinning", "listing"]
 },
 "requiredMemory": { "type": "integer" },
 "recommendedCpus": { "type": "integer" },
 "recommendedDiskSpace": { "type": "integer" },
 "commands": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "command": {"type": "string"},
 "description": {"type": "string" },
 "priority": { "type": "integer" },
 "argumentsComposer": { "type": "string" },
 "arguments": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": {"type": "string" },
 "argumentType": {"type": {
 "enum": ["int","file","string","double","directory"]}},
 "isRequired": {"type": { "enum": ["true","false"]} },
 "description": { "type": "string" }
 },
 "required": ["name", "argumentType", "isRequired","description"]
 }
 },
 "outputs": {
 "type": "array",
 "items":{
 "type": "object",
 "properties": {
 "name": {"type": "string"},
 "description": {"type": "string"},
 "outputType": {"type": {
 "enum": ["directory_dependent","file_dependent","independent"]}},
 "argument_name": {"type": "string"},
 "value": { "type": "string" }
 },
 "required": ["name","description","outputType", "argument_name","value"]
 }
 }
 "inputs": {
 "type": "array",
 "items": {
 "type": "object",
 "properties": {
 "name": { "type": "string" },
 "description": { "type": "string" },
 "inputType": { "type": "string",
 "enum": ["directory_dependent", "file_dependent", "independent"]}},
 "value": { "type": "string" }
 "required": ["name", "description", "inputType", "argument_name", "value"]}}
 },
 "required": ["name","command","description","priority",
 "argumentsComposer", "arguments","outputs", "inputs"]
 }
 },
 "required": ["name","author","version","description",
 "documentation","setup", "tool type",
 "requiredMemory", "recomendedDiskSpace",
 "recommendedCpus, "commands"]
 }
 }

Listing 3.2: JSON schema for specifying each tool included in the repository.

As an example, please see the tools descriptors that we have included in our tools’ repository example, such as the Velvet descriptor [https://github.com/ngspipes/tools/blob/master/Velvet/Descriptor.json] and the Trimommatic descriptor [https://github.com/ngspipes/tools/blob/master/Trimmomatic/Descriptor.json] for Velvet [https://www.ebi.ac.uk/~zerbino/velvet/] and Trimmomatic [http://www.usadellab.org/cms/?page=trimmomatic] tools, respectively. In our repository support library, each tool descriptor must be defined in a file named as Descriptor.json.

As defined on the previous JSON schema, a tool description must include its name, author, version, description, documentation, setup, toolType, required memory , recommendedCpus, recommendedDiskSpace and commands. The version property describes the version of the executable that is being considered by this descriptor. The documentation property allows to add a collection of links that contains documentation about the tool. The setup property contains all the scripts that must be executed before executing any command within the tool. For instance, for executing the Trimmomatic command, it must be previously installed the Java Runtime Environment. Thus, in the Trimmomatic descriptor, we include the setup presented in Example 3.1.

 "setup" : ["apt-get install -y default-jre"]

Example 3.1: Trimmomatic command setup.

Command descriptions

commands is an array of JSON objects that describes each command within a tool. For instance, the Trimmomatic tool has only one command, but the Velvet tool has two commands, namely, velvetg and velveth.
For each command in the array commands it must exist its name, the command itself, its description, its priority, its arguments, the argumentComposer and its outputs. The priority of each command within a tool is important for defining execution dependency among commands within the same tool. For instance, in the Velvet tool, although not explicitly defined as an argument, velveth uses files produced by velvetg. If the files are already produced, then it is not necessary to execute velvetg if data is the same. Homever, if data differs from the last execution or is not yet produced, it must be assured that velvetg is executed before velveth. Therefore, we have added the priority property to each command to assign an integer that reflect the execution order within commands of the same tool which do not have it explicitly, but which is needed. The argumentsComposer item is the responsible for knowing how to concatenate the arguments, namely if arguments are passed as argName=argValue OR argName:argValue OR argName-argValue.
The many argumentComposer types supported by the NGSPipes repository support library are detailed in sub-section ArgumentsComposer. The arguments and the outputs are both arrays of JSON objects.

Argument descriptions

arguments is an array of JSON objects that describes each argument of a specific command. For each argument is required to define its name, its argumentType, if it is isRequired and its description. The type of each argument must be one of the following: integer number (int); file (file); text (string); real number (double) or a directory (directory). The isRequired property, which can be defined as true or false, indicates if is necessary to set a value to this argument or is an optional argument. As an example, consider the trimmomatic tool, which only has a command. For SINGLE END data, one output and input file are specified. Therefore, it is necessary to add to its descriptor the information specified in Example 3.2.

{
 "name" : "outputFile",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the name of output file."
},
{
 "name" : "inputFile",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the path to the fastq input file."
},

Example 3.2: arguments for Trimmomatic command

Both of the previous examples have the isRequired property set to false since for non SINGLE END data, trimmomatic execution uses pairs of input and output files, which are described in the tool descriptor by other arguments.

Output descriptions

output is an array of JSON objects that describes the outputs of each command. For each output is required to define its name, outputType, description,argument_name and value. Notice that the name passed as an argument to a command is not the name that is necessary to specify as a JSON property of the output JSON object. The name property refers to the name of the JSON object, not to the name of the file that is produced by the execution of a given command. Depending on the command, the name of the file that is produced by a given command can be set as an argument by the user or be an internal decision of the executing command.
Therefore, the independent outputType is used when an output value is specified inside of command and isn’t affected by any argument.
In this case, the value property of the JSON output object is set with the name that is internally generated by the corresponding command. An example of the output in descriptor file is depicted in Example 3.3.

 {
 "name" : "output",
 "description" : "",
 "outputType" : "independent",
 "argument_name" : "",
 "value" : "output.txt"
 }

Example 3.3: Example of an output descriptor.

In the previous case, the argument_name is the empty string since there is no corresponding argument defined in the tool descriptor to set the name of the produced output file.

The outputType can also be file_dependent or directory_dependent.
An outputType is file_dependent if its value is specified in an argument and there is no specific directory that is created for keeping the generated output file. As an example, and taking into account the previous example of trimmomatic for SINGLE END data, the output is described in the tool description as presented in Example 3.4.

{
 "name" : "outputFile",
 "description" : "",
 "outputType" : "file_dependent",
 "value" : "",
 "argument_name" : "outputFile"
},

Example 3.4: Example of an output descriptor.

In this case, the value property is set to the empty string since the name of the output file is specified by the user.
Moreover, the argument_name property defines the name of the JSON object that corresponds to the JSON object that defines the argument used for the specified the output file name.

The other type of output is
directory_dependent, which is used when an output value is added to a specified directory that is generated within the command execution.
In this case, the name of the directory is passed as an argument, but the name of the produced files are not passed as arguments. Instead, they are generated internally, within execution.
As an example, consider the velvet tool, where the commands outputs are of this type because they will be written to a directory, the first argument of velvetg and velveth, when executing both commands.
Therefore, since the output directory is a command argument, we have to specify in the tool descriptor a corresponding argument description, such as the one depicted in Example 3.5.

 { "name" : "output_directory",
 "outputType" : "directory",
 "isRequired" : "true",
 "description" : "Directory where will be output files"
 }

Example 3.5: Argument description in the case of a directory type

And thus, Example 3.6 illustrates of the output descriptor in the descriptor file, corresponding to the previous argument will be like:

 {
 "name" : "stats",
 "description" : "",
 "argumentType" : "directory_dependent",
 "argument_name" : "output_directory",
 "value" : "stats.txt"
 }

Example 3.6: Output description when is dependent of an argument with type directory

Notice that the file name stats.txt is not passed as an argument to velveth nor to velvetg. Instead, it is generated internally and is stored in the output directory whose name was passed as an argument.

Input descriptions

input is an array of JSON objects that describes the inputs of each command. They are similar to Output descriptions. They help inferring dependencies between pipeline tasks.

ArgumentsComposer

In this subsection is listed all the argumentsComposer that are already included in our repository support library.
The existing argumentsComposer are (name of the argumentComposer-> [corresponding format]):

	dummy -> []

	valuesSeparatedBySpace -> [value value value]

	nameValuesSeparatedByEqual -> [name=value name=value name=value]

	nameValuesSeparatedByColon -> [name:value name:value name:value]

	nameValuesSeparatedByHyphen -> [name-value name-value name-value]

	nameValuesSeparatedBySpace -> [name value name value name value]

	valuesSeparatedByColon -> [value:value:value]

	valuesSeparatedByVerticalBar -> [value|value|value]

	valuesSeparatedByHyphen -> [value-value-value]

	valuesSeparatedBySlash -> [value/value/value]

	valuesSeparatedByComma -> [value,value,value]

	trimmomatic -> [TRIMMOMATIC STYLE ArgCategory:arg:arg:arg]

	velvetG -> [VELVETG STYLE all arguments has format [name value] except output_directory that has format [value]]

Listing 3.3: Some argumentsComposer included in the repository support library.

Examples of the mapping of the arguments and output descriptions to command parameters.

