

Welcome to Netwark’s documentation!

	Architecture design

	Installation
	Prerequisites

	Install on a server

	Install on Docker

	Configuration

	REST API documentation

Netwark is a web-based toolkit for lazy systems and network administrators that
want to run parellized tools on multiple servers.

Netwark can help you to run ping or mtr on a single machine, all machines of
the network or a group of machines. It embed some tools like IPv4/IPv6
calculator, MAC OUI Lookup and can WHOIS domains, ASN and ip addresses.

In the future, it’s planned to add more tools and the capability to create
smoke pings graphs and alerts.

Features

Today, Netwark is capable to:

	Run asynchronous tasks (operations) with the possibility to broadcast
(or not) the tasks to one or multiples machines/queues:

	Can run mtr and retrieve a graph

	Can run a simple ping

	
	Run synchronous tasks for retrieving:

	
	WHOIS informations from domains names, IP addresses and ASN numbers

	Retrieve informations about the manufacturer of a device by looking on
the MAC OUI table

	Calculate IPv4/IPv6 subnets with a IP calculator

	Access to all features with a REST API or through a sweet web interface

More network/discovery tools will be added to the list of available tools
on asynchronous queues.

Deployment informations

Netwark is completly written in Python using Pyramid Framework [https://trypyramid.com/], Cornice [http://cornice.readthedocs.io/],
Celery [https://docs.celeryproject.org/en/latest] and uses PostgreSQL has database.

	Requirements:

	
	Linux/Unix host the server can works on Windows but the worker need some
commands that only work on a true Linux/Unix environment (WSL don’t allow to
play with raw sockets).

	PostgreSQL 9.5+

	RabbitMQ

	Node.JS LTS (only for needed for npm and gulp)

You can also deploy Netwark on Docker and scale as you want.

For more informations, check the documentation.

Contributions

Netwark is free and open source software licensed under MIT license.

This product includes GeoLite2 data created by MaxMind, available from
https://www.maxmind.com

You can open issues to report a bug, suggest a new feature/enhancement or open
a pull request to contribute to the codebase.

Please ensure you have black [https://github.com/python/black], pylint [https://github.com/PyCQA/pylint], pycodestyle [https://github.com/PyCQA/pycodestyle] and ESLint [https://github.com/eslint/eslint] installed on
your machine and ensure that no errors are returned by theses tools. Please
create or adapt tests units for all your modifications.

Architecture design

Installation

	Prerequisites

	Install on a server

	Install on Docker

	Configuration

Prerequisites

Netwark is designed for Linux/Unix systems. Running the webserver or a worker
on Windows are not officially supported and we haven’t tested it. Running
the worker on the Windows Subsystem Linux not work because some tools need
raw sockets manipulation, not available on the current version of WSL.

If you still want to deploy Netwark on a Windows environment, you can use
Docker. It can resolve the problem of OS incompatibility, but it can be painful
for deploying the networking part.

Because Netwark is mainly focused for an internal use, it doesn’t have (yet)
any authentication et authorization mechanisms. We do not recommend to expose
the webserver on Internet to avoid attacks.

If your infrastructure allows you to create a dedicated network connected to
all your regions, we recommend to do it.

Infrastructure prerequisites

Netwark need some external services for storing the data and for communicating
with the entire network of workers.

Netwark need these services installed on the same host of the webserver or on
separate servers (recommended):

	RabbitMQ [https://www.rabbitmq.com/] >= 3.5

	PostgreSQL [https://www.postgresql.org/docs/] >= 9

	Internet connectivity. This point seems stupid, but if you want to retrieve
information from public resources, you need Internet. More information are
added on the next sections.

