
Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦
Release 0.2.3

Oct 10, 2019

Contents:

1 Quickstart 3
1.1 Installation . 3
1.2 Configuration . 4
1.3 Device list . 5
1.4 Filter . 5
1.5 Import and interconnect . 7

2 Import devices data 9
2.1 Create a device in Netbox . 9
2.2 Usage . 9
2.3 Configuration . 12
2.4 Data imported . 12

3 Interconnect devices 15
3.1 Usage . 15
3.2 Configuration . 17
3.3 Neighbours finding . 18

4 Compatibility and specific custom parsers 21
4.1 Compatibility . 21
4.2 List of specific parsers . 21
4.3 Napalm only features . 21

5 Indices and tables 23

i

ii

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

netbox-netprod-importer is a tool dedicated to help reflecting your production in Netbox as an IPAM/DCIM, indepen-
dently of your information system. It connects to a given list of network devices and parse their status and configuration
to import them into Netbox like they are currently configured.

It is thought to be generic and infrastructure agnostic. It means that imported data will probably need to be adapted by
some custom scripts, like the specification of roles, tennant and other properties on objects.

To be the most platform agnostic as possible, data are fetched through Napalm, with some custom parsers when more
info are needed.

Contents: 1

https://netbox.readthedocs.io/en/latest/
https://napalm.readthedocs.io/en/latest/

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

2 Contents:

CHAPTER 1

Quickstart

Netbox should reflect the status of your production. Its philosophy is that your production should be configured related
to Netbox, but Netbox should not be synced from what is currently running.

However, moving to Netbox can be complicated depending on the current knowledge base. For this case, if you trust
how your production is configured, Netbox can be populated the 1st time from what is currently running, to then make
Netbox the single source of truth and base the production around it.

netbox-netdev-inventory has 2 main functions:

• import devices data

• interconnect

Import will fetch the current status of a list of devices. Interconnect will build a graph of neighbours to create connec-
tions between each other inside Netbox.

Table of Contents

• Quickstart

– Installation

– Configuration

– Device list

– Filter

* Example

– Import and interconnect

1.1 Installation

Run:

3

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

pip3 install netbox_netdev_inventory

Or by using setuptools:

python3 ./setup.py install

netbox-netdev-inventory is tested under python 3.4 to 3.7

1.2 Configuration

The configuration is quite minimal yaml file:

########################
Global options
########################

Be more verbose
verbose: None

Disable ssl warnings in urllib3
disable_ssl_warnings: False

################
Netbox
################

netbox:
Netbox API URL
url: "https://netbox.tld/api"
username: "user"
password: "password"
or to use a token instead
token: "CHANGEME"

##########################
Interconnections
##########################

On some devices, LLDP will expose the host FQDN. If devices are stored on
Netbox only by their hostname, the interconnection process will not be able
to find them. Fill this list to strip the domain name from exposed names.
remove_domains:

- "foo.tld"
- "bar.tld"

vim: set ts=2 sw=2:

Adapt it and save it either as:

• ~/.config/netbox-netdev-inventory/config.yml

• /etc/netbox-netdev-inventory/config.yml

Or can be set with the environment variable CONFIG_PATH. Example: CONFIG_PATH=./config.yml
netbox-netdev-inventory ...

4 Chapter 1. Quickstart

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

To turn off unverified HTTPS warning messages request: InsecureRequestWarning: Unverified HTTPS request is being
made. Advised verification verification is strongly advised. See: https://urllib3.readthedocs.io/en/latest/advanced-
usage.html#ssl-warnings InsecureRequestWarning) In the configuration file, set the disable_ssl_warnings option to
True Default False

1.3 Device list

To import the state of some devices, netbox-netdev-inventory takes a yaml that lists which hosts to target. One device
is declared like the following:

switch-fqdn:
Napalm driver name to use
driver: napalm_driver_name
optional. Will be used instead of the switch fqdn to init the connection
target: some_ip
optional. Only needed for interconnect
discovery_protocol: lldp, cdp or multiple

Read the documentation of each subparser to use it in netbox-netdev-inventory.

discovery_protocol can take the values “lldp”, “cdp” or “multiple”. Since the CDP protocol is proprietary, it is only
supported by CISSCO equipment. CDP detection only works with nxos, nxos_ssh and ios drivers.