As we can see in the Velvet tool manual [https://www.ebi.ac.uk/~zerbino/velvet/Manual.pdf], a simple execution of the velvetg command in the command line (without the NGSPipes System) after producing the executable with the make command is described in Example 3.7.

./velvetg velvetDir -cov_cutoff 5

Example 3.7: Executing velvetg command on the command line.

Therefore, the description of velvetg command, within the descriptor of velvet tool, must include two arguments descriptions, namely, one for the directory argument and other for the option _cov_cutoff. As we can observe in velvet descriptor file (https://github.com/ngspipes/tools/blob/master/Velvet/Descriptor.json), the JSON object for defining the arguments of velvetg command starts with the definitions depicted in Example 3.8.

{
"arguments" : [
 {
 "name" : "output_directory",
 "argumentType" : "directory",
 "isRequired" : "true",
 "description" : "Directory where will be output files"
},
{
 "name" : "-cov_cutoff",
 "argumentType" : "float",
 "isRequired" : "false",
 "description" : "remove coverage nodes
 AFTER tour bus or allow the system to infer it (default no removal)"
},

Example 3.8: Some velvetg arguments descriptions.

And, since the output directory produces output files, the produced output is directory_dependent as we can see in section “Output descriptions” within this section, the JSON object for defining the outputs of velvetg command starts with the descriptions depicted in Example 3.9.

"outputs" : [
 {
 "name" : "stats",
 "description" : "",
 "outputType" : "directory_dependent",
 "argument_name" : "output_directory",
 "value" : "stats.txt"
 },
 {
 "name" : "preGraph",
 "description" : "",
 "outputType" : "directory_dependent",
 "argument_name" : "output_directory",
 "value" : "PreGraph"
},

Example 3.9: Some output descriptions for velvetg.

The values of these arguments (velvetDir and 5, respectively) will be set in the pipeline specification. For more information about the pipeline specification, please consult (https://github.com/ngspipes/dsl/wiki).

Another example referred in this documentation is the Trimmomatic tool. As we can see in the
Trimmomatic manual [http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/TrimmomaticManual_V0.32.pdf],
For single-ended data, one input and one output file are specified. The required processing steps (trimming, cropping, adapter clipping etc.) are specified as additional arguments after the input/output files.
Thus, it appears in description presented in Example 3.10 how to execute this command.

java -jar <path to trimmomatic jar> SE
 [-threads <threads>] [-phred33 | -phred64] [-trimlog <logFile>]
 <input> <output> <step 1> ...

Example 3.10: Executing Trimmomatic in the command line for single-ended data.

For paired-end data, two input files, and 4 output files are specified, 2 for the ‘paired’ output where both reads survived the processing, and 2 for corresponding ‘unpaired’ output where a read survived, but the partner read did not. Thus, it appears in the description presented in Exampl 3.11 how to executed this command in this version.

java -jar <path to trimmomatic.jar> PE
 [-threads <threads] [-phred33 | -phred64] [-trimlog <logFile>] >]
 [-basein <inputBase> | <input 1> <input 2>]
 [-baseout <outputBase> | <unpaired output 1>
 <paired output 2> <unpaired output 2> <step 1> ...

Example 3.11: Executing Trimmomatic in the command line for paired-ended data.

Thus, considering the SINGLE END DATA, a possible execution in the command line could be like the following

java -jar local/trimmomatic/trimmomatic-0.33.jar SE -phred33 ERR406040.fastq
ERR406040.filtered.fastq ILLUMINACLIP:local/trimmomatic/adapters/TruSeq3-SE.fa:2:30:10
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36

**Example 3.12: **

In this case the input file is ERR406040.fastq and the output file is ERR406040.filtered.fastq. Thus, in the Trimmomatic tool description, we have included as arguments descriptions the ones described in Example 3.13.

{
 "name" : "inputFile",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the path to the fastq input file."
 },
{
 "name" : "outputFile",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the name of output file."
},
{
 "name" : "paired input 1",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the path to the input file 1 of paired mode."
},
{
 "name" : "paired input 2",
 "argumentType" : "file",
 "isRequired" : "false",
 "description" : "Specifies the path to the input file 2 of paired mode."
},

Example 3.13: Trimmonatic arguments.

In the case of Trimmomatic command (please notice that Trimmomatic tool has only one command, with the same name), since both arguments inputFile and outputFile are only required in the SINGLE END data, their property isRequired was set to false.

With respect to the outputs, the Trimmomatic command description has
the outputs described as in Example 3.14.

{
 "name" : "outputFile",
 "description" : "",
 "argumentType" : "file_dependent",
 "value" : "",
 "argument_name" : "outputFile"
},
{
 "name" : "paired output 1",
 "description" : "",
 "argumentType" : "file_dependent",
 "value" : "",
 "argument_name" : "paired output 1"
},
{
 "name" : "unpaired output 1",
 "description" : "",
 "argumentType" : "file_dependent",
 "value" : "",
 "argument_name" : "unpaired output 1"
 },
{
 "name" : "paired output 2",
 "description" : "",
 "argumentType" : "file_dependent",
 "value" : "",
 "argument_name" : "paired output 2"
},
{
"name" : "unpaired output 2",
"description" : "",
"argumentType" : "file_dependent",
"value" : "",
"argument_name" : "unpaired output 2"
}

Example 3.14: Outputs description of Trimmomatic command.

As mentioned before, in the arguments and outputs descriptions, the values to be set to the arguments are done in the pipeline specification, as can be seen in the example in https://github.com/ngspipes/dsl/wiki. Notice that the Trimmomatic outputs are all file_dependent which means that its value is also an argument and thus is set by the user in the pipeline specification.

Tool configurators

The repository must also include at least one configurator for each tool. A tool configurator is responsible for adding all the information needed to define the execution context for executing the tool and its respective commands. Each tool configurator for each tool is given as a JSON file. Thus, for knowing all the available configurators for a specific tool, it exists, for each tool, a JSON file that lists all the JSON files that correspond to tool configurators for that tool. In our repository example and thus in our support implementation, these files appear at the root of each tool directory (please, see the a tool directory example [https://github.com/ngspipes/tools/tree/master/Blast]).
For instance, in Blast tool, it can be observed that there is only a tool configurator (https://github.com/ngspipes/tools/blob/master/Blast/configurators.json), and the same is given as (https://github.com/ngspipes/tools/blob/master/Blast/DockerConfig.json).

List of configurators of a tool

For each tool, the list of the tool configurators that are available in a given repository are described in a JSON format in a file designed by Configurators.json. The format of the file that lists all the tool configurators files is given by JSON schema defined in Listing 3.4.

"$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "configuratorsFileName": {
 "type": "array",
 "items":{ "type": "string" }
 },
 "required": ["configuratorsFileName"]
 }
 }

Listing 3.4: JSON schema for declaring the filenames of the configurators for a given tool.

Tool Configurators

As depicted in the previous schema, the file Configurators.json includes all the name of the files that corresponds to possible configurators for a given tool. Thus, for each file name included in onfigurators.json it exists a corresponding JSON file with the specific configuration. In our repository example and thus in our support implementation, the files for each specific configuration appears at the root of each tool directory (please, see the a tool directory example [https://github.com/ngspipes/tools/tree/master/Blast]). The format of this file is given by the JSON schema defined in Listing 3.5.

{
 "$schema": "http://json-schema.org/draft-04/schema#",
 "type": "object",
 "properties": {
 "name": {"type": "string" },
 "builder": {"type": "string" },
 "uri": { "type": "string" },
 "setup": {
 "type": "array",
 "items": { "type": "string" }
 }
 },
 "required": ["name","uri","setup"]
}

Listing 3.5: JSON schema for declarung each tool configurator.

Thus, a tool configuration is a JSON file with the following information: name of the file where is defined the execution context execution context (ex: DockerConfig); builder name of the execution context (ex: Docker);
setup}, i.e., the scripts that are necessary to execute to assure the existence of the execution context; and the uri where the tool is. Next example describes that the tool is on a docker image and thus is necessary to install docker in the execution context.

{
 "name" : "DockerConfig",

 "builder": "Docker"

 "uri" : "simonalpha/ncbi-blast-docker",

 "setup" : [
 "wget -qO- https://get.docker.com/ | sh"
]
}

Example 3.15: Example of a tool configurator for the blast tool.

Defining your own tool repository

Each user can define its own tool repository, locally or remotely and use NGSPipes support library.
The simplest way to do this it to use an hierarchical directory system approach, either locally or remotely.
For a different form of structuring data, it would probably be necessary to extend NGSPipes support library.

Using an hierarchical directory system approach

In this section it will be described how to use an hierarchical directory system approach for defining a new tool repository, locally and remotely. For the remote case, we will use github as an example. In both cases, it is necessary to create a directory for each tool. The directory name will be seen as the tool name (the tool identifier on the repository) and is exactly the same name that is used in the pipeline definition and in the file Tools.json.
In the file Tools.json there will be a tool name for each available tool in the repository.

Each tool directory keep all the information about that tool, namely its description, its logotype, its configurators and the file name of its configurators. As mentioned before, the tool descriptor, which includes all the metadata needed to describe a tool, is given in a JSON file. As a convention, each tool descriptor file name is Descriptor.json. With respect to the logo file it should be a png file named as Logo.png. The logo file is optional. The file where is kept the file name of the configurators for a tool is also given as a JSON file, always designed as Configurators.json. For each file name specified in this file, there must exist the respective configurator JSON file.

