
NFLWin Documentation
Release 1.0.0

Andrew Schechtman-Rook

Aug 17, 2016

Links

1 Quickstart 3

2 Current Default Model 5

3 Why NFLWin? 7

4 Resources 9
4.1 Installation . 9
4.2 Creating a New WP Model . 10
4.3 Using Data From nfldb . 12
4.4 For Developers . 15
4.5 nflwin . 17

Python Module Index 29

i

ii

NFLWin Documentation, Release 1.0.0

NFLWin is designed from the ground up to provide two things:

• A simple-to-use interface for users to compute Win Probabilities (WP) for NFL plays based on a built-in WP
model.

• A robust framework for improving estimates of WP.

NFLWin builds on scikit-learn’s fit-transform idiom, allowing for pipelines that take in raw box score data
and return estimated WPs - all data preprocessing takes place behind the scenes. Additionally, these preprocessing
steps can be easily reordered, replaced, and/or extended, allowing for rapid iteration and prototyping of potential
improvements to the WP model.

NFLWin also has built-in support for efficiently querying data from nfldb directly into a format useable by the built-in
WP model, although the model is fully data-source-agnostic as long as the data is formatted properly for the model to
parse.

Links 1

http://scikit-learn.org/stable/
https://github.com/BurntSushi/nfldb

NFLWin Documentation, Release 1.0.0

2 Links

CHAPTER 1

Quickstart

NFLWin is pip-installable:

$ pip install nflwin

Note: NFLWin depends on SciPy, which is notoriously difficult to install properly via pip. You may wish to use the
Conda package manager to install Scipy before installing NFLWin.

When installed via pip, NFLWin comes with a working Win Probability model out-of-the-box:

>>> from nflwin.model import WPModel
>>> standard_model = WPModel.load_model()

The default model can be inspected to learn what data it requires:

>>> standard_model.column_descriptions
{'home_team': 'Abbreviation for the home team', 'yardline': "The yardline, given by (yards from own goalline - 50). -49 is your own 1 while 49 is the opponent's 1.", 'seconds_elapsed': 'Seconds elapsed in the quarter', 'down': 'The current down', 'curr_away_score': 'Abbreviation for the visiting team', 'offense_team': 'Abbreviation for the offensive team', 'yards_to_go': 'Yards to a first down (or the endzone)', 'quarter': 'The quarter'}

NFLWin operates on Pandas DataFrames:

>>> import pandas as pd
>>> plays = pd.DataFrame({
... "quarter": ["Q1", "Q2", "Q4"],
... "seconds_elapsed": [0, 0, 600],
... "offense_team": ["NYJ", "NYJ", "NE"],
... "yardline": [-20, 20, 35],
... "down": [1, 3, 3],
... "yards_to_go": [10, 2, 10],
... "home_team": ["NYJ", "NYJ", "NYJ"],
... "away_team": ["NE", "NE", "NE"],
... "curr_home_score": [0, 0, 21],
... "curr_away_score": [0, 0, 10]
... })

Once data is loaded, using the model to predict WP is easy:

>>> standard_model.predict_wp(plays)
array([0.58300397, 0.64321796, 0.18195466])

3

https://www.scipy.org/
http://conda.pydata.org/docs/
http://pandas.pydata.org/

NFLWin Documentation, Release 1.0.0

4 Chapter 1. Quickstart

CHAPTER 2

Current Default Model

5

NFLWin Documentation, Release 1.0.0

6 Chapter 2. Current Default Model

CHAPTER 3

Why NFLWin?

Put simply, there are no other options: while WP models have been widely used in NFL analytics for years, the
analytics community has almost totally dropped the ball in making these models available for the general public or
even explaining their algorithms at all.

For a (much) longer explanation, see the PhD Football blog.

7

http://phdfootball.blogspot.com/

NFLWin Documentation, Release 1.0.0

8 Chapter 3. Why NFLWin?

CHAPTER 4

Resources

4.1 Installation

NFLWin only supports Python 2, as nfldb is currently incompatible with Python 3. The bulk of NFLWin should
work natively with Python 3, however that is currently untested. Pull requests ensuring this compatibility would be
welcome.

4.1.1 Releases

Stable releases of NFLWin are available on PyPI:

$ pip install nflwin

The default install provides exactly the tools necessary to make predictions using the standard WP model as well as
make new models. However it does not include the dependencies necessary for using nfldb, producing diagnostic
plots, or contributing to the package.

Installing NFLWin with those extra dependencies is accomplished by adding a parameter in square brackets:

$ pip install nflwin[plotting] #Adds matplotlib for plotting
$ pip install nflwin[nfldb] #Dependencies for using nfldb
$ pip install nflwin[dev] #Everything you need to develop on NFLWin

Note: NFLWin depends on the scipy library, which is notoriously difficult to install via pip or from source. One
option if you’re having difficulty getting scipy installed is to use the Conda package manager. After installing Conda,
you can create a new environment and install dependencies manually before pip installing NFLWin:

$ conda create -n nflwin-env python=2.7 numpy scipy scikit-learn pandas

4.1.2 Bleeding Edge

If you want the most recent stable version you can install directly from GitHub:

$ pip install git+https://github.com/AndrewRook/NFLWin.git@master#egg=nflwin

You can append the arguments for the extra dependencies in the same way as for the installation from PyPI.

9

http://conda.pydata.org/docs/

NFLWin Documentation, Release 1.0.0

Note: GitHub installs do not come with the default model. If you want to use a GitHub install with the default model,
you’ll need to install NFLWin from PyPI somewhere else and then copy the model into the model directory from your
GitHub install. If you need to figure out where that directory is, print model.WPModel.model_directory.