For each nodes, you need to install:

	Python >= 3.5, we use python types, not working with previous versions

	Poetry [https://poetry.eustace.io/], Poetry seems largely better than Pipenv/Pipfile

	PostgreSQL libs (needed for communicating with the database)

	Supervisord or Systemd

	Ping utility (we use it for… pinging machines)

	WHOIS utility (we use it in synchronous and asynchronous tasks for
retrieving information of a public resource of Internet)

	dig utility (we use it for retrieving informations from DNS zones and for
reverse DNSs)

If you want to use Docker, install on your machines:

	Docker [https://docs.docker.com/install/] >= 18.08

	Docker-compose [https://docs.docker.com/compose/]

Webserver prerequisites

Because the webserver doesn’t run magic tools (only normal stuff), the
webserver can be installed on a Windows machine but it’s recommended.

You need to install on the host in addition of the packages specified in the
last section:

	NodeJS (for retrieving and handling frontend assets)

	UWSGI with uwsgi-python

	A reverse proxy server (e.g. Apache, Nginx). Exposing the uwsgi/waitress
are not recommended.

	Mapbox [https://mapbox.com] account for showing the maps

	Internet connectivity. We need Internet for all synchronous tasks and for
updating the database (MAC OUI database) and retrieving new versions of
Maxmind databases.

Worker prerequisites

The worker is a magical part of the project that listen constantly RabbitMQ
queues that his assigned, ready to run the instructions sent through into
the queues.

The worker need some magical tools and the listen can increase with the time
and the next releases.

For this release, each machine hosting a worker need:

	mtr, basically a much better traceroute/ping utility.

	ping, for receiving pong from other machines

	Internet connectivity. Unlike the webserver, the worker doesn’t need big
requirements in term of bandwidth and traffic needs. In case you are in a
cloud environment, you can dedicate few gigabytes (1-2GB) of traffic per
months. Of course, it will depend with the usage you will have with Netwark.

Install on a server

We consider you already have deployed RabbitMQ and PostgreSQL and have
installed everything on your servers.

General instructions

The very beginning step is to clone or download an archive of the latest
version of Netwark. If you want to use git, simply clone the repo by using:

git clone --branch <tag_name> https://github.com/themimitoof/netwark netwark
cd netwark

The list of tags are available on GitHub.

If you prefer using tar or zip archives, you can download one by using
the release page [https://github.com/Themimitoof/netwark/releases] on GitHub.

You can now create a Python virtualenv and activate it by using:

python3 -m venv venv && source venv/bin/activate

Warning

If the module venv is not available, you can install it by installing
the packet python3-venv on Ubuntu/Debian, shipped by default on Fedora/CentOS.

We need now to download Poetry for downloading all our dependencies:

pip install poetry && \ # Install poetry on the virtualenv
poetry install --no-dev # Retrieve all dependencies only needed for a production environment.

Note

If you want to test master branch, a in-progress feature or simply
contribute to the codebase, you should remove --no-dev to the list of
arguments sent to poetry.

A good part is now finished. You can now follow next sections to finish the
deployment of each part of Netwark.

Deploy the Webserver

Before continuing the deployment, we need to create a .mapbox-token file at
the root folder of Netwark that contain the access token of
your Mapbox account.

Now, you can download all front-end dependencies by using npm
and bundle all resources with:

npm i && \
./node_modules/.bin/gulp all

You can go now into the config folder and create a copy of all files or
netwark_backend.yaml.example and <environment>.ini.example, and remove
the .example in the extension.

For now, you can edit in netwark_backend.yaml the line broker_url: and
replace the connection string by your RabbitMQ credentials.

In the <environment>.ini file, replace the connection string in
sqlalchemy.url with our PostgreSQL credentials.

Your installation is almost ready to use! If you want, you can pause the
deployment to continue to configuring the webserver by following the
configuration page.

Now, we need to run our database migrations scripts. For this, we only need to
run the command alembic -c config/<environment>.ini upgrade head.

After that, we need to retrieve latest version of MaxMind DB and updating the
MAC OUI database. For this, run theses two commands:

python netwark/bin/update_oui_vendor_table.py config/<environment>.ini
python netwark/bin/update_maxmind_db.py config/<environment>.ini

Everything is now configured! Congratulations! But we need to configure a last
thing system side. Before continuing, you can test if the webserver works by
typing the command:

pserve config/<environment>.ini

You can now open your browser and go to http://localhost:6543.