Define a new repository locally

For defining a new repository in our own computer we have first to create a directory that will be our tool repository (ex: named as tools). Then, add to tools directory the file Tools.json and for each tool name that appears in this file, which identify a specific tool, create a new directory in tools. Each new created directory inside tools must have the corresponding name used in Tools.json to identify the tool. Each tool directory must contain the data described in the beginning of subsection “Defining your own tool repository”.

Define a new repository on github

After log-in in github, create a new repository (ex: named as tools). The endpoint of this new repository will the tool repository.
Then, after cloning your repository to your computer, it will appear a directory named as tools. Then, do the same steps of a section “Define a new repository locally” within this subsection. After that, synchronize the repository.

Tool Types

For supporting data partitioning in the engine for cloud, which will allow to executing in multiple machines partitions of data at the same time and thus increase process efficiency, the ´tool type´should be specified in a tool descriptor. Notice that this feature has only impact in the engine for cloud solution. There are four different tool types:

	data processing tools, i.e., unit;

	listing tools, i.e., splitting;

	splitting tools i.e., joining;

	joining tools i.e., listing.

Unlike unit processing tools, where each command is mapped into one task, a splitting command within a splitting tool generates one task corresponding to the splitting of the file plus N tasks per command, where N is the number of partitions of the file whereas each task processes a partition of the file.
Data partitioning allows users to work with and process multiple files having to specify each command only once, while treating the files like a single file. It means that when users split a file in ten, for instance, they do not have to include the same tool ten times in the pipeline for every partition: the analyser will do that for them.

[image: image]

Figure 3.1 Splitting and Joining tools example.

Figure 3.1 shows how a file named input is split originating three different files with the same name, stored in directories with different names.
For each partition the analyser will generate a directory where it stores the file partition with the same name it had before being partitioned. For every command specified in the pipeline description that uses the partitioned file, it is generated a task where the input path (partitioned file’s path) is concatenated with the name of the directory where the partition of the file is stored. Multiple directories are created to avoid name collision between files generated.
Joining tools generate a task to join the partitions with the name of the input, that are stored in analyser generated directories (through either splitting or listing) corresponding to that input. Commands whose input depend on the join output will no longer have their tasks multiplied per partition.
In Figure 3.2 it is depicted an example where a user wants to process different files of the same type, using the same tools, without having to specify each command more than once. Listing tools move and rename the files to match the same pattern as the splitting tools. After files are listed, they can be treated as one, as if it had been a split.
While the splitting tools are used to partition data files and apply the same command or set of commands to each partition, the listing tools allow users to

[image: image]
Figure 3.2 Listing and Joining tools example.

apply the same command or set of commands to a list of specified files. Listing tools generate a task to move the files to the newly generated directories and change the files names to match the name used in the .pipes file. Listing tools generate the same tasks as splitting and joinning tools on commands that depend from them. The listing tools purpose is to allow a user to provide multiple files and treat them as one in the .pipes file. The listing tools have two commands, startlisting and stoplisting that are similar to split and join tools, respectively, but applied when the input are multiple files (passed as a zip file).
The way data partitioning and dependencies inference is implemented, allows users to benefit from parallelization without adding complexity to the DSL and the process of writing a .pipes file.
The analyser also skims all the outputs that will be produced in order to create a list of the directories that have to exist for the swift and correct execution of the pipeline. These directories are stored in an array on the intermediate representation, under the directories property.
With the current version of the analyser, we have achieved a solution that allows users to split data and that allows to infer a topological graph from task dependencies, enabling the parallelization of the pipeline execution, without increasing the DSL complexity.

tool "Listing" "DockerConfig" {
 command "startListing" {
 argument "referenceName" "reads.sam"
 argument "filesList" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/r
 }
 }

Listing 3.6 An example of tool with type listing type.

More details on the type of tools can be found in this report [https://gitlab.com/ngs4cloud/ngs4cloud/blob/36b53a7c40b07e5aac81c170f74b90d33bcdd4d6/docs/FinalReport.pdf].

NGSPipes Editor

The NGSPipes Editor is a user-friendly editor for graphically define pipelines. Using this editor is very simple to define each processing step of the pipeline (i.e. a command) as well as the data to be used at each step (i.e., arguments).

The following sections show how to use the editor.

Download NGSPipes Editor

The NGSPipes Editor is a Java Application. To deploy this it in your system you need:

	Java Runtime Environment (JRE), version 8, which can be obtained from here [http://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html].

Download the editor from here [https://github.com/ngspipes/editor/releases].

Execute NGSPipes Editor

To run the editor, and uncompress the downloaded file. Then
you should have the following file tree:

 |-- editor-1.0\
 |-- bin\
 |-- editor (CUI OSX/Linux run script)
 |-- editor.bat (CUI Window run script)
 |-- lib\
 |-- ...

Then you can simple double click on corresponding script.

If you have OSX and you you prefer the double click version to run the editor, it may appears, only the first time after you double click it, the following info:

[image: Figure 1]

Figure 4.1: Running a jar in a first time in OSX.

Then, go to “System Preferences” and choose “Security and Privacy”

[image: Figure 2]

Figure 4.2: Selecting System Preferences in OSX.

Then select the button “Open anyway”

[image: Figure 3]

Notice that depending on the MAC OS version, it may be necessary to unlock to make changes and to select the option “Allow apps downloaded from Anywhere”

Figure 4.3: Allowing to run the jar file in OSX (just appears at the first time).

The initial GUI that appears from editor is the following:

[image: Figure 4]

Figure 4.4: Editor initial screen.

In the following sections it will be explained how to use the editor.
Moreover, in the editor’s menu, selecting help and then the menu item about, it is possible to find some tutorial videos to help to use NGSPipes Editor.

NGSPipes Editor Sections

When defining a new pipeline (we will explain how to define a new pipeline in the Section Creating a new pipeline), the editor environment will appear similar to one of Figures 4.5 and 4.6 (it depends on the edition that is being performed).

[image: Figure 5]
Figure 4.5: How NGSPipes editor looks like when defining a pipeline.

[image: Figure 6]

Figure 4.6: How NGSPipes editor looks like when consulting a possible execution order of the pipeline.

The NGSPipes Editor is composed of 5 sections: utilities; repository; tools; commands; pipeline and menu bar.
These sections are pointed out in Figure 4.7.
[image: Figure 7]

Figure 4.7: NGSPipes editor sections.

The utilities section includes all the buttons for executing the utilities actions, such as saving the active pipeline, closing it and generate the final version, when in this last case the user is asked to define the input and output directory ((see Section 6 for more information on pipeline generation). There are also in this section similar buttons for applying these actions for more than one workflow at the same time. Moreover, it is also in this section that exists a button for creating a new pipeline (see Section Creating a new pipeline) for more information).

More specifically,

	New button - Create a new pipeline;

	Open button - Open an existent pipeline;

	Save button - Save the active pipeline;

	Save Allbutton - Save all the open pipelines;

	Close button - Close the active pipeline;

	Close All button - Close all the open pipelines;

	Generate button - Generate the pipeline in the NGSPipes language, i.e., generate the file with extension .pipes for the active pipeline. This file is essential for executing the pipeline with the NGSPipes Engine (see https://github.com/ngspipes/engine/wiki for more information). With this action, the user is asked for defining the input and output directory. It is asked if it is allowed to copy the input files that are not already in the Input directory.

	Generate All button - Generate all the files with extension .pipes for all the active pipelines. For each pipeline it is applied the action of the Generate button.

Select the tools repository

When the Editor starts, it loads a local repository that is included within the tool. However, user can select other repository, either local or remote. To select other repository, go to the menu Repository and select Change repository.
In the version 1 of the Editor, there are four types that are supported, as depicted in Figure 4.8.

[image: Figure 8]

Figure 4.8: Setting the tool’s repository for the current pipeline.

The Default is a local repository that is included within the tool. To specify other local repositories, it is necessary to select the Local option and, with the search button, select the path to the repository. Instead, to specify a remote one, it is necessary to select one of the following options, github or uribased, depending on the type of the remote repository. For instance with the tools’ repository example, namely https://github.com/ngspipes/tools, please select the option github, with the URL https://github.com/ngspipes/tools.

Then, it is possible to observe the repository section on Figure 4.9.

[image: Figure 9]

Figure 4.9: How NGSPipes Editor looks like when there is no pipeline loaded/created.

In the repository section, the user may explore all the tools that are available on the repository, as well as filter them by name. It is also possible to obtain the description of a tool if we place the mouse over the tool’s logotype. Selecting a tool, will open the tool section (in Figure 4.5), Velvet is selected and the tool section is at the bottom, centered), where is possible to navigate over all the commands available within that tool. In some cases, the tool has only one command, as for instance the Trimmomatic tool. It is also possible to obtain the description of each command similarly as done for obtaining the tool description. In these sections, the user may obtain more information about a given tool, command, input or output, only by selecting a given item of one of these sections with the right button of the mouse and selecting the Description option. This option opens a new window with all the information available on the repository, as depicted in Figure 4.10.