4.2 Creating a New WP Model

While NFLWin ships with a fairly robust default model, there is always room for improvement. Maybe there’s a new
dataset you want to use to train the model, a new feature you want to add, or a new machine learning model you want
to evaluate.

Good news! NFLWin makes it easy to train a new model, whether you just want to refresh the data or to do an entire
refit from scratch. We’ll start with the simplest case:

4.2.1 Default Model, New Data

Refreshing the data with NFLWin is a snap. If you want to change the data used by the default model but keep the
source as nfldb, all you have to do is override the default keyword arguments when calling the train_model() and
validate_model() methods. For instance, if for some insane reason you wanted to train on the 2009 and 2010
regular seasons and validate on the 2011 and 2012 playoffs, you would do the following:

>>> from nflwin.model import WPModel
>>> new_data_model = WPModel()
>>> new_data_model.train_model(training_seasons=[2009, 2010], training_season_types=["Regular"])
>>> new_data_model.validate_model(validation_seasons=[2011, 2012], validation_season_types=["Postseason"])
(21.355462918011327, 565.56909036318007)

If you want to supply your own data, that’s easy too - simply set the source_data kwarg of train_model() and
validate_model() to be a Pandas DataFrame of your training and validation data (respectively):

>>> from nflwin.model import WPModel
>>> new_data_model = WPModel()
>>> training_data.head()

gsis_id drive_id play_id offense_team yardline down yards_to_go \
0 2012090500 1 35 DAL -15.0 0 0
1 2012090500 1 57 NYG -34.0 1 10
2 2012090500 1 79 NYG -34.0 2 10
3 2012090500 1 103 NYG -29.0 3 5
4 2012090500 1 125 NYG -29.0 4 5

home_team away_team offense_won quarter seconds_elapsed curr_home_score \
0 NYG DAL True Q1 0.0 0
1 NYG DAL False Q1 4.0 0
2 NYG DAL False Q1 11.0 0
3 NYG DAL False Q1 55.0 0
4 NYG DAL False Q1 62.0 0

curr_away_score
0 0
1 0
2 0
3 0
4 0
>>> new_data_model.train_model(source_data=training_data)

10 Chapter 4. Resources

NFLWin Documentation, Release 1.0.0

>>> validation_data.head()
gsis_id drive_id play_id offense_team yardline down yards_to_go \

0 2014090400 1 36 SEA -15.0 0 0
1 2014090400 1 58 GB -37.0 1 10
2 2014090400 1 79 GB -31.0 2 4
3 2014090400 1 111 GB -26.0 1 10
4 2014090400 1 132 GB -11.0 1 10

home_team away_team offense_won quarter seconds_elapsed curr_home_score \
0 SEA GB True Q1 0.0 0
1 SEA GB False Q1 4.0 0
2 SEA GB False Q1 30.0 0
3 SEA GB False Q1 49.0 0
4 SEA GB False Q1 88.0 0

curr_away_score
0 0
1 0
2 0
3 0
4 0
>>> new_data_model.validate_model(source_data=validation_data)
(8.9344062502671591, 265.7971863696315)

4.2.2 Building a New Model

If you want to construct a totally new model, that’s possible too. Just instantiate WPModel, then replace the model at-
tribute with either a scikit-learn classifier or Pipeline. From that point train_model() and validate_model()
should work as normal.

Note: If you create your own model, the column_descriptions attribute will no longer be accurate unless you
update it manually.

Note: If your model uses a data structure other than a Pandas DataFrame, you will not be able to use the
source_data="nfldb" default kwarg of train_model() and validate_model(). If you want to use
nfldb data, query it through nflwin.utilities.get_nfldb_play_data() first and convert it from a
DataFrame to the format required by your model.

Using NFLWin’s Preprocessors

While you can completely roll your own WP model from scratch, NFLWin comes with several classes designed to
aid in preprocessing your data. These can be found in the appropriately named preprocessing module. Each of
these preprocessors inherits from scikit-learn’s BaseEstimator class, and therefore is fully compatible with scikit-learn
Pipelines. Available preprocessors include:

• ComputeElapsedTime: Convert the time elapsed in a quarter into the total seconds elapsed in the game.

• ComputeIfOffenseIsHome: Create an indicator variable for whether or not the offense is the home team.

• CreateScoreDifferential: Create a column indicating the difference between the offense and defense
point totals (offense-defense). Uses home team and away team plus an indicator giving if the offense is the
home team to compute.

4.2. Creating a New WP Model 11

http://scikit-learn.org/stable/auto_examples/classification/plot_classifier_comparison.html
http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

NFLWin Documentation, Release 1.0.0

• MapToInt: Map a column of values to integers. Useful for string columns (e.g. a quarter column with “Q1”,
“Q2”, etc).

• CheckColumnNames: Ensure that only the desired data gets passed to the model in the right order. Useful to
guarantee that the underlying numpy arrays in a Pandas DataFrame used for model validation are in the same
order as they were when the model was trained.

To see examples of these preprocessors in use to build a model, look at
nflwin.model.WPModel.create_default_pipeline().

4.2.3 Model I/O

To save a model to disk, use the nflwin.model.WPModel.save_model() method.

Note: If you do not provide a filename, the default model will be overwritten and in order to recover it you will need
to reinstall NFLWin (which will then overwrite any non-default models you have saved).