Use supervisord

You can use supervisord as daemon manager. For this, create a new
netwark-webserver.conf in /etc/supervisor/conf.d folder or add at the
end of /etc/supervisord.conf file, the below content:

[program:netwark-webserver]
command=<uwsgi command>
directory=/opt/netwark ; Replace with the good path

autostart=true
autorestart=true
startretries=20
stdout_logfile=/var/log/netwark/netwark-webserver.log
redirect_stderr=true

You can now reload the configuration or restart supervisord by typing:

pkill -SIGHUP -x supervisord
or
systemctl restart supervisord
or
service supervisor restart
or
/etc/init.d/supervisor restart

Now, you should have access to the webserver through your web browser by
accessing to http://localhost:6543. If is not, check the logs specified in the
supervisord configuration file.

Use systemd

The main Linux distributions embed systemd by default. To use it, create a
new service by creating a new file on
/etc/systemd/system/netwark-webserver.service and add the below content:

[Unit]
Description=Netwark webserver
Requires=Network.target
After=network.target

[Service]
Type=simple
ExecStart=<uwsgi command>
StandardOutput=file:/var/log/netwark/netwark-webserver.log
StandardError=file:/var/log/netwark/netwark-webserver-errors.log

You can now check if the service start and work well by using the command
systemctl start netwark-webserver and by accessing to http://localhost:6543
with your browser.

If the webserver works, you can enable the service to start automatically on
boot:

systemctl enable netwark-webserver

Voilà! You have done the deployment of the werbserver! We recommand now to
configure your reverse proxy and follow the configuration page to adjust
your installation settings.

Deploy the worker

The deployment of the worker is more easier than the webserver because it
doesn’t need much steps.

First above, you need to go into the config folder and create a copy of all
files or netwark_backend.yaml.example and <environment>.ini.example,
and remove the .example in the extension.

For now, you can edit in netwark_backend.yaml the line broker_url: and
replace the connection string by your RabbitMQ credentials.

In the <environment>.ini file, replace the connection string in
sqlalchemy.url with our PostgreSQL credentials.

If you dont have runned the database migrations wet, you need to run it by
using the command:

alembic -c config/<environment>.ini upgrade head

The worker is now ready to start! To test before creating the service
configuration, you can start it by using the command:

python netwark/bin/celery_backend.py config/<environment>.ini

Use supervisord

You can use supervisord as daemon manager. For this, create a new
netwark-worker.conf in /etc/supervisor/conf.d folder or add at the
end of /etc/supervisord.conf file, the below content:

[program:netwark-worker]
command=<path to bin folder of your virtualenv>/python /opt/netwark/netwark/bin/celery_backend.py /opt/netwark/config/<environment>.ini
directory=/opt/netwark ; Replace with the good path

autostart=true
autorestart=true
startretries=20
stdout_logfile=/var/log/netwark/netwark-webserver.log
redirect_stderr=true

Note

Please take care to replace the path in the configuration file by the good
path used in your server.

You can now reload the configuration or restart supervisord by typing:

pkill -SIGHUP -x supervisord
or
systemctl restart supervisord
or
service supervisor restart
or
/etc/init.d/supervisor restart

You can now tail the logs file and run a new operation through the web
interface or via the REST API.

Use systemd

The main Linux distributions embed systemd by default. To use it, create a
new service by creating a new file on
/etc/systemd/system/netwark-worker.service and add the below content:

[Unit]
Description=Netwark worker daemon
Requires=Network.target
After=network.target

[Service]
Type=simple
ExecStart=<path to bin folder of your virtualenv>/python /opt/netwark/netwark/bin/celery_backend.py /opt/netwark/config/<environment>.ini
StandardOutput=file:/var/log/netwark/netwark-worker.log
StandardError=file:/var/log/netwark/netwark-worker-errors.log

Note

Please take care to replace the path in the configuration file by the good
path used in your server.