[image: Figure 10]

Figure 4.10: Description of all tolls included in the selected repository.

The other sections, namely the pipeline and command sections will be detailed in next section.

Creating a new Pipeline

In order to create a new pipeline, after selecting the tools' repository, please select the button with a plus (in the utilities section) or go to the menu File and select the option new.

[image: Figure 11]

Figure 4.11: Creating a new pipeline in the editor.

After defining the directory where the pipeline is kept and the name of the pipeline, it will appear the pipeline section, as depicted in the following Figure.

[image: Figure 12]

Figure 4:12 The pipeline section.

The pipeline creation generates a file with extension .wf. This file keeps all information of a pipeline within the editor, not only the commands as well as the visual positions of the pipeline within the editor.

The pipeline section has two panels, the chain and the order panel.
In the chain panel, the user can add or remove commands as well as set arguments and chains. For instance, in (Figure 4.5) it was defined a chain between the trimmomatic command and the velveth command since the output file of the first one is an input file of the second one.
For more information about chains, please see https://github.com/ngspipes/dsl/wiki.
Before defining the chain, it is necessary to add the commands to execute within the pipeline. Adding a new command to the chain panel (notice that is necessary to previously select the tool in the repository section and then in the tool section select the command) is simply done by a drag and drop action.

After adding a command and double clicking on it, it appears the command section (see the right size of Figure 4.5). This section only appears when the user does a double click on a command over the chain panel. In the command section, the user can set the arguments of the selected commands as well as to confirm its generated output file names.

For defining the chain between two commands, it is necessary to drag the blue icon that appears in the command image within the chain panel, after a double click.

[image: Figure 13]

Figure 4.13: Command selection.

Then it is necessary to select the blue icon and drag it to the command to which is to do the chain operation. After that, it will appear the following figure:

[image: Figure 14]
Figure 4.14: The chain panel.

Here it is necessary to select the output to be chained as an argument to the other tool. After that, it is necessary to click on the blue icon and the chain action will be set and a black arrow will appear between both tools (see next Figure).

[image: Figure 15]
Figure 4.15: After setting a chain action betweeen two commands.

After setting the required arguments of all commands added to the pipeline and setting all the chains,
the user can observe in the order panel one of the possible inferred orders of the pipeline execution (see Figure 4.6). This order is given, assuring that command dependency and priority are preserved. For more information about command dependency and priority, please see NGSPipes repository section.

Moreover, in the editor’s menu, selecting help and then the menu item about, it is possible to find some tutorial videos to help to use NGSPipes Editor.

Generate the final pipeline version to execute

As mentioned before, creating a new pipeline generates a file with extension .wf and with the name chosen by the user. This file keeps all information of a pipeline within the editor, not only the commands as well as its visual positions.

However, if the user wants to execute the pipeline in the NGSPipes Engine (https://github.com/ngspipes/engine/wiki), it is necessary to produce a file with extension .pipes. This file is written using the NGSPipes language (https://github.com/ngspipes/dsl/wiki) and thus does not have visual information. For producing the file with extension .pipes it is necessary to select the generate button or go to File -> Generate pipeline.

Loading an existing pipeline

To load an existing pipeline, it is necessary to go to File -> Open and choose a pipeline file (with extension .wf) or select the open button.

Multiple loaded pipelines

It is possible to have multiple loaded pipelines, but just one is active.

[image: Figure 16]

Figure 4.16: Multiple loaded pipelines.

Error Reporting

Each argument of a command of a given tool has a type and may be or not optional. The required arguments (not optional)
appears in a red box.
The type of each argument must be one of the following: integer number; file; text; real number or a directory. When the user assigns an incompatible type to a given argument, the editor will generate an error message to report that situation. An example of this situation is depicted in the following figure:

[image: Figure 17]

Figure 4.17: Incompatible value type for the selected argument.

If the user does not set a compatible value to a required argument, the editor will also
generate an error message to report that situation, when generating the pipeline specification (pressing the generate button).

[image: Figure 18]

Figure 4.18: Missing a value for a required argument.

Multiple inputs

The tools can produce multiple outputs. These tools also might require multiple inputs coming from different tools or the same tool. When the multiple inputs are from the same tool, NGSPipes supports it by adding a numbered label on the arrow.
This functionality is depicted in the following figure:
[image: Figure 18]

Figure 4.19: Multiple inputs from a previous command.

Notice that this label is only visible when one of the tools is selected.

Engines

Our framework offers two engines. Based on the same definition and the same tool’s repository, a pipeline can be put to run either on the workstation or on a compatible cloud environment. Both engines analyse the pipeline description and transformation it to an executable format, determining resource requirements of each tool based on the tool configuration present in the repository.

Engine for workstation

The NGSPipes engine for workstation starts with a pipeline description and transform it into a sequence of calls to the designated tools. After this, the engine automatically configures and executes each tool in isolation from the remaining system environment (using a dedicated virtual machine).

The NGSPipes engine for workstation is available in two flavors: a command line user interface (CUI) and a graphic user interface (GUI). The first is ideal to use when running on remote servers (either physical or deployed as virtual machines in the cloud), although it can also run locally. The second one can be used in systems where a graphical display is available.

The following sections shows how to run the engine. To build from source code please follow the instructions in subsection “Instructions to build NGS Pipes Engine from source code”.

Requirements to run the engine for workstation

The machine where engine is to be executed needs the following tools:

	Java 8 Development Kit (http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html).

	VirtualBox version >= 5.0 (https://www.virtualbox.org/wiki/Downloads). NOTE: Ensure the command VBoxManage can be found by the command line of your operating system.

Install engine for workstation

The engine is made of a regular Java application and a VirtualBox’s compliant image (also identified as executor). To deploy this in your system:

	Download engine-2.0-zip [http://link.inesc-id.pt/pipes/engine-2.0.zip] from our file server and uncompress to a working directory (WD)

	Download the executor image from here [http://link.inesc-id.pt/pipes/NGSPipesEngineExecutor.zip] and uncompress to your work directory (WD\engine-1.0\)

	Follow the instructions bellow to either run in a system in a console or with a graphical interface.

After these steps you should have the following file tree:

 WD
 |-- engine-1.0\
 |-- NGSPipesEngineExecutor\
 |-- NGSPipesEngineExecutor.vbox
 |-- NGSPipesEngineExecutor.vdi
 |-- bin\
 |-- engine (CUI OSX/Linux run script)
 |-- engine.bat (CUI Window run script)
 |-- engine-ui (GUI OSX/Linux run script)
 |-- engine-ui.bat (GUI Window run script)
 |-- lib\
 |-- ...
 |-- (other files, e.g. the pipeline description)

Run the Engine for workstation

The engine is provided as a console application or a graphical user interface application.

command line tool

This is a regular Java application packed as a JAR file. To run, use the following command line at the working directory (WD):

Windows:

c:\WD>engine-1.0\bin\engine.bat <mandatory arguments> [<optional arguments>]

OSX/Linux

user@machine:/home/WD$ engine-1.0/bin/engine <mandatory arguments> [<optional arguments>]

Parameters

	The command line tool has the following mandatory parameters :

-pipes Relative ou absolute path of the pipeline description (mandatory). This file must be a .pipes extension file, where the pipeline is written using the NGSPipes language.

 Running Examples

Running Examples

A pipeline used on epidemiological surveillance

In this section we present a pipeline used on epidemiological surveillance.
The aim is to characterize bacterial strains through allelic profiles .
When sequencing a bacterial strain by paired end methods with desired depth of coverage of 100x
(in average each position in the genome will be covered by 100 reads), the output from the sequencer
will be two FASTQ files containing the reads. Each read typically will have 90-250 nucleotides length,
using Illumina technology. The first data processing step is to trim the reads for removing the adapters
used in the sequencing process and any tags used to identify the experiment in a run.

In de novo assembly, software such as Velvet is used to obtain a draft genome composed of contigs,
longer DNA sequences resulting from assembling multiple reads.
The draft genome can be compared to databases of gene alleles for multiple loci using BLAST.
Given BLAST results we can create an allelic profile characterizing the strain.

Pipeline "Github" "https://github.com/ngspipes/tools" {
 tool "Trimmomatic" "DockerConfig" {
 command "trimmomatic" {
 argument "mode" "SE"
 argument "quality" "-phred33"
 argument "inputFile" "study1/ERR406040.fastq"
 argument "outputFile" "ERR406040.filtered.fastq"
 argument "fastaWithAdaptersEtc" "study1/TruSeq3-SE.fa"
 argument "seed mismatches" "2"
 argument "palindrome clip threshold" "30"
 argument "simple clip threshold" "10"
 argument "windowSize" "4"
 argument "requiredQuality" "15"
 argument "leading quality" "3"
 argument "trailing quality" "3"
 argument "minlen length" "36"
 }
 }
 tool "Velvet" "DockerConfig" {
 command "velveth" {
 argument "output_directory" "velvetdir"
 argument "hash_length" "21"
 argument "file_format" "-fastq"
 chain "filename" "outputFile"
 }
 command "velvetg" {
 argument "output_directory" "velvetdir"
 argument "-cov_cutoff" "5"
 }
 }
 tool "Blast" "DockerConfig" {
 command "makeblastdb" {
 argument "-dbtype" "prot"
 argument "-out" "allrefs"
 argument "-title" "allrefs"
 argument "-in" "study1/allrefs.fna.pro"
 }
 command "blastx" {
 chain "-db" "-out"
 chain "-query" "Velvet" "velvetg" "contigs_fa"
 argument "-out" "blast.out"
 }
 }
}

Example 6.1: A pipeline used on epidemiological surveillance.