1.4 Filter

To import the status of some devices, netbox-netdev-inventory accepts yaml, which lists the criteria for selecting
devices to target. It looks like this:

#Mandatory section, but may be empty.
#Used with interconnect and inventory.
discovery_protocol:

#[driver]: [discovery protocol]
ios: cdp
nxos: multiple
nxos_ssh: multiple
junos: lldp

#Filter section, device selection criteria are prescribed.
filter:

q:
region:

- england
site:

- london
- birmingham

rack:
status: 1
role:
tenant_group:
tenant:

- it
manufacturer:

- cisco

(continues on next page)

1.3. Device list 5

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

(continued from previous page)

device_type:
mac_address:
has_primary_ip: True
platform:
virtual_chassis_member:
console_ports:
console_server_ports:
power_ports:
power_outlets:
interfaces:
pass_through_ports:

Full online documentation on filter keys is available on a running NetBox instance in /api/docs/, section GET
/dcim/devices/ Most filter keys accept slug input

Mandatory in the platform you need to specify the NAPALM driver

1.4.1 Example

3 switches are wanted to be imported:

• switch-1.foo.tld, which is a Cisco Nexus. The IP to target will be deduced by resolving the fqdn/hostname.

• switch-2.bar.tld, which is a Juniper. switch-2.bar.tld does not resolve, so an IPv4 will be specified as target.

• switch-3.foo.tld, which is a Cisco Nexus. The IP to target will be deduced by resolving the fqdn/hostname. And
also determine the interconnect via cdp. The cdp protocol works so far with nxos, nxos_ssh and ios

• switch-4.foo.tld, which is a Cisco Nexus. The IP to target will be deduced by resolving the fqdn/hostname. And
also determine the interconnect via cdp and lldp. The multiple option only works for nxos, nxos_ssh and ios.

To declare 2 switches, define a yaml named devices.yaml:

switch-1.foo.tld:
driver: "nxos_ssh"

switch-2.bar.tld:
driver: "junos"
target: "192.0.2.3"

switch-3.foo.tld:
driver: "nxos"
discovery_protocol: "cdp"

switch-4.foo.tld:
driver: "nxos"
discovery_protocol: "multiple"

Then to use it:

$ netbox-netdev-inventory import -f devices.yaml

6 Chapter 1. Quickstart

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

1.5 Import and interconnect

Import is meant to import the state of some devices, like creating their interfaces, attaching their IP, etc. The complete
documentation and list of feature can be found here.

Import a list of devices:

$ netbox-netdev-inventory import -f devices.yaml

Once all devices interfaces are created, with the previous command, neighbours can be discovered and interconnected
between each other:

$ netbox-netdev-inventory interconnect -f devices.yaml

Full documentation for the interconnect feature can be found here.

You can also run an inventory, which first starts the import and then the interconnect:

$ netbox-netdev-inventory inventory -F filter.yaml

1.5. Import and interconnect 7

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

8 Chapter 1. Quickstart

CHAPTER 2

Import devices data

The importer goal is to import the state and data of a network device. It is not meant to create a device or magically
rack it, but to populate it as it is currently configured. It is based on Napalm to be platform agnostic, when possible,
but uses some custom specific parsers when needed.

Table of Contents

• Import devices data

– Create a device in Netbox

– Usage

* Example

– Configuration

– Data imported

* Interface form factor

* IP addresses and VRF

2.1 Create a device in Netbox

Before importing the data of a device, it should be created in Netbox. netbox-netdev-inventory will not create a device
for the user, as it is difficult to do so by staying infrastructure agnostic. It just needs a hostname and all fields required
by Netbox, the rest being part of the listed features will be populated by netbox-netdev-inventory.