To load a model from disk, use the nflwin.model.WPModel.load_model() class method. By default this
will load the standard model that comes bundled with pip installs of NFLWin. Simply specify the filename kwarg
to load a non-standard model.

Note: By default, models are saved to and loaded from the path given by
nflwin.model.WPModel.model_directory , which by default is located inside your NFLWin install.

4.2.4 Estimating Quality of Fit

When you care about measuring the probability of a classification model rather than getting a yes/no prediction it is
challenging to estimate its quality. This is an area I’m actively looking to improve upon, but for now NFLWin does
the following.

First, it takes the probabilities given by the model for each play in the validation set, then produces a kernel den-
sity estimate (KDE) of all the plays as well as just the ones that were predicted correctly. The ratio of these two
KDEs is the actual WP measured from the test data set at a given predicted WP. While all of this is measured in
validate_model(), you can plot it for yourself by calling the plot_validation() method, which will gen-
erate a plot like that shown on the home page.

From there NFLWin computes both the maximum deviation at any given percentage and the total area between the
estimated WP from the model and what would be expected if the model was perfect - that’s what is actually returned by
validate_model(). This is obviously not ideal given that it’s not directly estimating uncertainties in the model,
but it’s the best I’ve been able to come up with so far. If anyone has an idea for how to do this better I would welcome
it enthusiastically.

4.3 Using Data From nfldb

NFLWin comes with robust support for querying data from nfldb, a package designed to facilitate downloading
and accessing play-by-play data. There are functions to query the nfldb database in nflwin.utilities, and
nflwin.model.WPModel has keyword arguments that allow you to directly use nfldb data to fit and validate a WP
model. Using nfldb is totally optional: a default model is already fit and ready to use, and NFLWin is fully compatible
with any source for play-by-play data. However, nfldb is one of the few free sources of up-to-date NFL data and so it
may be a useful resource to have.

12 Chapter 4. Resources

https://en.wikipedia.org/wiki/Kernel_density_estimation
https://en.wikipedia.org/wiki/Kernel_density_estimation
https://github.com/BurntSushi/nfldb

NFLWin Documentation, Release 1.0.0

4.3.1 Installing nfldb

nfldb is pip-installable, and can be installed as an extra dependency (pip install nflwin[nfldb]). Without
setting up the nfldb Postgres database first, however, the pip install will succeed but nfldb will be unuseable. What’s
more, trying to set up the database after installing nfldb may fail as well.

The nfldb wiki has fairly decent installation instructions, but I know that when I went through the installation process
I had to interpret and adjust several steps. I’d at least recommend reading through the wiki first, but in case it’s useful
I’ve listed the steps I followed below (for reference I was on Mac OS 10.10).

Installing Postgres

I had an old install kicking around, so I first had to clean that up. Since I was using Homebrew:

$ brew uninstall -force postgresql
$ rm -rf /usr/local/var/postgres/ # where I'd installed the prior DB

Then install a fresh version:

$ brew update
$ brew install postgresql

Start Postgres and Create a Default DB

You can choose to run Postgres at startup, but I don’t use it that often so I choose not to do those steps - I just run it in
the foreground with this command:

$ postgres -D /usr/local/var/postgres

Or in the background with this command:

$ pg_ctl -D /usr/local/var/postgres -l logfile start

If you don’t create a default database based on your username, launching Postgres will fail with a psql: FATAL:
database "USERNAME" does not exist error:

$ createdb `whoami`

Check that the install and configuration went well by launching Postgres as your default user:

$ psql
psql (9.5.2)
Type "help" for help.

USERNAME=#

Next, add a password:

USERNAME=# ALTER ROLE "USERNAME" WITH ENCRYPTED PASSWORD 'choose a
superuser password';
USERNAME=# \q;

Edit the pg_hba.conf‘‘file found in your database (in my case the file was
‘‘/usr/local/var/postgres/pg_hba.conf), and change all instances of trust to md5.

4.3. Using Data From nfldb 13

https://github.com/BurntSushi/nfldb/wiki/Installation
http://brew.sh/

NFLWin Documentation, Release 1.0.0

Create nfldb Postgres User and Database

Start by making a user:

$ createuser -U USERNAME -E -P nfldb

where you replace USERNAME with your actual username. Make up a new password. Then make the nfldb database:

$ createdb -U USERNAME -O nfldb nfldb

You’ll need to enter the password for the USERNAME account. Next, add the fuzzy string matching extension:

$ psql -U USERNAME -c 'CREATE EXTENSION fuzzystrmatch;' nfldb

You should now be able to connect the nfldb user to the nfldb database:

$ psql -U nfldb nfldb

From this point you should be able to follow along with the instructions from nfldb.

4.3.2 Using nfldb

Once nfldb is properly installed, you can use it with NFLwin in a couple of different ways.

Querying Data

nfldb comes with a robust set of options to query its database, but they tend to be designed more for ad hoc querying
of small amounts of data or computing aggregate statistics. It’s possible to use built-in nfldb queries to get the data
NFLWin needs, but it’s slow. So NFLWin has built in support for bulk queries of nfldb in the nflwin.utilities
module:

>>> from nflwin import utilities
>>> data = utilities.get_nfldb_play_data(season_years=[2010],
... season_types=["Regular", "Postseason"])
>>> data.head()

gsis_id drive_id play_id offense_team yardline down yards_to_go \
0 2010090900 1 35 MIN -20.0 0 0
1 2010090900 1 57 NO -27.0 1 10
2 2010090900 1 81 NO 1.0 1 10
3 2010090900 1 109 NO 13.0 1 10
4 2010090900 1 135 NO 13.0 2 10

home_team away_team offense_won quarter seconds_elapsed curr_home_score \
0 NO MIN False Q1 0.0 0
1 NO MIN True Q1 4.0 0
2 NO MIN True Q1 39.0 0
3 NO MIN True Q1 79.0 0
4 NO MIN True Q1 84.0 0

curr_away_score
0 0
1 0
2 0
3 0
4 0

14 Chapter 4. Resources

https://github.com/BurntSushi/nfldb/wiki/Installation#importing-the-nfldb-database

NFLWin Documentation, Release 1.0.0

You can see the docstring for more details, but basically get_nfldb_play_data queries the nfldb database di-
rectly for columns relevant to estimating WP, does some simple parsing/preprocessing to get them in the right format,
then returns them as a dataframe. Keyword arguments control what parts of seasons are queried.