A visual representation of this pipeline described in Example 6.1 is presented in the Figure 6.1.
Moreover, in this figure is also possible to observe other execution orders that are feasible
to execute this pipeline in the engine for workstation.

[image: image]

Figure 6.1: Visual representation of the execution, in the engine for workstation, of the pipeline described in Example 6.1.

In the engine for cloud, different steps of the pipeline can be executed in different machines, it is only necessary to respect its depedencies, as it is shown in the Figure 2.2.

[image: image]

Figure 6.2: Visual representation of the execution, in the engine for cloud, of the pipeline described in Example 6.1.

Input data is available here [https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0]

Running this example in Engine for workstation

Note Please, be sure that the Engine for Workstation is already installed. For this, follow the steps that are in section:

Engine->Engine for Workstation-> Install engine for workstation.

Since the engine for workstation is provided as a console application or a graphical user interface application, we will describe how to do with the console application (for more information on how to user the graphical user interface, please look at the section: Engine->Engine for Workstation-> Run engine for workstation.

	After the installation, you should have the following tree file:

 WD
 |-- engine-1.0\
 |-- NGSPipesEngineExecutor\
 |-- NGSPipesEngineExecutor.vbox
 |-- NGSPipesEngineExecutor.vdi
 |-- bin\
 |-- engine (CUI OSX/Linux run script)
 |-- engine.bat (CUI Window run script)
 |-- engine-ui (GUI OSX/Linux run script)
 |-- engine-ui.bat (GUI Window run script)
 |-- lib\
 |-- ...
 |-- (other files, ...)

	Download the data available here [https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0]

	After unzipping, the directory content look like, for instance,

/home/ngspipes/study1
 |-- allrefs.fna.pro
 |-- ERR406040.fastq
 |-- NexteraPE-PE.fa
 |-- TruSeq2-PE.fa
 |-- TruSeq2-SE.fa
 |-- TruSeq3-SE.fa
 |-- TruSeq3-PE-2.fa
 |-- TruSeq3-PE.fa
 |-- TruSeq3-SE.fa

	Create a file casestudy1.pipes(.pipesis the extension containing the pipeline previously described in Figure 6.1. Assume that, on the following
casestudy1.pipes is inside the directory study1.

	Create the outputs directory (/home/ngspipes/outputs)

	Execute the engine at your working directory using the following command line:

Windows

c:\ngspipes>engine-1.0\bin\engine.bat -in c:\ngspipes\study1 -out c:\ngspipes\outputs -pipes c:\ngspipes\casestudy1.pipes

OSX/Linux

ngs@server:/home/ngspipes$engine-1.0/bin/engine -in /home/ngspipes/inputs -out /home/ngspipes/outputs -pipes /home/ngspipes/casestudy1.pipes

Example and description of output messages

Initial steps of the output will look like this:

Loading engine directories
Loading engine resources
Using classpath C:/Users/user/NGSPipes/Engine/dsl-1.0.jar;
 C:/Users/user/NGSPipes/Engine/repository-1.0.jar
Getting engine requirements
Getting clone engine
Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
...... Clonning engine
Configurating engine
Starting execute engine
Booting engine and installing necessary packages
...

Note that the cloning step only happens in the first execution of the engine. On the other hand, when a tool is used for the first in any pipeline, the engine will automatically download and install the corresponding Docker image. An example of output for when this is necessary is presented for the Trimmomatic tool:

...
TRACE :: STARTED ::
TRACE Running -> Step : 1 Tool : Trimmomatic Command : trimmomatic
INFO Executing : sudo docker run -v /home/ngspipes/Inputs/:/shareInputs/:rw -v
 /home/ngspipes/Outputs/:/shareOutputs/:rw
 ngspipes/trimmomatic0.33 java -jar trimmomatic-0.33.jar SE
 -phred33 /shareInputs/ERR406040.fastq /shareOutputs
 ERR406040.filtered.fastq
 ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
 SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36
INFO Unable to find image 'ngspipes/trimmomatic0.33:latest' locally
INFO latest: Pulling from ngspipes/trimmomatic0.33
INFO 511136ea3c5a: Pulling fs layer
INFO e977d53b9210: Pulling fs layer
INFO c9fa20ecce88: Pulling fs layer
...
INFO 6cf3f4911f80: Download complete
INFO Digest: sha256:44f1dea760903cdce1d75c4c9b2bd37803be2e0fbbb9e960cd8ff27048cbb997
INFO Status: Downloaded newer image for ngspipes/trimmomatic0.33:latest
INFO TrimmomaticSE: Started with arguments: -phred33 /shareInputs/ERR406040.fastq
 / shareOutputs/ERR406040.filtered.fastq
 ILLUMINACLIP:/shareInputs/adapters/TruSeq3-SE.fa:2:30:10
 SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36
...

Note that this tool was previously dockerized by the NGSPipes team. For other tools, such as Velvet or Blast, there is already public Docker images which the example pipeline uses.

When the execution finish, the following files will be at the working directory:

home/ngspipes/outputs
 |-- allrefs.phr
 |-- allrefs.pin
 |-- allrefs.psq
 |-- blast.out
 |-- filtered.fastq
 |-- velvetdir/
 |-- Log
 |-- Roadmaps
 |-- Sequences
 |-- contigs.fa
 |-- LastGrpah
 |-- stats.txt

Running this example in Engine for Cloud

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

	the ip of the virtual machine is configured

	the environment variable is stablished on the terminal that you are executing the monitor.
For managing these settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

 WorkingDirectory
 |-- Analyser\
 |-- ngs4cloud-analyser-1.0-SNAPSHOT\
 |-- bin
 |--ngs4cloud-analyser
 |--ngs4cloud-analyser.bat (CUI Window run script)
 |-- Monitor\
 |-- monitor.jar
 |-- (other files,...)

	Input data is available here [https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0], but is not necessary to download. Input data in Engine for Cloud engine is always passed as an URI.

	Create a file casestudy1.pipes(.pipesis the extension containing the pipeline previously described in Figure 6.1. Assume that, on the following,
casestudy1.pipes is inside the directory ngs4cloud-analyser-1.0-SNAPSHOT.

	Start by execution the analyser tool, in order to produce an file with jsonextension.

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
 -pipes casestudy1.pipes
 -ir ir1.json
 -input https://www.dropbox.com/s/h8e8t3prt9f0gq3/study1.zip?dl=0
 -outputs blast.out velvetdir/contigs.fa

	This execution will produce the file ir1.json.

	Then, copy the ir1.json inside to directory Monitor

	Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
 Install the engine for cloud -> Install the monitor

	Launch the pipeline into the cluster through the monitor command

ngs@server:Monitor$ java -jar monitor.jar launch ir1.json

	The previous command with generate a pipeline id. Assume in this example that the id is 1.

	Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 1

	After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 1 resultsDirectory

	resultsDirectory is the directory that contains a copy of the outputs that where previously specified by the analyser that should be copied; 1 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

A pipeline used on ChiP-Seq analysis

In this section we present a pipeline used on ChiP-Seq analysis. This
pipeline includes mapping with bowtie2, converting the output to bam format, sorting the bam file, creating a bam index file, running flagstat command, and removing duplicates with picard. So, this pipeline can be used in a ChiP-Seq pipeline that uses the resulting bam file for peak calling and creating heatmaps. Since those steps are generic that can be used for ATAC-Seq analysis too.

Pipeline "Github" "https://github.com/ngspipes/tools" {
 tool "Bowtie2" "DockerConfig" {
 command "bowtie2-build" {
 argument "reference_in" "study2/sequence.fasta"
 argument "bt2_base" "sequence"
 }
 }
 tool "Bowtie2" "DockerConfig" {
 command "bowtie2" {
 argument "-U" "study2/SRR386886.fastq"
 argument "-x" "sequence"
 argument "--trim3" "1"
 argument "-S" "eg2.sam"
 }
 }
 tool "Samtools" "DockerConfig" {
 command "view" {
 argument "-b" "NA"
 argument "-o" "eg2.bam"
 chain "input" "-S"
 }
 }
 tool "Samtools" "DockerConfig" {
 command "sort" {
 argument "-o" "eg2.sorted.bam"
 chain "input" "-o"
 }
 }
 tool "Picard" "DockerConfig" {
 command "MarkDuplicates" {
 chain "INPUT" "-o"
 argument "OUTPUT" "marked_duplicates.bam"
 argument "REMOVE_DUPLICATES" "true"
 argument "METRICS_FILE" "metrics.txt"
 }
 }
}

Example 6.2: A pipeline used on ChiP-Seq analysis.