2.2 Usage

An import can be started through the subcommand import:

9

https://napalm.readthedocs.io

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

usage: netbox-netdev-inventory import [-h] [-u user] [-p] [-t THREADS] [--overwrite]
→˓[-v LEVEL] [-f DEVICES | -F FILTER]

arguments:
-f devices, --file devices

Yaml file containing a definition of devices to poll
or
-F FILTER, --filter FILTER

Yaml file containing the device definition filter for polling
→˓from NetBox

optional arguments:
-h, --help show this help message and exit
--overwrite overwrite devices already pushed
-u user, --user user user to use for connections to the devices
-p, --password ask for credentials for connections to the devices
-P PASSWORD, --Password PASSWORD

credentials for connections to the devices
-t THREADS, --threads THREADS

number of threads to run
-v LEVEL, --verbose LEVEL

verbose output debug, info, warning, error and
critical, default: error

By default, connecting to the devices will use the default authentication mechanism of the napalm driver, which is
normally the current user and no password/authentication by key. To change this behavior, the -u/--user and -p/
--password|-P/--Password options can be used to specify the user to use, and tells the importer to ask|set for
the password to use.

The import is multithreaded, and split by device. The default number of threads is 10, but can be changed with the
-t/--threads option.

Importing a device will replace the current data in Netbox, but not clean (by default) what has not been found by
fetching the device state. If a device is already populated in Netbox, network interfaces already added but not found
during the import will not be cleaned, same as the IP addresses that do not seem to be configured anymore. This
behavior can be changed by enabling the --overwrite option, which will clean all interfaces and IP that have not
been found during the import.

Toggle the verbose mode with the -v/--verbose LEVEL option to get a more verbose output. Default error.

The devices parameter is a yaml file, representing the devices list to import, as detailed here.

2.2.1 Example

Considering a yaml file ~/importer/devices.yml containing these devices:

switch-1.foo.tld:
driver: "nxos_ssh"

switch-2.bar.tld:
driver: "junos"
target: "192.0.2.3"

To simply apply the import on these devices, do:

$ netbox-netdev-inventory import -f ~/importer/devices.yml

10 Chapter 2. Import devices data

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

Considering that the current user is named foo, if a password is needed for this user to connect to these devices, do:

$ netbox-netdev-inventory import -p -f ~/importer/devices.yml

To use a different user, for example bar do:

$ netbox-netdev-inventory import -u bar -p -f ~/importer/devices.yml

And to use more threads and enable the overwrite mode to get a clean clone of a device state:

$ netbox-netdev-inventory import -u bar -p -t 30 --overwrite -f ~/importer/devices.yml

Considering a yaml file ~/importer/filter.yml containing this filter:

discovery_protocol:
ios: cdp
nxos: multiple
nxos_ssh: multiple
junos: lldp

filter:
q:
region:

- england
site:

- london
- birmingham

rack:
status: 1
role:
tenant_group:
tenant:

- it
manufacturer:

- cisco
device_type:
mac_address:
has_primary_ip: True
platform:
virtual_chassis_member:
console_ports:
console_server_ports:
power_ports:
power_outlets:
interfaces:
pass_through_ports:

Full online documentation on filter keys is available on a running NetBox instance in /api/docs/, section GET
/dcim/devices/

We will choose London and birmingham sites in England, the equipment is active, the owner is it, the manufacturer is
cisco and has a primary ip:

$ netbox-netdev-inventory import -u bar -p -t 30 --overwrite -F ~/importer/filter.yml

2.2. Usage 11

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

2.3 Configuration

For the import part, the only configuration needed in your config file is the following one:

netbox:
Netbox API URL
url: "https://netbox.tld/api"
username: "user"
password: "password"
or to use a token instead
token: "CHANGEME"

It is used to get and push the fetched data from and to Netbox. This block is self documented, and is used to get the
Netbox API URL and credentials.