Integration with WPModel

While you can train NFLWin’s win probability model (nflwin.model.WPModel) with whatever data you want, it
comes with keyword arguments that allow you to query nfldb directly. For instance, to train the default model on the
2009 and 2010 regular seasons from nfldb, you’d enter the following:

>>> from nflwin.model import WPModel
>>> model = WPModel()
>>> model.create_default_pipeline()
Pipeline(...)
>>> model.train_model(source_data="nfldb",
... training_seasons=[2009, 2010],
... training_season_types=["Regular"])

4.4 For Developers

This section of the documentation covers things that will be useful for those already contributing to NFLWin.

Note: Unless stated otherwise assume that all filepaths given in this section start at the root directory for the repo.

4.4.1 Testing Documentation

Documentation for NFLWin is hosted at Read the Docs, and is built automatically when changes are made on the
master branch or a release is cut. However, oftentimes it’s valuable to display NFLWin’s documentation locally as
you’re writing. To do this, run the following:

$./build_local_documentation.sh

When that command finishes, open up doc/index.html in your browser of choice to see the site.

4.4.2 Updating the Default Model

NFLWin comes with a pre-trained model, but if the code generating that model is updated the model itself is not. So
you have to update it yourself. The good news, however, is that there’s a script for that:

$ python make_default_model.py

Note: This script hardcodes in the seasons to use for training and testing samples. After each season those will likely
need to be updated to use the most up-to-date data.

Note: This script requires matplotlib in order to run, as it produces a validation plot for the documentation.

4.4. For Developers 15

https://readthedocs.org/

NFLWin Documentation, Release 1.0.0

4.4.3 Cutting a New Release

NFLWin uses semantic versioning, which basically boils down to the following (taken directly from the webpage
linked earlier in this sentence):

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards-compatible manner, and

3. PATCH version when you make backwards-compatible bug fixes.

Basically, unless you change something drastic you leave the major version alone (the exception being going to version
1.0.0, which indicates the first release where the interface is considered “stable”).

The trick here is to note that information about a new release must live in a few places:

• In nflwin/_version.py as the value of the __version__ variable.

• As a tagged commit.

• As a release on GitHub.

• As an upload to PyPI.

• (If necessary) as a documented release on Read the Docs.

Changing the version in one place but not in others can have relatively minor but fairly annoying consequences. To
help manage the release cutting process there is a shell script that automates significant parts of this process:

$./increment_version.sh [major|minor|patch]

This script does a bunch of things, namely:

1. Parse command line arguments to determine whether to increment major, minor, or patch version.

2. Makes sure it’s not on the master branch.

3. Makes sure there aren’t any changes that have been staged but not committed.

4. Makes sure there aren’t any changes that have been committed but not pushed.

5. Makes sure all unit tests pass.

6. Compares current version in nflwin/_version.py to most recent git tag to make sure they’re the same.

7. Figures out what the new version should be.

8. Updates nflwin/_version.py to the new version.

9. Uploads package to PyPI.

10. Adds and commits nflwin/_version.py with commit message “bumped [TYPE] version to [VERSION]”, where
[TYPE] is major, minor, or patch.

11. Tags latest commit with version number (no ‘v’).

12. Pushes commit and tag.

It will exit if anything returns with a non-zero exit status, and since it waits until the very end to upload anything to
PyPI or GitHub if you do run into an error in most cases you can fix it and then just re-run the script.

The process for cutting a release is as follows:

1. Make double sure that you’re on a branch that’s not master and you’re ready to cut a new release (general
good practice is to branch off from master just for the purpose of making a new release).

16 Chapter 4. Resources

http://semver.org/

NFLWin Documentation, Release 1.0.0

2. Run the increment_version.sh script.

3. Fix any errors, then rerun the script until it passes.

4. Make a PR on GitHub into master, and merge it in (self-merge is ok if branch is just updating version).

5. Make release notes for new release on GitHub.

6. (If necessary) go to Read the Docs and activate the new release.

4.5 nflwin

4.5.1 nflwin package

Submodules

nflwin.model module

Tools for creating and running the model.

class nflwin.model.WPModel(copy_data=True)
Bases: object

The object that computes win probabilities.

In addition to holding the model itself, it defines some columns names likely to be used in the model as param-
eters to allow other users to more easily figure out which columns go into the model.

Parameters copy_data : boolean (default=‘‘True‘‘)

Whether or not to copy data when fitting and applying the model. Running the model
in-place (copy_data=False) will be faster and have a smaller memory footprint,
but if not done carefully can lead to data integrity issues.