A visual representation of this pipeline is presented in the next figure.

[image: image]

Figure 6.2: Visual representation of the execution, in both engines, of the pipeline described in Example 6.2.

Running this example in Engine for workstation

Similar to the prevous example.

Running this example in Engine for Cloud

It is similar to the previous example.

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

	the ip of the virtual machine is configured

	the environment variable is stablished on the terminal that you are executing the monitor.
For managing these settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

 WorkingDirectory
 |-- Analyser\
 |-- ngs4cloud-analyser-1.0-SNAPSHOT\
 |-- bin
 |--ngs4cloud-analyser
 |--ngs4cloud-analyser.bat (CUI Window run script)
 |-- Monitor\
 |-- monitor.jar
 |-- (other files,...)

	Input data is available here [https://www.dropbox.com/s/filps3qavvhjta7/study2.zip?dl=0], but is not necessary to download. Input data in Engine for Cloud engine is always passed as an URI.

	Create a file casestudy2.pipes(.pipesis the extension containing the pipeline previously described in Figure 6.2. Assume that, on the following,
casestudy2.pipes is inside the directory ngs4cloud-analyser-1.0-SNAPSHOT.

	Start by execution the analyser tool, in order to produce an file with jsonextension.

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
 -pipes casestudy2.pipes
 -ir ir2.json
 -input https://www.dropbox.com/s/filps3qavvhjta7/study2.zip?dl=0
 -outputs metrics.txt

	This execution will produce the file ir2.json.

	Then, copy the ir2.json inside to directory Monitor

	Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
 Install the engine for cloud -> Install the monitor

	Launch the pipeline into the cluster through the monitor command

ngs@server:Monitor$ java -jar monitor.jar launch ir2.json

	The previous command with generate a pipeline id. Assume in this example that the id is 2.

	Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 2

	After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 2 resultsDirectory2

	resultsDirectory is the directory that contains a copy of the outputs that where previously specified by the analyser that should be copied; 2 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

A pipeline using listing tools

A specific use of NGS data in public health is the determination of the relationship between samples potentially
associated with a foodborne pathogen outbreak. This relationship can be determined from the phylogenetic analysis
of a DNA sequence alignment containing only variable positions, which we refer to as a SNP matrix. The applications
of such a matrix include inferring a phylogeny for systematic studies and determining within traceback investigations
whether a clinical sample is significantly different from environmental/product samples.

This case study is a pipeline which combines all the steps necessary to construct a reference-based SNP matrix
from an NGS sample data set.The pipeline starts with the mapping of NGS reads to a reference genome using Bowtie2,
then it continues with the processing of those mapping (BAM) files using SAMtools, identification of variant sites
using VarScan3, and ends with the production of a SNP matrix using custom Python scripts (calling of SNPs at each variant
site, combining the SNPs into a SNP matrix). The Python scripts are reused from
the CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20.
As it can be observed in this data set, there are four samples, whose dataflow process is more detailed in the documentation page [http://snp-pipeline.readthedocs.io/en/latest/dataflow.html] of this pipeline.

Pipeline "Github" "https://github.com/Vacalexis/tools" {
 tool "snp-pipeline" "DockerConfig" {
 command "create_sample_dirs" {
 argument "-d" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/*"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 }
 }

 tool "Bowtie2" "DockerConfig" {
 command "bowtie2-build" {
 argument "reference_in" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta"
 argument "bt2_base" "reference"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/sample1_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads1.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/sample2_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/sample3_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam"
 }
 command "bowtie2" {
 argument "-p" "1"
 argument "-q" "-q"
 argument "-x" "reference"
 argument "-1" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_1.fastq"
 argument "-2" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/sample4_2.fastq"
 argument "-S" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"
 }

 }
 tool "Listing" "DockerConfig" {
 command "startListing" {
 argument "referenceName" "reads.sam"
 argument "filesList" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads1.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads2.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads3.sam snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reads4.sam"
 }
 }
 tool "Samtools" "DockerConfig" {

 command "view" {
 argument "-b" "-b"
 argument "-S" "-S"
 argument "-F" "4"
 argument "-o" "reads.unsorted.bam"
 argument "input" "reads.sam"
 }
 command "sort" {
 argument "-o" "reads.sorted.bam"
 argument "input" "reads.unsorted.bam"
 }
 command "mpileup" {
 argument "--fasta-ref" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/reference/lambda_virus.fasta"
 argument "input" "reads.sorted.bam"
 argument "--output" "reads.pileup"
 }
 }
 tool "VarScan" "DockerConfig" {
 command "mpileup2snp" {
 argument "mpileupFile" "reads.pileup"
 argument "--min-var-freq" "0.90"
 argument "--output-vcf" "1"
 argument "output" "var.flt.vcf"
 }
 }
 tool "Listing" "DockerConfig" {
 command "stopListing" {
 argument "referenceName" "var.flt.vcf"
 argument "destinationFiles" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/var.flt.vcf snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/var.flt.vcf"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "create_snp_list" {
 argument "--vcfname" "var.flt.vcf"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt"
 argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 }
 }
 tool "Listing" "DockerConfig" {
 command "restartListing" {
 argument "referenceName" "reads.pileup"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "call_consensus" {
 argument "--snpListFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt"
 argument "--output" "consensus.fasta"
 argument "--vcfFileName" "consensus.vcf "
 argument "allPileupFile" "reads.pileup"
 }
 }
 tool "Listing" "DockerConfig" {
 command "stopListing" {
 argument "referenceName" "consensus.fasta"
 argument "destinationFiles" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample1/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample2/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample3/consensus.fasta snp-pipeline-master/snppipeline/data/lambdaVirusInputs/samples/sample4/consensus.fasta"
 }
 }
 tool "snp-pipeline" "DockerConfig" {
 command "create_snp_matrix" {
 argument "sampleDirsFile" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/sampleDirectories.txt"
 argument "--consFileName" "consensus.fasta"
 argument "--output" "snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snpma.fasta"
 }
 }
}

[image: image]

Figure 6.3: Figure from Davis S, Pettengill JB, Luo Y, Payne J, Shpuntoff A, Rand H, Strain E. (2015) CFSAN SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence data. PeerJ Computer Science 1:e20 https://doi.org/10.7717/peerj-cs.20

Running this example in Engine for Cloud

It is similar to the previous example. Note that this tool types are only avaiable for running in the Engine for Cloud.

Note Please, be sure that the Engine for Cloud is already installed. For this, follow the steps that are in section:

Engine->Engine for Cloud-> Install engine for cloud.

If previously installed, please ensure that:

	the ip of the virtual machine is configured

	the environment variable is stablished on the terminal that you are executing the monitor.
For managing these settings, please also consult the section:

Engine->Engine for Cloud-> Install engine for cloud.

After the installation, you should have the following tree file:

 WorkingDirectory
 |-- Analyser\
 |-- ngs4cloud-analyser-1.0-SNAPSHOT\
 |-- bin
 |--ngs4cloud-analyser
 |--ngs4cloud-analyser.bat (CUI Window run script)
 |-- Monitor\
 |-- monitor.jar
 |-- (other files,...)

	Input data is available here [https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/master.zip], but is not necessary to download. Input data in Engine for Cloud engine is always passed as an URI.

	Create a file casestudy3.pipes(.pipesis the extension containing the pipeline previously described in Figure 6.3. Assume that, on the following,
casestudy3.pipes is inside the directory ngs4cloud-analyser-1.0-SNAPSHOT.

	Start by execution the analyser tool, in order to produce an file with jsonextension.

OSX/Linux

ngs@server:ngs4cloud-analyser-1.0-SNAPSHOT$./bin/ngs4cloud-analyser analyse
 -pipes casestudy3.pipes
 -ir ir3.json
 -input https://github.com/CFSAN-Biostatistics/snp-pipeline/archive/master.zip
 -outputs snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snplist.txt snp-pipeline-master/snppipeline/data/lambdaVirusInputs/snpma.fasta

	This execution will produce the file ir3.json.

	Then, copy the ir3.json inside to directory Monitor

	Before executing the Monitor, please assure that the Virtual Machine with the cluster image given for test purposes is lauched and correctly settled (please, see the section

Engine->Engine for cloud->
 Install the engine for cloud -> Install the monitor

	Launch the pipeline into the cluster through the monitor command

ngs@server:Monitor$ java -jar monitor.jar launch ir3.json

	The previous command with generate a pipeline id. Assume in this example that the id is 3.

	Consult the status of the pipeline by its id

ngs@server:Monitor$ java -jar monitor.jar status 3

	After pipeline is finished, it is possible to download its results from the cluster to a previously defined directory inside the Monitordirectory.

ngs@server:Monitor$ java -jar monitor.jar outputs 3 resultsDirectory3

	resultsDirectory is the directory that contains a copy of the outputs that where previously specified by the analyser that should be copied; 3 is the pipeline ìd

For more information about the analyser and monitor commands and its parameters, please see section

Engine->Engine for cloud->Run the engine for cloud

//: # (##A pipeline using split and join tools (for executing only with Engine for Cloud))

 Index

Index

 NGSPipes overview

NGSPipes overview

NGSPipes is a framework to easily design and use pipelines, relying on state of the art cloud technologies to execute them without users need to configure, install and manage tools, servers and complex workflow management systems.