2.4 Data imported

The importer fetch the following type of data:

• Network interfaces (physical & virtual):

– Try to guess the interface form factor

– MTU

– MAC Address

– Description

– Parent LAG

– Enabled/Disabled

– IPv4/IPv6

– Vlan (only cisco equipment)

– 802.1Q Mode (only cisco equipment)

• Serial number

• Main IPv4/IPv6

2.4.1 Interface form factor

netbox-netdev-inventory can find the form factor by fetching it from the device and by selecting the matching type on
Netbox. A form factor can be for example 1000Base-T, SFP, SFP+, etc.

To correctly detect the interface type, the platform of the targetted device needs to be fully supported by the importer.
Some parsers are written to get more info than what napalm allows (read the documentation about specific parsers for
more details), and are used by the importer.

When an interface type can be fetched from a device, it has then to be translated as a type expected by Netbox. To
do so, a list of regexp are written to help for the mapping. This list is certainly incomplete, so someone seeing an
unhandled case is welcomed to open an issue about it.

12 Chapter 2. Import devices data

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

2.4.2 IP addresses and VRF

IP addresses configured on an interface are imported and attached to this interface in Netbox. If an IP already exists in
Netbox, it is used it and assigned it to the correct interface. If an IP does not already exist, it is created and assigned to
the interface.

Warning: This behavior can be an issue with anycasted ip addresses.

When an IP is part of a VRF, the VRF cannot be guessed from Netbox. As multiple VRF can be declared with the
same name but a different route distinguisher, it is not easier to get the correct one and staying infrastructure agnostic.
That is the reason why created IP are not assigned to any VRF. Scripts can be use to move them after the import, but
the import will let the responsability on the user to do it.

Warning: Be aware that some Napalm drivers do not handle well the notion of VRF. Getting the IP addresses of
an interface will sometimes be limited to the default VRF.

Pull requests are opened on Napalm to fix it:

• https://github.com/napalm-automation/napalm/pull/815

• https://github.com/napalm-automation/napalm/pull/819

2.4. Data imported 13

https://github.com/napalm-automation/napalm/pull/815
https://github.com/napalm-automation/napalm/pull/819

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

14 Chapter 2. Import devices data

CHAPTER 3

Interconnect devices

Once all network interfaces are created, the interconnection feature allows to build a graph of some devices neighbours,
and create an interconnection between each other in Netbox. It is based on LLDP, CDP and napalm, plus some custom
parsers to get more informations that what is fetched by the napalm drivers.

The classic workflow is to start the interconnection after importing the current states of the devices, so all network
interfaces exist in Netbox.

Table of Contents

• Interconnect devices

– Usage

* Example

– Configuration

– Neighbours finding

3.1 Usage

The interconnections feature can be started through the subcommand interconnect:

usage: netbox-netdev-inventory interconnect [-h] [-u USER] [-p] [-t THREADS] [-v
→˓LEVEL] [-f DEVICES | -F FILTER]

arguments:
-f devices, --file devices

Yaml file containing a definition of devices to poll
or
-F FILTER, --filter FILTER

Yaml file containing the device definition filter for polling
→˓from NetBox (continues on next page)

15

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

(continued from previous page)

optional arguments:
-h, --help show this help message and exit
-u USER, --user USER user to use for connections to the devices
-p, --password ask for credentials for connections to the devices
-P PASSWORD, --Password PASSWORD

credentials for connections to the devices
-t THREADS, --threads THREADS

number of threads to run
--overwrite overwrite data already pushed
-v LEVEL, --verbose LEVEL

verbose output debug, info, warning, error and
critical, default: error

By default, connecting to the devices will use the default authentication mechanism of the napalm driver, which is
normally the current user and no password/authentication by key. To change this behavior, the -u/--user and
-p/--password options can be used to specify the user to use, and tells netbox-netdev-inventory to ask for the
password to use.

The process is multithreaded, and split by device. The default number of threads is 10, but can be changed with the
-t/--threads option.