You can now start the worker by using systemctl start netwark-worker and
follow the logs by using tail or with journalctl and run a new
operation through the web interface or via the REST API.

tail -f /var/log/netwark/netwark-worker.log /var/log/netwark/netwark-worker-errors.log

or

journalctl -f netwark-worker

If the worker execute the task without error, you can enable the service to
start automatically on boot by using:

systemctl enable netwark-worker

Voilà! You have done the deployment of the worker! We recommand now to follow
the configuration page to adjust your installation settings.

Install on Docker

The deployment in Docker is much easier than the deployment on multiple
machines but it can be painful if you want create a dedicated network across
all your machines.

Note

We uses alpine images to have a minimum as possible footprint on the host
machine and uses intermediate builds for not storing useless parts on our
images (e.g. node and his node_module folder).

First above, you need to go into the config folder and create a copy of all
files or netwark_backend.yaml.example and production.ini.example,
and remove the .example in the extension.

Editing theses files are not needed for now, they already are configured for
using the PostgreSQL and the RabbitMQ configured in the
docker-compose.yml file.

Before building the base image, we need to create a .mapbox-token file at
the root folder of Netwark that contain the access token of
your Mapbox account.

Now, everything is ready to build the base image for the webserver and the
worker. To do that, simply run the command:

docker-compose build

Now, we need to run some scripts on the webserver container to run
database migrations and fill the MAC OUI table, retrieve MaxMind DBs. To
do this, run theses three commands:

Run database migrations
docker-compose run --rm webserver poetry run alembic -c config/production.ini upgrade head

Fill the `MAC OUI` table
docker-compose run --rm webserver poetry run python netwark/bin/update_oui_vendor_table.py config/production.ini

Update MaxMind DBs
docker-compose run --rm webserver poetry run python netwark/bin/update_maxmind_db.py config/production.ini

Warning

If you want to mount the folder that contain maxmind databases,
please execute theses commands before running the command for updating
maxmind DBs:

mkdir maxmind_db
chown 1100:1101 maxmind_db # 1100 and 1101 are GID/UID inside the container

At this point, the installation is finished! You can now execute
docker-compose up -d to start the complete stack.

If you want Docker starts the whole stack on boot, replace
restart: on-failure in the docker-compose.yml file by
restart: always.

To test if everything works like a watch, watch the logs with
docker-compose -f and open your browser and test if Netwark respond by
accessing to http://localhost:6543.

Voilà! The complete stack is running on a single machine! You can now use
swarm, kubernetes or create a tunnel on the host to communicate with other
machines and add more workers to your Netwark installation. We recommand now to
configure your reverse proxy and follow the configuration page to adjust
your installation settings.

Configuration

This page contains all information you need to add additional settings to
your installation.

<environment>.ini files

This configuration file contains all information the worker and the webserver
need to work.

In general, two keys are important:

	sqlalchemy.url: contain the connection string to the PostgreSQL server

	backend.config: contain the path to the netwark_backend.yaml file

Note

SQLAlchemy give you the possibility to use several databases types. We do
not recommend to use other database engine. If you still want to use for
example MySQL, please make a pile of tests and send us a Pull request to
integrate the database engine to the list of compatible database engines.

For the webserver, some additional keys are important to edit/keep update:

	session.token: this is the token for signing your user sessions. Please
change his value before exposing the webserver to your network.

	geoip_database.city: contain the path to the MaxMind City database. The
presence of the database is needed to start the webserver because is a key
feature for retrieving additional informations when you WHOIS IP addresses
and ASN.

	geoip_database.ASN: same as geoip_database.city but for the MaxMind ASN
database.

If you are not satisfied with the output of the logs of the webserver or for
the worker, you can edit the logging configuration by following the guide
available on the pyramid documentation: https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html

netwark_backend.yaml file

This configuration file is specific to asynchronous tasks. Both our components
need them to send operations to queues (webserver) and listen queues for
receiving and executing operations (worker).