[image: Overview of NGSPipes System]
Figure 1.1: Overview of NGSPipes System.

NGSPipes Team

	Alexandre Almeida, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Bruno Dantas, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Calmenelias Fleitas, ADEETC, ISEL, Instituto Politécnico de Lisboa

	João Forja, ADEETC, ISEL, Instituto Politécnico de Lisboa

	Alexandre P. Francisco, INESC-ID / CSE Dept, IST, Universidade de Lisboa [https://web.ist.utl.pt/aplf/]

	José Simão, INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa [http://www.cc.isel.ipl.pt/membros/paginas-pessoais/jose-simao/]

	Cátia Vaz , INESC-ID / ADEETC, ISEL, Instituto Politécnico de Lisboa [http://pwp.net.ipl.pt/cc.isel/cvaz/]

For more information please contact us at ngspipes_at_gmail.com

_static/comment-close.png

_static/down.png

_static/ajax-loader.gif

_static/up.png

_images/editor_fig6.png
Fie Repostory Window Help

@ e x
o ® x @

TrimmBmatc

P

=

Velvet

K

K

8. NGSPipes Editor

B ppsine .

oran | o

Tool : Trimmomatic

Command : trmmomatic

Tool : Velvet

Command : veveth

blastx

KK

_static/down-pressed.png

_images/EngineWrongArgument-CMD.png
E:\Desktop\NGSPipesTeam\Demo>engine-1.08\bin\engine -pipes pipeline4.pipes -in E:\Desktop\NGSPipesTeq
m\Demo\MinimalInputs -out E:\Desktop\NGSPipesTeam\Demo\MinimalOutputs
Loading engine directories
Loading engine resources
Using classpath C:/Users/Calmenelias/NGSPipes/Engine/dsl-1.0.jar;C:/Users/Calnenelias/NGSPipes/Engin
e/repository-1.0. jar
Getting engine requirements
Starting executor with 2 CPUs and 12 GBytes
::xxPress ENTER to cancelxx::
Registering engine
Engine registered
Configuring engine
x Download time of docker images may take some time, depending on you network speed x
Starting execute engine
Booting engine and installing necessary packages
TRACE ~ Running -> Step : 1 Tool : Trimmomatic Command : trimmomatic
INFO Executing : sudo docker run -u /home/ngspipes/Inputs/:/sharelnputs/:ru -u /home/ngspipes/Out]
puts/:/shareOutputs/:ru ngspipes/trimmomatic®.33 java -jar trimmomatic-0.33.jar SE -phred33 /shareIn
puts/ERR406040. fastq /shareOutputs/ERRHO6040. filtered. fastq ILLUMINACLIP:/shareInputs/TrusSeq3-SE.fa
:2:30:10 SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36
INFO TrimmomaticSE: Started with arguments: -phred33 /shareInputs/ERR496040.fastq /shareOutputs/E|
RR4O6040. filtered. fastq ILLUMINACLIP:/shareInputs/TruSeq3-SE.fa:2:30:10 SLIDINGWINDOU:4:15 LEADING:3
TRAILING:3 MINLEN:36
INFO Automatically using 2 threads
INFO Using Long Clipping Sequence: ’AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA
INFO Using Long Clipping Sequence: 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC
INFO ILLUMINACLIP: Using © prefix pairs, 2 forward/reverse sequences, ® forward only sequences, 0
reverse only sequences
INFO Exception in thread "Thread-8" java.lang.NullPointerException

INFO at org.usadellab.trimmomatic.fastq.FastqRecord.<init>(FastqRecord. java:24
INFO at org.usadellab.trimmomatic.fastq.FastqParser.parseOne(FastqParser . java:81
INFO at org.usadellab.trimmomatic.fastq.FastqParser.next(FastqParser.java:171
INFO at org.usadellab.trimmomatic.threading.Parserliorker .run(Parserliorker. java:42
INFO at java.lang.Thread.run(Thread.java: 745

INFO Input Reads: 212000 Surviving: 203476 (35.98%) Dropped: 8524 (4.82%)

INFO TrimmomaticSE: Completed successfully

INFO Command sudo docker run -u /home/ngspipes/Inputs/:/shareInputs/:ru -u /home/ngspipes/Outputs|
/:/shareOutputs/:ru ngspipes/trimmomatic®.33 java -jar trimmomatic-0.33.jar SE -phred33 /shareInputs|
/ERR406040. fastq /shareOutputs/ERR4O6040. filtered. fastq ILLUMINACLIP:/shareInputs/TruSeq3-SE.fa:2:3
©:10 SLIDINGWINDOW:4:15 LEADING:3 TRAILING:3 MINLEN:36 finished with Exit Code = ©

TRACE Running -> Step : 2 Tool : Ueluet Command : velueth

ERROR Error : Invalid Argument hash_length of type int from Command velueth : xpto is not an Int y
alue!

TRACE :: FINISHED :

Finishing engine

Engine unregister

E: \Desktop\NGSPipesTeam\Deno>,,

_static/comment.png

_images/arch_pic.png
Text editor Rich pipeline editor

Pipeline “https://...” {
tool { command{...} }
tool { command{...}

command{...}}

binary < pipes pipes > jobs

}

v

Tools metadata repository Q Tools images otter T

Resource f QUIES0S Mesos Chronos
Configurator fesdlEngine Image Agents Master Scheduler
(Chronos) Gifer
Virtual Machine Host schedulers
Shared
Directory Q e —

C}‘ _____ O Network File
ZooKeeper System

_images/editor_fig16.png

_images/screen-main.png
- O

%\lGSPipes @
[y

Engine

Run Pipeline)|Load Pipeline|
L X SRemove pipeline|

Recent Pipelines | Engines

searcha

in

peli

\NGSPipes\Pipeline. pipes

\NGSPipes\PipelineT.pipes 8

Pipelines List

_images/editor_fig5.png
ece '8, NGSPipes Editor |
File Repostory Window Help

I B pooine N

perermy Tool: Trimmomatic

[

| Number of Arguments:

Number of Outputs: 5

4 Order:

l Configurator:

- %)
1

9}

‘ %

trimmomatic

Arguments | Outputs

veveth
threads

Velvet

qualty

K

veivetg

oy trmiog

inputFile o)

_images/EngineMustUseArgument-CMD.png
E:\Desktop\NGSPipesTeam\Demo>engine-1.0\bin\engine -pipes pipeline3.pipes -in E:\Desktop\NGSPipesTeal
m\Demo\MinimalInputs -out E:\Desktop\NGSPipesTeam\Demo\MinimalOutputs
Loading engine directories
Loading engine resources
Using classpath C:/Users/Calmenelias/NGSPipes/Engine/dsl-1.0.jar;C:/Users/Calnenelias/NGSPipes/Engin
e/repository-1.0. jar
Getting engine requirements
Starting executor with 2 CPUs and 12 GBytes
::xxPress ENTER to cancelxx::
Registering engine
Engine registered
Configuring engine
x Download time of docker images may take some time, depending on you network speed x
Starting execute engine
Booting engine and installing necessary packages
TRACE Running -> Step : 1 Tool : Trimmomatic Command : trimmomatic
ERROR Error : Argument mode from Command trimmomatic is required
TRACE :: FINISHED :
Finishing engine
Engine unregister

_static/plus.png

_images/editor_fig17.png
File Repository Window Help

a °© g K B Workflow .

Tool: Velvet
Chain | Order

« Command: velveth

Number of Argumen

= Number of Outputs: 3
W Error X P

Order: 3
Invalid Argument hash_length of type int from

Command velveth : xpto is not an Int value! [LLUETNEILTN DockerConfig
T |

Sat .

Arguments | Outputs

noasn T
velvetg makeblastdb

trimmomatic velveth

reuse_Sequenc.

Velvet

create_binary

blastx
file_format fastq
read_type
filename filtered.fastq o)

2l

_images/editor_fig11.png
Fie Repostory Window Help

Be x o K Y]

o ® & Beos b

Workfiow Name
Trimmomatic

= =
T ——

_images/editor_fig2.png
General

Displays.

Cloud

n

Usars &
Groups.

Flash Player

System Preferences

2 B E O

Deskiop &
Soreen Saver

®)

Energy
Saver

o

Internet
Accounts

Parental
Controls

<
|
Java

Dock

B

Keyboard

-
Extensions.

e

App Store.

w

Tox.
Distrbution

Mission Language
Control & Region

Mouse Trackpad

@ 0

Network Biuetooth

y &
Oitaton Dato 8 Time
SSpeeen

o

-

Printers &
Scamners

Sharing

(SN
St
B

Spotight

Y

Sound

®

Time
Machine

Notifcations

@

Accessibity

_images/engine_fig5.png
00 <

I Fiovaut Firowal Privacy

Alogin password has been set for this user |_Change Password...

9 i paseword mmoditaly] aforseap o screen savr bogie

Allow apps downloaded from:

“EngineUl jar" was blocked from opening bocause itis Open Anyway
ot from an identified developer.