Interconnecting devices will not clean old connections in Netbox: if 2 interfaces are marked as connected in Netbox
but are not detected as such during the neighbour search, it will be kept as it is. This behavior can be changed by
enabling the --overwrite option, which will, on each scanned device, clean all connections that have not been
found.

Toggle the verbose mode with the -v/--verbose LEVEL option to get a more verbose output. Default error.

The devices parameter is a yaml file, representing the devices list to import, as detailed here.

3.1.1 Example

Considering a yaml file ~/importer/devices.yml containing these devices:

switch-1.foo.tld:
driver: "nxos_ssh"

switch-2.bar.tld:
driver: "junos"
target: "192.0.2.3"

switch-3.foo.tld:
driver: "nxos"
discovery_protocol: "cdp"

switch-4.foo.tld:
driver: "nxos"
discovery_protocol: "multiple"

To simply apply the import on these devices, do:

$ netbox-netdev-inventory interco -f ~/importer/devices.yml

Considering that the current user is named foo, if a password is needed for this user to connect to these devices, do:

16 Chapter 3. Interconnect devices

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

$ netbox-netdev-inventory interco -p -f ~/importer/devices.yml

To use a different user, for example bar do:

$ netbox-netdev-inventory interco -u bar -p -f ~/importer/devices.yml

And to use more threads:

$ netbox-netdev-inventory interco -u bar -p -t 30 -f ~/importer/devices.yml

Listing devices from NetBox. Considering a yaml file ~/importer/filter.yml containing this filter:

discovery_protocol:
ios: cdp
nxos: multiple
nxos_ssh: multiple
junos: lldp

filter:
q:
region:

- england
site:

- london
- birmingham

rack:
status: 1
role:
tenant_group:
tenant:

- it
manufacturer:

- cisco
device_type:
mac_address:
has_primary_ip: True
platform:
virtual_chassis_member:
console_ports:
console_server_ports:
power_ports:
power_outlets:
interfaces:
pass_through_ports:

Full online documentation on filter keys is available on a running NetBox instance in /api/docs/, section GET
/dcim/devices/

We will choose london and birmingham sites in England, the equipment is active, the owner is it, the manufacturer is
cisco and has a primary ip:

$ netbox-netdev-inventory interco -u bar -p -t 30 --overwrite -F ~/importer/filter.yml

3.2 Configuration

For the import part, the configuration needed in your config file is the following one:

3.2. Configuration 17

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

netbox:
Netbox API URL
url: "https://netbox.tld/api"
username: "user"
password: "password"
or to use a token instead
token: "CHANGEME"

On some devices, LLDP will expose the host FQDN. If devices are stored on
Netbox only by their hostname, the interconnection process will not be able
to find them. Fill this list to strip the domain name from exposed names.
remove_domains:

- "foo.tld"
- "bar.tld"

The netbox section is used to get and push the fetched data from and to Netbox. This block is self documented, and
is used to get the Netbox API URL and credentials.

As explained in the LLDP section, some tweaks are done to maximize the neighbours finding. On some platform, the
host property inside LLDP is the fqdn when usually it contains only the hostname. The remove_domains option
is a list of domain names to workaround it, as the interconnection algorithm will try to find the device in Netbox with
and without the domain name, if the host contains it.

3.3 Neighbours finding

To discover neighbours connected to a device, LLDP is used. LLDP is a standard protocol, but is quite permissive,
and manufacturers do not all expose the same information in each field. To maximize the information fetched about
each neighbour, some custom parsers are done for fully supported platforms.

Note: To maximize the neighbours finding, use the import on all devices. This way, if a neighbour cannot be find
through a device, there is some chances that the discover from the neighbour will find this same device.

To find a neighbour on Netbox, the interconnect functions will connect to the listed devices, then use LLDP to get the
hostname exposed by the neighbour, its network interface name and MAC address. Some platforms will try to interpret
the received values: for example, Cisco NXOS will add the domain name setup inside the router to the hostname
received by LLDP. So if your device expose its fqdn, for example switch.bar.tld, NXOS will transform it as
switch.bar.tld.bar.tld if bar.tld is its domain name. This is why the remove_domains option has
been written, in the config file: if one domain listed in this option is found in the neighbour hostname, it will try to
search it in Netbox without this domain name.