4.5. nflwin 17

NFLWin Documentation, Release 1.0.0

Attributes

model (A Scikit-learn pipeline (or equivalent)) The actual model used to compute WP. Upon
initialization it will be set to a default model, but can be overridden by the user.

col-
umn_descriptions

(dictionary) A dictionary whose keys are the names of the columns used in the model, and
the values are string descriptions of what the columns mean. Set at initialization to be the
default model, if you create your own model you’ll need to update this attribute manually.

train-
ing_seasons

(A list of ints, or None (default=‘‘None‘‘)) If the model was trained using data downloaded
from nfldb, a list of the seasons used to train the model. If nfldb was not used, an empty
list. If no model has been trained yet, None.

train-
ing_season_types

(A list of strings or None (default=‘‘None‘‘)) Same as training_seasons, except for
the portions of the seasons used in training the model (“Preseason”, “Regular”, and/or
“Postseason”).

valida-
tion_seasons

(same as training_seasons, but for validation data.)

valida-
tion_season_types

(same as training_season_types, but for validation data.)

sam-
ple_probabilities

(A numpy array of floats or None (default=‘‘None‘‘)) After the model has been validated,
contains the sampled predicted probabilities used to compute the validation statistic.

pre-
dicted_win_percents

(A numpy array of floats or None (default=‘‘None‘‘)) After the model has been validated,
contains the actual probabilities in the test set at each probability in
sample_probabilities.

num_plays_used(A numpy array of floats or None (default=‘‘None‘‘)) After the model has been validated,
contains the number of plays used to compute each element of
predicted_win_percents.

model_directory(string) The directory where all models will be saved to or loaded from.

create_default_pipeline()
Create the default win probability estimation pipeline.

Returns Scikit-learn pipeline

The default pipeline, suitable for computing win probabilities but by no means the best
possible model.

This can be run any time a new default pipeline is required,

and either set to the model attribute or used independently.

classmethod load_model(filename=None)
Load a saved WPModel.

Parameters Same as ‘‘save_model‘‘.

Returns nflwin.WPModel instance.

model_directory = ‘/home/docs/checkouts/readthedocs.org/user_builds/nflwin/checkouts/1.0.0/nflwin/models’

num_plays_used

plot_validation(axis=None, **kwargs)
Plot the validation data.

Parameters axis : matplotlib.pyplot.axis object or None (default=‘‘None‘‘)

If provided, the validation line will be overlaid on axis. Otherwise, a new figure and
axis will be generated and plotted on.

**kwargs

Arguments to axis.plot.

18 Chapter 4. Resources

NFLWin Documentation, Release 1.0.0

Returns matplotlib.pylot.axis

The axis the plot was made on.

Raises NotFittedError

If the model hasn’t been fit and validated.

predict_wp(plays)
Estimate the win probability for a set of plays.

Basically a simple wrapper around WPModel.model.predict_proba, takes in a DataFrame and
then spits out an array of predicted win probabilities.

Parameters plays : Pandas DataFrame

The input data to use to make the predictions.

Returns Numpy array, of length len(plays)

Predicted probability that the offensive team in each play will go on to win the game.

Raises NotFittedError

If the model hasn’t been fit.

predicted_win_percents

sample_probabilities

save_model(filename=None)
Save the WPModel instance to disk.

All models are saved to the same place, with the installed NFLWin library (given by
WPModel.model_directory).

Parameters filename : string (default=None):

The filename to use for the saved model. If this parameter is not specified, save to
the default filename. Note that if a model already lists with this filename, it will be
overwritten. Note also that this is a filename only, not a full path. If a full path is
specified it is likely (albeit not guaranteed) to cause errors.

Returns None

train_model(source_data=’nfldb’, training_seasons=[2009, 2010, 2011, 2012, 2013, 2014], train-
ing_season_types=[’Regular’, ‘Postseason’], target_colname=’offense_won’)

Train the model.

Once a modeling pipeline is set up (either the default or something custom-generated), historical data
needs to be fed into it in order to “fit” the model so that it can then be used to predict future results. This
method implements a simple wrapper around the core Scikit-learn functionality which does this.

The default is to use data from the nfldb database, however that can be changed to a simple Pandas
DataFrame if desired (for instance if you wish to use data from another source).

There is no particular output from this function, rather the parameters governing the fit of the model
are saved inside the model object itself. If you want to get an estimate of the quality of the fit, use the
validate_model method after running this method.

Parameters source_data : the string "nfldb" or a Pandas DataFrame (default=‘‘”nfldb”‘‘)

The data to be used to train the model. If "nfldb", will query the nfldb database for
the training data (note that this requires a correctly configured installation of nfldb’s
database).

training_seasons : list of ints (default=‘‘[2009, 2010, 2011, 2012, 2013, 2014]‘‘)

4.5. nflwin 19

NFLWin Documentation, Release 1.0.0

What seasons to use to train the model if getting data from the nfldb database. If
source_data is not "nfldb", this argument will be ignored. NOTE: it is critical
not to use all possible data in order to train the model - some will need to be reserved
for a final validation (see the validate_model method). A good dataset to reserve
for validation is the most recent one or two NFL seasons.

training_season_types : list of strings (default=‘‘[”Regular”, “Postseason”]‘‘)

If querying from the nfldb database, what parts of the seasons to use. Options are
“Preseason”, “Regular”, and “Postseason”. If source_data is not "nfldb", this
argument will be ignored.

target_colname : string or integer (default=‘‘”offense_won”‘‘)

The name of the target variable column.

Returns None

Notes

If you are loading in the default model, there is no need to re-run this method. In fact, doing so will
likely result in weird errors and could corrupt the model if you were to try to save it back to disk.

training_seasons

training_seasons_types

validate_model(source_data=’nfldb’, validation_seasons=[2015], valida-
tion_season_types=[’Regular’, ‘Postseason’], target_colname=’offense_won’)

Validate the model.