() Gtk th ook to mak changes. -

_images/dsl_fig1.png
trimmomatic trimmomatic ‘makeblastdb

@ﬁﬁ

=>
‘Alignment

nav.xhtml

 Table of Contents

 		Welcome to NGSPipes' documentation!

 		NGSPipes overview

 		NGSPipes Team

 		NGSPipes DSL

 		Primitives

 		Pipeline

 		tool

 		command

 		argument

 		chain

 		Full NGSPipes DSL syntax

 		Examples

 		A pipeline used on epidemiological surveillance

 		A pipeline used on ChiP-Seq analysis

 		A pipeline using listing tools (for executing only with Engine for Cloud)

 		NGSPipes repository

 		Tool names

 		Tool descriptors

 		Command descriptions

 		Examples of the mapping of the arguments and output descriptions to command parameters.

 		Tool configurators

 		List of configurators of a tool

 		Tool Configurators

 		Defining your own tool repository

 		Using an hierarchical directory system approach

 		Tool Types

 		NGSPipes Editor

 		Download NGSPipes Editor

 		Execute NGSPipes Editor

 		NGSPipes Editor Sections

 		Select the tools repository

 		Creating a new Pipeline

 		Generate the final pipeline version to execute

 		Loading an existing pipeline

 		Multiple loaded pipelines

 		Error Reporting

 		Multiple inputs

 		Engines

 		Engine for workstation

 		Requirements to run the engine for workstation

 		Install engine for workstation

 		Run the Engine for workstation

 		Instructions to build NGS Pipes Engine for workstation from source code

 		Engine for cloud

 		Requirements to run the engine for cloud

 		Install the engine for cloud

 		Run the Engine for cloud

 		Running Examples

 		A pipeline used on epidemiological surveillance

 		Running this example in Engine for workstation

 		Running this example in Engine for Cloud

 		A pipeline used on ChiP-Seq analysis

 		Running this example in Engine for workstation

 		Running this example in Engine for Cloud

 		A pipeline using listing tools

 		Running this example in Engine for Cloud

_images/EngineMustUseArgument.png
NGSPipes Engine -

%NGSPiPcs
Engine
| P

Recent Pipelines | Engines | pipeline3 pipes

Pipeline: E\Desktop\NGSPipesTeam\Demo\pipeline3.pipes

e . ‘E‘:l\SDeskmp\NGSPlpesTeam\Dema\MlnlmaIOmp

Inputs Directory: E\Desktop\NGSPipesTeam\Demo\Minimalinputs
Engine Name: NGSPipesEngineExecutor
Fom: 1 Tor 5

Trace Info

Error : Argument mode from Command trimmomatic s required!

_images/editor_fig4.png
ece ‘8. NGSPipes Editor
Fie Repostory Window Help

B e x K 2

oW % 8

Trmmematic
Arguments | Outputs

Blast

K

blast bastn

Velvet

_images/screen-execute.png
NGSPipes
Engine

% Running Pipeline
E\NGSPipes\Pipeline.pipes

Results Directory: E\Outputs Running Pipeline
Configurations
Inputs Directory: E\NGSPipes

Engine Name: NGSPipesEngineExecutorl

o= 4 T 4 Stop Pipeline
Execution

£ STARTED
Running -> Step 1 Tool : Timmomatic Command : trimmomatic

Running -> Step 2 Tool : Velvet Command : velveth
Running -> Step 3 Tool : Velvet Command : velvetg
FINISHED

Running Pipeline
Process Info

_images/editor_fig14.png
Fie Repostory Window Help

@ e x IK ppeine
o™ ¥ @ o g

©

outputFile

trim

Choose chain

Arguments | Outputs.

_images/editor_fig1.png
“EngineUljar" can't be opened because it
is from an unidentified developer.

Your socuity praferonces aliow instaliaton of nly
apps fom the Mac App Store and dertied
dovelopers.

flo yostorday at 20,07

_images/tools_fig2.png
[NGS
tool
Jinput1 JA/input JAJoutput
[Listing NGS Listing
tool tool tool
finput2 s::;';:‘s;:;a JBlinput JBloutput S:Z,':.L.:.S;:.?
[NGS
tool
Jinput3 UClinput ICloutput

)

Joutput

_images/dsl_fig1_parallel.png
makeblastdb

_images/editor_fig19.png
File Repository Window _ Help.

_images/engine_fig4.png
General

Displays.

Cloud

n

Usars &
Groups.

Flash Player

System Preferences

2 B E O

Deskiop &
Soreen Saver

®)

Energy
Saver

o

Internet
Accounts

Parental
Controls

<
|
Java

Dock

B

Keyboard

-
Extensions.

e

App Store.

w

Tox.
Distrbution

Mission Language
Control & Region

Mouse Trackpad

@ 0

Network Biuetooth

y &
Oitaton Dato 8 Time
SSpeeen

o

-

Printers &
Scamners

Sharing

(SN
St
B

Spotight

Y

Sound

®

Time
Machine

Notifcations

@

Accessibity

_images/screen-config.png
Inputs path:
| EANGSPipes

Engine: ‘NGSPlpesEnglneExeommﬂ -

Engine will use: 4983 MB

Engine willuse: 2 Processors (s

_images/engine_fig6.png
User
[Biologist]

|
Provides a pipeline description file

Analyser
[Java 8 process)

~— Analises the pipeline and produces -
Writes to ‘a description of how it should be Reads from
executed, along with the required
computational resources.

Intermediate representation

[File system] Tool metadata repository

[Local hierarchical directory]

Stores pipeline exscution Stores information about tools,
ptructions. such as the memory needed to
execute), the commands and
the arguments of each command.

Monitor

[Java 8 process]
Reads fror Converts pipeline execution
intructions to jobs’s descriptions
readable by Chronos.

Sends jobs Queries jobs’s states
[HTTPS] [HTTPS]
e
__f Chronos

[Mesos cluster]

_images/dsl_fig2.png

_images/tools_fig1.png
Splitte

finput

NGS

B Pl e
JAJinput JAJoutput
.l > ’;‘Io%s DE > Joiner]
/Blinput JBloutput

N NGS

_'I tool |

IClinput ICloutput

Joutput

_images/editor_fig15.png

_images/editor_fig8.png
8 NGS¥
Fie Repository Window Help

B e x i Crange Repostary

ot

C—

Local

UriBased
Defauit
Github

Trimmomatic

=
<

%

Velvet

-
AN

_images/editor_fig9.png
Fie Repostory Window Help

_images/EngineWrongArgument.1.png
7 NGSPipes Engine - u]

%NGSPiPCS
Engine
> 4

Recent Pipelines | Engines | pipelined.pipes X

Pipeline: E\Desktop\NGSPipesTeam\Demo\pipeline4.pipes
Results Directory: E\Desktop\NGSPipesTeam\Demo\MinimalOutputs
Inputs Directory: E\Desktop\NGSPipesTeam\Demo\Minimalinputs
Engine Name: NGSPipesEngineExecutor

Fom: 1 Tor 5

Trace Info

Error : Invalid Argument hash_length of type int from Command velveth : xpto is not
an Int value!

_images/editor_fig18.png
File Repository Window Help

a °© S I B workiow x 4
) Bl Tool: Trimmomatic
o P &kl Chain | Order
= Command: trimr
Number of Arguments:
Number of Outputs:
B Error X
A Order:
ey’ Argument mode from Step number 2 i required!
Configurator: e]
Trimmomatic

Arguments | Outputs

trimmomatic velvetg

threads

trimlog
blastx
inputFile D\Desktop\NGSPipeswt | .0
paired input 1 e

naired innit 2

-)
1 Ll e

_images/editor_fig7.png
ece 8, NGSPipes Editor |
File Repostory Window Help

| & peoine

Chain | Order Tool: Trimmomatic
Command: trimmomatic
Number of Arguments: (2) 23

Number of Outputs: 5

Order:

Configurator:

trimmomatic

Arguments | Outputs

threads.

qualty

trmiog

inputFie

_images/editor_fig3.png
00 <

I Fiovaut Firowal Privacy

Alogin password has been set for this user |_Change Password...

9 i paseword mmoditaly] aforseap o screen savr bogie

Allow apps downloaded from:

“EngineUl jar" was blocked from opening bocause itis Open Anyway
ot from an identified developer.

() Gtk th ook to mak changes. -

_images/dsl_fig3.jpeg
Bowtie2:
Align samples to reference

Samtools:
Generate pileups

Varscan: Call variants

Custom Python script:
Generate merged SNP list,

Custom Python script:
Generate SNP matrix

_images/screen-load.png
Load fifeﬁne:

Results path:
(

Inputs path:
(

Engine: | NGSPipesin.. ~ |

_images/engine_fig3.png
“EngineUljar" can't be opened because it
is from an unidentified developer.

Your socuity praferonces aliow instaliaton of nly
apps fom the Mac App Store and dertied
dovelopers.

flo yostorday at 20,07

_static/minus.png

_images/editor_fig12.png

_images/editor_fig10.png
Tool Description

Repository

~

http://www.usadellab.org/cms/?page=trimmomatic

http://bioinformatics.oxfordjournals.o