

Welcome to nglpy-cuda’s documentation!

Contents:

	nglpy-cuda
	Prerequisites

	Installation

	Build

	Usage

	Installation
	Stable release

	From sources

	Usage

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Deploying

	Credits
	Development Lead

	Contributors

	History
	0.2.0 (2018-10-03)

	0.1.0 (2018-07-15)

Indices and tables

	Index

	Module Index

	Search Page

nglpy-cuda

[image: PyPi]
 [https://pypi.python.org/pypi/nglpy_cuda][image: Travis-CI]
 [https://travis-ci.org/maljovec/nglpy_cuda][image: Coveralls]
 [https://coveralls.io/github/maljovec/nglpy_cuda?branch=master][image: Documentation Status]
 [https://nglpy-cuda.readthedocs.io/en/latest/?badge=latest][image: Pyup]
 [https://pyup.io/repos/github/maljovec/nglpy_cuda/][image: nglpycu]

A reimplementation of the Neighborhood Graph Library
(NGL [http://www.ngraph.org/]) developed by Carlos Correa and Peter Lindstrom that
supports pruning a graph on the GPU. Developed as a
replacement for nglpy [https://github.com/maljovec/nglpy] where a CUDA-compatible GPU is
available.

Given a set of arbitrarily arranged points in any dimension, this library is
able to construct several different types of neighborhood graphs mainly focusing
on empty region graph algorithms such as the beta skeleton family of graphs.

Consider using an optimized approximate nearest neighbor library (see ann-benchmarks [http://ann-benchmarks.com/]
for an updated list of algorithms and their relative performance) to construct the
initial graph to be pruned, otherwise this library will rely on the exact k-nearest
algorithm provided by scikit-learn [http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.NearestNeighbors.html#sklearn.neighbors.NearestNeighbors].

Prerequisites

Nvidia CUDA Toolkit (TODO: determine minimum version number) - tested on 9.1.

Otherwise, all other python requirements can be installed via pip:

pip install -r requirements.txt

Installation

There is an experimental package available on pip, however the prerequisite libraries are not specified correctly, so be sure you have numpy, scipy, sklearn, and faiss installed (subject to change).

pip install nglpy_cuda

Build

Building the Python package

For now, don’t install this yet, but set it up in development mode:

python setup.py develop

Run the test suite to verify it is able to make the CUDA calls without erroring:

python setup.py test

From here you should be ready to use the library. Only proceed below if you
run into some install issues and want to try to at least build the shared
library that you can use in C/C++ applications.

Building and Testing the CUDA Library Separately

Until I get this packaged appropriately, use the following command to compile the CUDA code:

nvcc src/ngl_cuda.cu -I include/ --compiler-options "-fPIC" --shared -o libnglcu.so

The CUDA API can then be tested with a small C++ example (TODO: provide small data file in repo for testing this next line):

g++ -L. -I include/ src/test.cpp -lnglcu -o test
./test -i <input file> -d <# of dimensions> -c <# of points> -n <neighbor edge file> -k <k neighbors to prune> -b <beta parameter> -p <shape descriptor> -s <discretization steps> -r <positive integer means use the relaxed version>

Usage

The Python interface exposes the a Graph object that can be be iterated
over its edges which produces a tuple where the first two values are the
integer indices and the third value is the distance between the two
points:

import numpy as np
import nglpy_cuda as ngl

X = np.random.uniform(size=(10, 2))
graph = ngl.Graph(X, relaxed=False)

for edge in graph:
 print(edge)

Installation

Stable release

To install nglpy-cuda, run this command in your terminal:

$ pip install nglpy_cuda

This is the preferred method to install nglpy-cuda, as it will always install the most recent stable release.

If you don’t have pip [https://pip.pypa.io] installed, this Python installation guide [http://docs.python-guide.org/en/latest/starting/installation/] can guide
you through the process.

From sources

The sources for nglpy-cuda can be downloaded from the Github repo [https://github.com/maljovec/nglpy_cuda].

You can either clone the public repository:

$ git clone git://github.com/maljovec/nglpy_cuda

Or download the tarball [https://github.com/maljovec/nglpy_cuda/tarball/master]:

$ curl -OL https://github.com/maljovec/nglpy_cuda/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use nglpy-cuda in a project:

import nglpy_cuda

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit
helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/maljovec/nglpy_cuda/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help
wanted” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement”
and “help wanted” is open to whoever wants to implement it.

Write Documentation

nglpy-cuda could always use more documentation, whether as part of the
official nglpy-cuda docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/maljovec/nglpy_cuda/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up nglpy_cuda for local development.

	Fork the nglpy_cuda repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/nglpy_cuda.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv nglpy_cuda
$ cd nglpy_cuda/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 nglpy_cuda tests
$ python setup.py test or py.test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4, 3.5 and 3.6, and for PyPy. Check
https://travis-ci.org/maljovec/nglpy_cuda/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ py.test tests.test_nglpy_cuda

Deploying

A reminder for the maintainers on how to deploy.
Make sure all your changes are committed (including an entry in HISTORY.rst).
Then run:

$ bumpversion patch # possible: major / minor / patch
$ git push
$ git push --tags

Travis will then deploy to PyPI if tests pass.

Credits

Development Lead

	Daniel Patrick Maljovec <maljovec002@gmail.com>

Contributors

None yet. Why not be the first?

History

0.2.0 (2018-10-03)

	Addition of probabilistic graphs

	Minor changes to API structure, now you must call build after initializing an object

0.1.0 (2018-07-15)

	First release on PyPI.

Index

 _static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome to nglpy-cuda’s documentation!

 		
 nglpy-cuda

 		
 Prerequisites

 		
 Installation

 		
 Build

 		
 Building the Python package

 		
 Building and Testing the CUDA Library Separately

 		
 Usage

 		
 Installation

 		
 Stable release

 		
 From sources

 		
 Usage

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Deploying

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 0.2.0 (2018-10-03)

 		
 0.1.0 (2018-07-15)

_static/plus.png

_static/minus.png

_static/up.png

_static/up-pressed.png