Once a modeling pipeline is trained, a different dataset must be fed into the trained model to validate the
quality of the fit. This method implements a simple wrapper around the core Scikit-learn functionality
which does this.

The default is to use data from the nfldb database, however that can be changed to a simple Pandas
DataFrame if desired (for instance if you wish to use data from another source).

The output of this method is a p value which represents the confidence at which we can reject the null
hypothesis that the model predicts the appropriate win probabilities. This number is computed by first
smoothing the predicted win probabilities of both all test data and just the data where the offense won
with a gaussian kernel density estimate with standard deviation = 0.01. Once the data is smooth, ratios at
each percentage point from 1% to 99% are computed (i.e. what fraction of the time did the offense win
when the model says they have a 1% chance of winning, 2% chance, etc.). Each of these ratios should
be well approximated by the binomial distribution, since they are essentially independent (not perfectly
but hopefully close enough) weighted coin flips, giving a p value. From there Fisher’s method is used to
combine the p values into a global p value. A p value close to zero means that the model is unlikely to be
properly predicting the correct win probabilities. A p value close to one, while not proof that the model
is correct, means that the model is at least not inconsistent with the hypothesis that it predicts good win
probabilities.

Parameters source_data : the string "nfldb" or a Pandas DataFrame (default=‘‘”nfldb”‘‘)

The data to be used to train the model. If "nfldb", will query the nfldb database for
the training data (note that this requires a correctly configured installation of nfldb’s
database).

training_seasons : list of ints (default=‘‘[2015]‘‘)

What seasons to use to validate the model if getting data from the nfldb database. If
source_data is not "nfldb", this argument will be ignored. NOTE: it is critical

20 Chapter 4. Resources

http://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity
https://en.wikipedia.org/wiki/Fisher%27s_method

NFLWin Documentation, Release 1.0.0

not to use the same data to validate the model as was used in the fit. Generally a good
data set to use for validation is one from a time period more recent than was used to
train the model. For instance, if the model was trained on data from 2009-2014, data
from the 2015 season would be a sensible choice to validate the model.

training_season_types : list of strings (default=‘‘[”Regular”, “Postseason”]‘‘)

If querying from the nfldb database, what parts of the seasons to use. Options are
“Preseason”, “Regular”, and “Postseason”. If source_data is not "nfldb", this
argument will be ignored.

target_colname : string or integer (default=‘‘”offense_won”‘‘)

The name of the target variable column.

Returns float, between 0 and 1

The combined p value, where smaller values indicate that the model is not accurately
predicting win probabilities.

Raises NotFittedError

If the model hasn’t been fit.

Notes

Probabilities are computed between 1 and 99 percent because a single incorrect prediction at 100% or
0% automatically drives the global p value to zero. Since the model is being smoothed this situation can
occur even when there are no model predictions at those extreme values, and therefore leads to erroneous
p values.

While it seems reasonable (to me at least), I am not totally certain that this approach is entirely correct. It’s
certainly sub-optimal in that you would ideally reject the null hypothesis that the model predictions aren’t
appropriate, but that seems to be a much harder problem (and one that would need much more test data to
beat down the uncertainties involved). I’m also not sure if using Fisher’s method is appropriate here, and I
wonder if it might be necessary to Monte Carlo this. I would welcome input from others on better ways to
do this.

validation_seasons

validation_seasons_types

nflwin.preprocessing module

Tools to get raw data ready for modeling.

class nflwin.preprocessing.CheckColumnNames(column_names=None, copy=True)
Bases: sklearn.base.BaseEstimator

Make sure user has the right column names, in the right order.

This is a useful first step to make sure that nothing is going to break downstream, but can also be used effectively
to drop columns that are no longer necessary.

Parameters column_names : None, or list of strings

A list of column names that need to be present in the scoring data. All other columns
will be stripped out. The order of the columns will be applied to any scoring data as
well, in order to handle the fact that pandas lets you play fast and loose with column
order. If None, will obtain every column in the DataFrame passed to the fit method.

4.5. nflwin 21

NFLWin Documentation, Release 1.0.0

copy : boolean (default=‘‘True‘‘)

If False, add the score differential in place.

fit(X, y=None)
Grab the column names from a Pandas DataFrame.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns self : For compatibility with Scikit-learn’s Pipeline.

transform(X, y=None)
Apply the column ordering to the data.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, len(column_names))

The input DataFrame, properly ordered and with extraneous columns dropped

Raises KeyError

If the input data frame doesn’t have all the columns specified by column_names.

NotFittedError

If transform is called before fit.

class nflwin.preprocessing.ComputeElapsedTime(quarter_colname, quarter_time_colname,
quarter_to_second_mapping={‘Q1’: 0,
‘Q3’: 1800, ‘Q2’: 900, ‘Q4’: 2700,
‘OT3’: 5400, ‘OT2’: 4500, ‘OT’: 3600},
total_time_colname=’total_elapsed_time’,
copy=True)

Bases: sklearn.base.BaseEstimator

Compute the total elapsed time from the start of the game.

Parameters quarter_colname : string

Which column indicates what quarter it is.

quarter_time_colname : string

Which column indicates how much time has elapsed in the current quarter.

quarter_to_second_mapping : dict (default=‘‘{“Q1”: 0, “Q2”: 900, “Q3”: 1800, “Q4”: 2700,

“OT”: 3600, “OT2”: 4500, “OT3”: 5400}‘‘)

What mapping to use between the string values in the quarter column and the seconds
they correspond to. Mostly useful if your data had quarters listed as something like
“Quarter 1” or “q1” instead of the values from nfldb.

total_time_colname : string (default=”total_elapsed_time”)

What column name to store the total elapsed time under.