Every keys in the object celeryconfig are configuration keys of Celery. The
complete list are available on https://docs.celeryproject.org/en/latest/userguide/configuration.html.

This part is not recommended to modify except three keys:

	broker_url: contain the connection string to the RabbitMQ broker.

	timezone: update it to use your timezone/server timezone

	broker_heartbeat: specify the interval time between the worker need to send
a heartbeat signal (we recommend to keep 60 seconds).

The netwark_queues are more important to configure. It concern all the queues
of the worker can listen tasks. By default, every workers listen netwark
queue and netwark.broadcast queue. netwark queue is a simple direct queue
that RabbitMQ dispatch the task like round-robin. The netwark.broadcast
queue is a broadcastable queue. All tasks sent to this queue are
automatically played by all workers connected to the queue.

We have choosed to purpose a way to seperate where you want to execute your
tasks by purposing the creation of custom queues. The best scenario is
creating multiple queues for separating each offices/datacenters/circuits.

To do this, we have a template available on the example file.

netwark_queues:
 - queue: lc_eqx_pa2
 name: 'Equinix PA2'
 location: '114 Rue Ambroise Croizat, 93200 Saint-Denis, France'
 broadcast: true

	queue: is the name of the queue in Celery. To avoid errors, we only
recommend to follow AMQP recommendations and uses [a-zA-Z0-9-_.:]
characters.

	name: this is the name of the queue/location. This label will be soon
visible on the frontend.

	location: this key give location informations to the frontend. Same as the
name label, it will be soon visible on the frontend.

	broadcast (not mandatory - default: False): specify if the queue need to
be configured as a broadcast queue.

Warning

All queues you specify on your workers need to be specified in the
netwark_backend.yaml file of the webserver. If you don’t fill with all
queues, you will do able not send operations to theses queues.

REST API documentation

All functionnalities of Netwark are available in a REST API. To access it,
simply access it by using the http[s]://{instance_url}/api/v1/{resource}.

Warning

The REST API document are currently in progress. Status codes and the
return content are currently not documented.

	
GET /ip-calc/{resource}/{cidr}

	
	Parameters

	
	resource (string) –

	cidr (string) –

	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
GET /mac-oui/{resource}

	
	Parameters

	
	resource (string) –

	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
GET /mac-oui

	
	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
GET /management/backend/queues

	
	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
GET /operations/{operation_id}

	
	Parameters

	
	operation_id (string) –

	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
GET /operations

	
	Status Codes

	
	default – UNDOCUMENTED RESPONSE

	
POST /operations

	
	Status Codes

	
	default – UNDOCUMENTED RESPONSE

 HTTP Routing Table

 /ip-calc |
 /mac-oui |
 /management |
 /operations

 		 	

 		
 /ip-calc	

 	
 	
 GET /ip-calc/{resource}/{cidr}	
 null

 		 	

 		
 /mac-oui	

 	
 	
 GET /mac-oui	
 null

 	
 	
 GET /mac-oui/{resource}	
 null

 		 	

 		
 /management	

 	
 	
 GET /management/backend/queues	
 null

 		 	

 		
 /operations	

 	
 	
 GET /operations	
 null

 	
 	
 GET /operations/{operation_id}	
 null

 	
 	
 POST /operations	
 null

Index

 _static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

nav.xhtml

 Table of Contents

 		
 Welcome to Netwark’s documentation!

 		
 Architecture design

 		
 Installation

 		
 Prerequisites

 		
 Infrastructure prerequisites

 		
 Webserver prerequisites

 		
 Worker prerequisites

 		
 Install on a server

 		
 General instructions

 		
 Deploy the Webserver

 		
 Deploy the worker

 		
 Install on Docker

 		
 Configuration

 		
 <environment>.ini files

 		
 netwark_backend.yaml file

 		
 REST API documentation