On some platforms, the network interface can be exposed via LLDP as aggregated. For example, Cisco can show an
interface named GigabitEthernet0/1 as Ge0/1, what can be an issue because netbox-netdev-inventory actually
imports the full interface name (GigabitEthernet0/1). To help finding them in Netbox, all possible form of
interface names are written inside the custom parsers, and are tested in case nothing is found.

When no interface name is exposed nor found, the interface can be searched through the exposed MAC address. It can
work in most cases, but be aware that some devices can share the same MAC address on multiple interfaces: Cisco
N9000 for example will have the same MAC address for all interfaces configured as layer 2 only. If multiple interfaces
are found on Netbox by trying to match on their MAC address, the interconnection will fail, as the correct neighbour
interface cannot be determined. This feature is permitted by the specific parsers, and platforms relying only on Napalm
will not be able to do that.

Also, if you want to connect switches to servers (linux), and on bond servers or team and in netbox you enter them
with MAC addresses, the search will return more than one value, and which is not known. Of course, you can check

18 Chapter 3. Interconnect devices

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

the type of interface, but why if you can configure a normal return port_id.

Ansible task to configure:

- name: configure lldpd
lineinfile:
dest: /etc/lldpd.conf
line: "configure ports {{ item }} lldp portidsubtype local {{ item }}"
state: present
backup: yes
create: yes

when: hostvars[inventory_hostname]['ansible_%s' | format(item)]['module'] is defined
loop: "{{ansible_interfaces }}"
tags:
- config_lldp

notify: restart lldpd

Tested on RedHat 6 and 7, lldpd from EPEL repository.

3.3. Neighbours finding 19

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

20 Chapter 3. Interconnect devices

CHAPTER 4

Compatibility and specific custom parsers

4.1 Compatibility

The platforms of the targeted network devices have to be compatible with Napalm. A list of drivers can be found here.

Napalm, however, does not support all features needed by netbox-netdev-inventory. Because of that, some specific
parsers have been written to either get more data or enhanced some features to improve the import.

netbox-netdev-inventory has been tested on:

• Cisco IOS (catalyst, 2960)

• Cisco Nexus 9000

• Cisco ASR

• JunOS devices

4.2 List of specific parsers

They can be found in netbox_netdev_inventory/vendors/. Fully supported devices are:

• Cisco IOS (catalyst, 2960)

• Cisco Nexus 9000

• JunOS devices

4.3 Napalm only features

When targetting a device which does not have a specific parser, the import is based on Napalm only. In that situation,
here is a list of supported features:

21

https://napalm.readthedocs.io/en/latest/support/index.html

Netbox𝑁𝑒𝑡𝑑𝑒𝑣𝐼𝑛𝑣𝑒𝑛𝑡𝑜𝑟𝑦,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.2.3

4.3.1 Data import

Feature Supported
Serial number True
Main IPv4/IPv6 True

Network interfaces

Feature Supported
Guess the interface form factor: False
MTU True
MAC Address True
Description True
Parent LAG False
Enabled/Disabled True
IPv4/IPv6 True

4.3.2 Interconnect

Specific parsers will fetch the MAC address of each interface, to maximize the finding when the interface name or
hostname cannot be found on Netbox. They also yield a list of alternative names for an interface, allowing to deal with
aggregated names.

22 Chapter 4. Compatibility and specific custom parsers

CHAPTER 5

Indices and tables

• genindex

• modindex

• search

23

	Quickstart
	Installation
	Configuration
	Device list
	Filter
	Import and interconnect

	Import devices data
	Create a device in Netbox
	Usage
	Configuration
	Data imported

	Interconnect devices
	Usage
	Configuration
	Neighbours finding

	Compatibility and specific custom parsers
	Compatibility
	List of specific parsers
	Napalm only features

	Indices and tables