22 Chapter 4. Resources

NFLWin Documentation, Release 1.0.0

copy : boolean (default=True)

Whether to add the new column in place.

fit(X, y=None)

transform(X, y=None)
Create the new column.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, number of features + 1)

The input DataFrame, with the new column added.

Raises KeyError

If quarter_colname or quarter_time_colname don’t exist, or if
total_time_colname does exist.

TypeError

If the total time elapsed is not a numeric column, which typically indicates that the
mapping did not apply to every row.

class nflwin.preprocessing.ComputeIfOffenseIsHome(offense_team_colname,
home_team_colname, of-
fense_home_team_colname=’is_offense_home’,
copy=True)

Bases: sklearn.base.BaseEstimator

Determine if the team currently with possession is the home team.

Parameters offense_team_colname : string

Which column indicates what team was on offense.

home_team_colname : string

Which column indicates what team was the home team.

offense_home_team_colname : string (default=”is_offense_home”)

What column to store whether or not the offense was the home team.

copy : boolean (default=True)

Whether to add the new column in place.

fit(X, y=None)

transform(X, y=None)
Create the new column.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, number of features + 1)

4.5. nflwin 23

NFLWin Documentation, Release 1.0.0

The input DataFrame, with the new column added.

Raises KeyError

If offense_team_colname or home_team_colname don’t exist, or if
offense_home_team_colname does exist.

class nflwin.preprocessing.CreateScoreDifferential(home_score_colname,
away_score_colname, of-
fense_home_colname,
score_differential_colname=’score_differential’,
copy=True)

Bases: sklearn.base.BaseEstimator

Convert offense and defense scores into a differential (offense - defense).

Parameters home_score_colname : string

The name of the column containing the score of the home team.

away_score_colname : string

The name of the column containing the score of the away team.

offense_home_colname : string

The name of the column indicating if the offense is home.

score_differential_colname : string (default=‘‘”score_differential”‘‘)

The name of column containing the score differential. Must not already exist in the
DataFrame.

copy : boolean (default = True)

If False, add the score differential in place.

fit(X, y=None)

transform(X, y=None)
Create the score differential column.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, number of features + 1)

The input DataFrame, with the score differential column added.

class nflwin.preprocessing.MapToInt(colname, copy=True)
Bases: sklearn.base.BaseEstimator

Map a column of values to integers.

Mapping to integer is nice if you know a column only has a few specific values in it, but you need to convert it
to integers before one-hot encoding it.

Parameters colname : string

The name of the column to perform the mapping on.

copy : boolean (default=True)

If False, apply the mapping in-place.

24 Chapter 4. Resources

NFLWin Documentation, Release 1.0.0

Attributes

map-
ping

(dict) Keys are the unique values of the column, values are the integers those values will be
mapped to.

fit(X, y=None)
Find all unique strings and construct the mapping.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns self : For compatibility with Scikit-learn’s Pipeline.

Raises KeyError

If colname is not in X.

transform(X, y=None)
Apply the mapping to the data.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, number of features)

The input DataFrame, with the mapping applied.

Raises NotFittedError

If transform is called before fit.

KeyError

If colname is not in X.

class nflwin.preprocessing.OneHotEncoderFromDataFrame(categorical_feature_names=’all’,
dtype=<type ‘float’>,
handle_unknown=’error’,
copy=True)

Bases: sklearn.base.BaseEstimator

One-hot encode a DataFrame.

This cleaner wraps the standard scikit-learn OneHotEncoder, handling the transfer between column name and
column index.

Parameters categorical_feature_names : “all” or array of column names.

Specify what features are treated as categorical. * “all” (default): All features are treated
as categorical. * array of column names: Array of categorical feature names.

dtype : number type, default=np.float.

Desired dtype of output.

handle_unknown : str, “error” (default) or “ignore”.

4.5. nflwin 25

NFLWin Documentation, Release 1.0.0

Whether to raise an error or ignore if an unknown categorical feature is present during
transform.

copy : boolean (default=True)

If False, apply the encoding in-place.

dtype

fit(X, y=None)
Convert the column names to indices, then compute the one hot encoding.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns self : For compatibility with Scikit-learn’s Pipeline.

handle_unknown

transform(X, y=None)
Apply the encoding to the data.

Parameters X : Pandas DataFrame, of shape(number of plays, number of features)

NFL play data.

y : Numpy array, with length = number of plays, or None

1 if the home team won, 0 if not. (Used as part of Scikit-learn’s Pipeline)

Returns X : Pandas DataFrame, of shape(number of plays, number of new features)

The input DataFrame, with the encoding applied.

nflwin.utilities module

Utility functions that don’t fit in the main modules

nflwin.utilities.connect_nfldb()
Connect to the nfldb database.

Rather than using the builtin method we make our own, since we’re going to use SQLAlchemy as the engine.
However, we can still make use of the information in the nfldb config file to get information like username and
password, which means this function doesn’t need any arguments.

Parameters None

Returns SQLAlchemy engine object

A connected engine, ready to be used to query the DB.

Raises IOError

If it can’t find the config file.

nflwin.utilities.get_nfldb_play_data(season_years=None, season_types=[’Regular’, ‘Post-
season’])

Get play-by-play data from the nfldb database.

We use a specialized query and then postprocessing because, while possible to do using the objects created by
nfldb, it is orders of magnitude slower. This is due to the more general nature of nfldb, which is not really

26 Chapter 4. Resources

NFLWin Documentation, Release 1.0.0

designed for this kind of data mining. Since we need to get a lot of data in a single way, it’s much simpler to
interact at a lower level with the underlying postgres database.

Parameters season_years : list (default=None)

A list of all years to get data for (earliest year in nfldb is 2009). If None, get data from
all available seasons.

season_types : list (default=[”Regular”, “Postseason”])

A list of all parts of seasons to get data for (acceptable values are “Preseason”, “Regu-
lar”, and “Postseason”). If None, get data from all three season types.

Returns Pandas DataFrame

The play by play data, with the following columns:

• gsis_id: The official NFL GSIS_ID for the game.

• drive_id: The id of the drive, starts at 1 and increases by 1 for each new drive.

• play_id: The id of the play in nfldb. Note that sequential plays have increasing
but not necessarily sequential values. With drive_id and gsis_id, works as a
unique identifier for a given play.

• quarter: The quarter, prepended with “Q” (e.g. Q1 means the first quarter). Over-
time periods are denoted as OT, OT2, and theoretically OT3 if one were to ever be
played.

• seconds_elapsed: seconds elapsed since the start of the quarter.

• offense_team: The abbreviation of the team currently with possession of the ball.

• yardline: The current field position. Goes from -49 to 49, where negative numbers
indicate that the team with possession is on its own side of the field.

• down: The down. kickoffs, extra points, and similar have a down of 0.

• yards_to_go: How many yards needed in order to get a first down (or touchdown).

• home_team: The abbreviation of the home team.

• away_team: The abbreviation of the away team.

• curr_home_score: The home team’s score at the start of the play.

• curr_away_score: The away team’s score at the start of the play.

• offense_won: A boolean - True if the offense won the game, False otherwise.
(The database query skips tied games.)

Notes

gsis_id, drive_id, and play_id are not necessary to make the model, but are included because they can
be useful for computing things like WPA.

Module contents

4.5. nflwin 27

NFLWin Documentation, Release 1.0.0

28 Chapter 4. Resources

Python Module Index

n
nflwin, 27
nflwin.model, 17
nflwin.preprocessing, 21
nflwin.utilities, 26

29

NFLWin Documentation, Release 1.0.0

30 Python Module Index

Index

C
CheckColumnNames (class in nflwin.preprocessing), 21
ComputeElapsedTime (class in nflwin.preprocessing), 22
ComputeIfOffenseIsHome (class in

nflwin.preprocessing), 23
connect_nfldb() (in module nflwin.utilities), 26
create_default_pipeline() (nflwin.model.WPModel

method), 18
CreateScoreDifferential (class in nflwin.preprocessing),

24

D
dtype (nflwin.preprocessing.OneHotEncoderFromDataFrame

attribute), 26

F
fit() (nflwin.preprocessing.CheckColumnNames method),

22
fit() (nflwin.preprocessing.ComputeElapsedTime

method), 23
fit() (nflwin.preprocessing.ComputeIfOffenseIsHome

method), 23
fit() (nflwin.preprocessing.CreateScoreDifferential

method), 24
fit() (nflwin.preprocessing.MapToInt method), 25
fit() (nflwin.preprocessing.OneHotEncoderFromDataFrame

method), 26

G
get_nfldb_play_data() (in module nflwin.utilities), 26

H
handle_unknown (nflwin.preprocessing.OneHotEncoderFromDataFrame

attribute), 26

L
load_model() (nflwin.model.WPModel class method), 18

M
MapToInt (class in nflwin.preprocessing), 24

model_directory (nflwin.model.WPModel attribute), 18

N
nflwin (module), 27
nflwin.model (module), 17
nflwin.preprocessing (module), 21
nflwin.utilities (module), 26
num_plays_used (nflwin.model.WPModel attribute), 18

O
OneHotEncoderFromDataFrame (class in

nflwin.preprocessing), 25

P
plot_validation() (nflwin.model.WPModel method), 18
predict_wp() (nflwin.model.WPModel method), 19
predicted_win_percents (nflwin.model.WPModel at-

tribute), 19

S
sample_probabilities (nflwin.model.WPModel attribute),

19
save_model() (nflwin.model.WPModel method), 19

T
train_model() (nflwin.model.WPModel method), 19
training_seasons (nflwin.model.WPModel attribute), 20
training_seasons_types (nflwin.model.WPModel at-

tribute), 20
transform() (nflwin.preprocessing.CheckColumnNames

method), 22
transform() (nflwin.preprocessing.ComputeElapsedTime

method), 23
transform() (nflwin.preprocessing.ComputeIfOffenseIsHome

method), 23
transform() (nflwin.preprocessing.CreateScoreDifferential

method), 24
transform() (nflwin.preprocessing.MapToInt method), 25
transform() (nflwin.preprocessing.OneHotEncoderFromDataFrame

method), 26

31

NFLWin Documentation, Release 1.0.0

V
validate_model() (nflwin.model.WPModel method), 20
validation_seasons (nflwin.model.WPModel attribute),

21
validation_seasons_types (nflwin.model.WPModel at-

tribute), 21

W
WPModel (class in nflwin.model), 17

32 Index

	Quickstart
	Current Default Model
	Why NFLWin?
	Resources
	Installation
	Creating a New WP Model
	Using Data From nfldb
	For Developers
	nflwin

	Python Module Index

